We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Production of human phase 1 and 2 metabolites by whole-cell biotransformation with recombinant microbes

    , ,
    Markus R Meyer

    Department of Experimental and Clinical Toxicology, Saarland University, Building 46, D-66421 Homburg (Saar), Germany

    ,
    Hans H Maurer

    Department of Experimental and Clinical Toxicology, Saarland University, Building 46, D-66421 Homburg (Saar), Germany

    ,
    Frank T Peters

    Institute of Forensic Medicine, Friedrich Schiller University of Jena, Fürstengraben 23, D-07740 Jena, Germany

    &
    Matthias Bureik

    † Author for correspondence

    PomBioTech GmbH, Campus A1-1, D-66123 Saarbrücken, Germany.

    Published Online:https://doi.org/10.4155/bio.10.80

    Cytochrome P450 enzymes (CYPs or P450s) are the most important enzymes involved in the phase I metabolism of drugs and poisons in humans, while UDP glycosyltransferases catalyze the majority of phase II reactions. In addition, a number of other enzymes or enzyme families contribute to the metabolism of xenobiotica, including alcohol dehydrogenase, aldehyde dehydrogenase, ester and amide hydrolases, epoxide hydrolase and flavine monooxygenases, as well as sulfotransferases, catechol-O-methyltransferase and N-acetyltransferase. A thorough understanding of their activity and of the properties of the metabolites they form is an essential prerequisite for the assessment of drug-caused side effects or toxicity. In this context of MIST, efficient production systems are needed to permit the large-scale production of human drug metabolites. As classical chemical synthesis cannot always provide these metabolites, biotechnological approaches have been developed that typically employ the recombinant expression of human drug-metabolizing enzymes. This review summarizes the current knowledge regarding whole-cell biotransformation processes that make use of such an approach.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Thompson TN. Safety testing of drug metabolites. In: Annual Reports in Medicinal Chemistry. Macor JE (Ed.). Academic Press, London, UK (2009).▪▪ Excellent review of the subject.
    • Davis-Bruno Kl, Atrakchi A. A regulatory perspective on issues and approaches in characterizing human metabolites. Chem. Res. Toxicol.19(12),1561–1563 (2006).
    • US FDA. Guidance for industry: safety testing of drug metabolites. (2008).▪ Final version of the Guidance for Industry: Safety Testing of Drug Metabolites’ issued by the US FDA.
    • Bernhardt R. Cytochrome P450: structure, function, and generation of reactive oxygen species. Rev. Physiol. Biochem. Pharmacol.127,137–221 (1996).
    • Bernhardt R. Cytochromes P450 as versatile biocatalysts. J. Biotechnol.124(1),128–145. (2006).▪▪ Excellent review of the biotechnological potential of cytochrome P450 enzymes.
    • Guengerich FP. Cytochrome P450: what have we learned and what are the future issues? Drug Metab. Rev.36(2),159–197 (2004).
    • Hannemann F, Bichet A, Ewen KM, Bernhardt R. Cytochrome P450 systems-biological variations of electron transport chains. Biochim. Biophys. Acta1770(3),330–344 (2006).
    • Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat. Rev. Cancer6(12),947–960 (2006).
    • Omura T, Sato R. A new cytochrome in liver microsomes. J. Biol. Chem.237,1375–1376 (1962).
    • 10  Stark K, Guengerich FP. Characterization of orphan human cytochromes P450. Drug Metab. Rev.39(2–3),627–637 (2007).
    • 11  Julsing MK, Cornelissen S, Buhler B, Schmid A. Heme-iron oxygenases: powerful industrial biocatalysts? Curr. Opin. Chem. Biol.12(2),177–186 (2008).
    • 12  Yamazaki H, Nakajima M, Nakamura M et al. Enhancement of cytochrome P450 3A4 catalytic activities by cytochrome b5 in bacterial membranes. Drug Metab. Dispos.27(9),999–1004 (1999).
    • 13  Vail RB, Homann MJ, Hanna I, Zaks A. Preparative synthesis of drug metabolites using human cytochrome P450s 3A4, 2C9 and 1A2 with nadph-P450 reductase expressed in Escherichia coli. J. Ind. Microbiol. Biotechnol.32(2),67–74 (2005).▪▪ Describes the use of recombinant Escherichia coli for generating metabolites on a 100-mg scale.
    • 14  Kolar NW, Swart AC, Mason JI, Swart P. Functional expression and characterisation of human cytochrome P45017 α in pichia pastoris. J. Biotechnol.129(4),635–644 (2007).
    • 15  Soars MG, Mcginnity DF, Grime K, Riley RJ. The pivotal role of hepatocytes in drug discovery. Chem. Biol. Interact.168(1),2–15 (2007).
    • 16  Gonzalez FJ, Crespi CL, Gelboin HV. DNA-expressed human cytochrome P450s: a new age of molecular toxicology and human risk assessment. Mutat. Res.247(1),113–127 (1991).
    • 17  Buters JT, Korzekwa KR, Kunze KL, Omata Y, Hardwick JP, Gonzalez FJ. CDNA-directed expression of human cytochrome P450 CYP3A4 using baculovirus. Drug Metab. Dispos.22(5),688–692 (1994).
    • 18  Peters FT, Bureik M, Maurer HH. Biotechnological synthesis of drug metabolites using human cytochrome P450 isozymes heterologously expressed in fission yeast. Bioanalysis1(4),821–830 (2009).
    • 19  Shaw PM, Hosea NA, Thompson DV, Lenius JM, Guengerich FP. Reconstitution premixes for assays using purified recombinant human cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b5. Arch. Biochem. Biophys.348(1),107–115 (1997).
    • 20  Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol.14(6),611–650 (2001).
    • 21  Kim DH, Kim KH, Isin EM et al. Heterologous expression and characterization of wild-type human cytochrome P450 1a2 without conventional N-terminal modification in Escherichia coli. Protein Expr. Purif.57(2),188–200 (2008).
    • 22  Zmijewski M, Gillespie TA, Jackson DA, Schmidt DF, Yi P, Kulanthaivel P. Application of biocatalysis to drug metabolism: preparation of mammalian metabolites of a biaryl-bis-sulfonamide ampa (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor potentiator using actinoplanes missouriensis. Drug Metab. Dispos.34(6),925–931 (2006).
    • 23  Yun CH, Yim SK, Kim DH, Ahn T. Functional expression of human cytochrome P450 enzymes in escherichia coli. Curr. Drug Metab.7(4),411–429 (2006).
    • 24  Van Beilen JB, Holtackers R, Luscher D, Bauer U, Witholt B, Duetz WA. Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp cytochrome P450 alkane hydroxylase expressed in pseudomonas putida. Appl. Environ. Microbiol.71(4),1737–1744 (2005).
    • 25  Fujita K, Kamataki T. Role of human cytochrome P450 (CYP) in the metabolic activation of N-alkylnitrosamines: application of genetically engineered salmonella typhimurium yg7108 expressing each form of CYP together with human nadph-cytochrome P450 reductase. Mutat. Res. Fund. Mol. Mech. Mut.483(1–2),35–41 (2001).
    • 26  Rushmore TH, Reider PJ, Slaughter D, Assang C, Shou M. Bioreactor systems in drug metabolism: synthesis of cytochrome P450-generated metabolites. Metab. Eng.2(2),115–125 (2000).
    • 27  Harnastai IN, Gilep AA, Usanov SA. The development of an efficient system for heterologous expression of cytochrome P450s in Escherichia coli using heme gene coexpression. Protein Expr. Purif.46(1),47–55 (2006).
    • 28  Uchida E, Kagawa N, Sakaki T et al. Purification and characterization of mouse CYP27B1 overproduced by an escherichia coli system coexpressing molecular chaperonins groel/es. Biochem. Biophys. Res. Commun.323(2),505–511 (2004).
    • 29  Zollner A, Kagawa N, Waterman MR et al. Purification and functional characterization of human 11β hydroxylase expressed in Escherichia coli. FEBS J.275(4),799–810 (2008).
    • 30  Narhi LO, Fulco AJ. Identification and characterization of two functional domains in cytochrome P450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in bacillus megaterium. J. Biol. Chem.262(14),6683–6690 (1987).
    • 31  Noble MA, Miles CS, Chapman SK et al. Roles of key active-site residues in flavocytochrome P450 BM3. Biochem. J.339,371–379 (1999).
    • 32  Otey CR, Bandara G, Lalonde J, Takahashi K, Arnold FH. Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnol. Bioeng.93(3),494–499 (2006).
    • 33  Schwaneberg U, Otey C, Cirino PC, Farinas E, Arnold FH. Cost-effective whole-cell assay for laboratory evolution of hydroxylases in Escherichia coli.J. Biomol. Screen6(2),111–117 (2001).
    • 34  Hamann T, Moller BL. Improved cloning and expression of cytochrome P450s and cytochrome P450 reductase in yeast. Protein Expr. Purif.56(1),121–127 (2007).
    • 35  Bureik M, Schiffler B, Hiraoka Y, Vogel F, Bernhardt R. Functional expression of human mitochondrial CYP11B2 in fission yeast and identification of a new internal electron transfer protein, etp1. Biochemistry41(7),2311–2321 (2002).
    • 36  Peyronneau MA, Renaud JP, Truan G, Urban P, Pompon D, Mansuy D. Optimization of yeast-expressed human liver cytochrome P450 3A4 catalytic activities by coexpressing nadph-cytochrome P450 reductase and cytochrome b5. Eur. J. Biochem.207(1),109–116 (1992).
    • 37  Goffeau A, Barrell BG, Bussey H et al. Life with 6000 genes. Science274(5287),546, 563–7 (1996).
    • 38  De Schutter K, Lin YC, Tiels P et al. Genome sequence of the recombinant protein production host pichia pastoris. Nat. Biotechnol.27(6),561–566 (2009).
    • 39  Alfa C, Fantes P, Hyams J, Mcleod M, Warbrick E. Experiments with fission yeast. A laboratory course manual. Cold Spring Harbor Press, Cold Spring Harbor, NY, USA (1993).
    • 40  Sambrook J, Rusell DW. Molecular cloning: A laboratory manual. CSHL Press, Woodbury, NY, USA (2001).
    • 41  Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast pichia pastoris. FEMS Microbiol Rev.24(1),45–66 (2000).
    • 42  Cereghino GPL, Cereghino JL, Ilgen C, Cregg JM. Production of recombinant proteins in fermenter cultures of the yeast pichia pastoris.Curr. Opin. Biotechnol.13(4),329–332 (2002).
    • 43  Peters FT, Dragan CA, Wilde DR et al. Biotechnological synthesis of drug metabolites using human cytochrome P450 2D6 heterologously expressed in fission yeast exemplified for the designer drug metabolite 4´-hydroxymethyl- α-pyrrolidinobutyrophenone. Biochem. Pharmacol.74(3),511–520 (2007).
    • 44  Peters FT, Dragan CA, Schwaninger AE et al. Use of fission yeast heterologously expressing human cytochrome P450 2B6 in biotechnological synthesis of the designer drug metabolite N-(1-phenylcyclohexyl)-2-hydroxyethanamine. Forensic Sci. Int.184,69–73 (2009).
    • 45  Dumas B, Pompon D, Chandelier F et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Yeast20,S220-S220 (2003).▪ Describes the use of recombinant Saccharomyces cerevisiae for the de novo synthesis of steroids.
    • 46  Szczebara FM, Chandelier C, Villeret C et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat. Biotechnol.21(2),143–149 (2003).
    • 47  Dragan CA, Blank LM, Bureik M. Increased tca cycle activity and reduced oxygen consumption during cytochrome P450-dependent biotransformation in fission yeast. Yeast23(11),779–794 (2006).
    • 48  Dragan CA, Hartmann RW, Bureik M. A fission yeast based test system for the determination of ic50 values of antiprostate tumor drugs acting on CYP21. J. Enzyme Inhib. Med. Chem.21(5),547–556 (2006).
    • 49  Dragan CA, Zearo S, Hannemann F, Bernhardt R, Bureik M. Efficient conversion of 11-deoxycortisol to cortisol (hydrocortisone) by recombinant fission yeast schizosaccharomyces pombe. FEMS Yeast Res.5,621–625 (2005).
    • 50  Peters FT, Dragan CA, Kauffels A et al. Biotechnological synthesis of the designer drug metabolite 4’-hydroxymethyl-α-pyrrolidinohexanophenone in fission yeast heterologously expressing human cytochrome P450 2D6-A versatile alternative to multistep chemical synthesis. J. Anal. Toxicol.33(4),190–197 (2009).
    • 51  Zöllner A, Dragan CA, Pistorius D et al. Human CYP4Z1 catalyzes the in-chain hydroxylation of lauric acid and myristic acid. Biol. Chem.390,313–317 (2009).
    • 52  Zollner A, Parr MK, Dragan CA et al. CYP21-catalyzed production of the long-term urinary metandienone metabolite 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one: a contribution to the fight against doping. Biol. Chem.391(1),119–127 (2010).▪ Describes the production of a doping metabolite by whole-cell biotransformation with recombinant Schizosaccharomyces pombe.
    • 53  Peters FT, Schwaninger AE, Dragan CA, Bureik M, Maurer HH. New fission yeast strains expressing human cytochrome P450 enzymes to be used for biotechnological synthesis of drug metabolites. Ther. Drug. Monit.29(4),466–467 (2007).
    • 54  Peters FT, Schwaninger AE, Sauer C et al. Isolation and purification of the designer drug metabolite O-desethyl-N-(1-phenylcyclohexyl)-3-ethoxypropanamine (O-desethyl-pcepa) biotechnologically synthesized using fission yeast expressing CYP2D6. Presente at: XV. GTFCh–Symposium. Mosbach, Germany, 18–21 April 2007.
    • 55  Iwata H, Fujita K, Kushida H et al. High catalytic activity of human cytochrome P450 coexpressed with human NADPH-cytochrome P450 reductase in Escherichia coli. Biochem. Pharmacol.55(8),1315–1325 (1998).
    • 56  Blake JAR, Pritchard M, Ding SH et al. Coexpression of a human P450 (CYP3A4) and P450 reductase generates a highly functional monooxygenase system in Escherichia coli. FEBS Lett.397(2–3),210–214 (1996).
    • 57  Chang MCY, Eachus RA, Trieu W, Ro DK, Keasling JD. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol.3(5),274–277 (2007).
    • 58  Hummel W. New alcohol dehydrogenases for the synthesis of chiral compounds. Adv. Biochem. Eng. Biotechnol.58,145–184 (1997).
    • 59  Bronley-Delancey A, Mcmillan DC, Mcmillan JM, Jollow DJ, Mohr LC, Hoel DG. Application of cryopreserved human hepatocytes in trichloroethylene risk assessment: relative disposition of chloral hydrate to trichloroacetate and trichloroethanol. Environ. Health Perspect.114(8),1237–1242 (2006).
    • 60  Griffin DR, Gainer JL, Carta G. Asymmetric ketone reduction with immobilized yeast in hexane: biocatalyst deactivation and regeneration. Biotechnol. Prog.17(2),304–310 (2001).
    • 61  Yu MA, Wei YM, Zhao L, Jiang L, Zhu XB, Qi W. Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer’s yeast cells in the presence of allyl bromide. J. Ind. Microbiol. Biotechnol.34(2),151–156 (2007).
    • 62  Katzberg M, Wechler K, Muller M et al. Biocatalytical production of (5s)-hydroxy-2-hexanone. Org. Biomol. Chem.7(2),304–314 (2009).
    • 63  Stampfer W, Kosjek B, Faber K, Kroutil W. Biocatalytic asymmetric hydrogen transfer employing Rhodococcus ruber DSM 44541. J. Org. Chem.68(2),402–406 (2003).
    • 64  Stampfer W, Kosjek B, Kroutil W, Faber K. On the organic solvent and thermostability of the biocatalytic redox system of rhodococcus ruber DSM 44541. Biotechnol. Bioeng.81(7),865–869 (2003).
    • 65  Yamamoto H, Matsuyama A, Kobayashi Y. Synthesis of ethyl (r)-4-chloro-3-hydroxybutanoate with recombinant escherichia coli cells expressing (s)-specific secondary alcohol dehydrogenase. Biosci. Biotechnol. Biochem.66(2),481–483 (2002).
    • 66  Yamamoto H, Matsuyama A, Kobayashi Y. Synthesis of (r)-1,3-butanediol by enantioselective oxidation using whole recombinant Escherichia coli cells expressing (s)-specific secondary alcohol dehydrogenase. Biosci. Biotechnol. Biochem.66(4),925–927 (2002).
    • 67  Ernst M, Kaup B, Muller M, Bringer-Meyer S, Sahm H. Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (r)-specific alcohol dehydrogenase. Appl. Microbiol. Biotechnol.66(6),629–634 (2005).
    • 68  Weckbecker A, Hummel W. Improved synthesis of chiral alcohols with Escherichia coli cells coexpressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase. Biotechnol. Lett.26(22),1739–1744 (2004).
    • 69  Goldberg K, Edegger K, Kroutil W, Liese A. Overcoming the thermodynamic limitation in asymmetric hydrogen transfer reactions catalyzed by whole cells. Biotechnol. Bioeng.95(1),192–198 (2006).
    • 70  Schroer K, Peter Luef K, Stefan Hartner F, Glieder A, Pscheidt B. Engineering the pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation. Metab. Eng.12(1),8–17 (2009).
    • 71  Long A, Ward OP. Biotransformation of benzaldehyde by Saccharomyces cerevisiae: characterization of the fermentation and toxicity effects of substrates and products. Biotechnol. Bioeng.34(7),933–941 (1989).
    • 72  Zocher F, Enzelberger MM, Bornscheuer UT, Hauer B, Wohlleben W, Schmid RD: Epoxide hydrolase activity of streptomyces strains. J. Biotechnol.77(2–3),287–292 (2000).
    • 73  Li C, Liu Q, Song X, Di D, Ji A, Qu Y. Epoxide hydrolase-catalyzed resolution of ethyl 3-phenylglycidate using whole cells of Pseudomonas sp. Biotechnol. Lett.25(24),2113–2116 (2003).
    • 74  Xu Y, Xu JH, Pan J, Tang YF. Biocatalytic resolution of glycidyl aryl ethers by trichosporon loubierii: cell/substrate ratio influences the optical purity of (r)-epoxides. Biotechnol. Lett.26(15),1217–1221 (2004).
    • 75  Kotik M, Brichac J, Kyslik P. Novel microbial epoxide hydrolases for biohydrolysis of glycidyl derivatives. J. Biotechnol.120(4),364–375 (2005).
    • 76  Liu Y, Sha Q, Wu S, Wang J, Yang L, Sun W. Enzymatic resolution of racemic phenyloxirane by a novel epoxide hydrolase from aspergillus niger SQ-6 and its fed-batch fermentation. J. Ind Microbiol. Biotechnol.33(4),274–282 (2006).
    • 77  Labuschagne M, Albertyn J. Cloning of an epoxide hydrolase-encoding gene from rhodotorula mucilaginosa and functional expression in yarrowia lipolytica. Yeast24(2),69–78 (2007).
    • 78  Hwang YO, Kang SG, Woo JH et al. Screening enantioselective epoxide hydrolase activities from marine microorganisms: detection of activities in erythrobacter spp. Mar. Biotechnol. 10(4),366–373 (2008).
    • 79  Phillips IR, Shephard EA. Flavin-containing monooxygenases: mutations, disease and drug response. Trends. Pharmacol. Sci.29(6),294–301 (2008).
    • 80  Crettol S, Petrovic N, Murray M. Pharmacogenetics of phase I and phase II drug metabolism. Curr. Pharm. Des.16(2),204–219 (2010).
    • 81  Iyanagi T. Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. Int. Rev. Cytol.260,35–112 (2007).
    • 82  Williams JA, Hyland R, Jones BC et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/auc) ratios. Drug Metab. Dispos.32(11),1201–1208 (2004).
    • 83  Mackenzie PI, Bock KW, Burchell B et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet. Genomics15(10),677–685 (2005).
    • 84  Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol.40,581–616 (2000).
    • 85  Bock KW, Köhle C. Topological aspects of oligomeric UDP-glucuronosyltransferases in endoplasmic reticulum membranes: advances and open questions. Biochem Pharmacol.77(9),1458–1465 (2009).
    • 86  Radominska-Pandya A, Bratton S, Little JM. A historical overview of the heterologous expression of mammalian UDP-glucuronosyltransferase isoforms over the past twenty years. Curr. Drug Metab.6(2),141–160 (2005).▪▪ Excellent review of recombinant uridine diphosphoglucuronosyltransferases production.
    • 87  Coller JK, Christrup LL, Somogyi AA. Role of active metabolites in the use of opioids. Eur. J. Clin. Pharmacol.65(2),121–139 (2009).
    • 88  Stachulski AV: The chemistry and biological activity of acyl glucuronides. Curr. Opin. Drug Discov. Devel.10(1),58–66 (2007).
    • 89  Ritter JK. Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem. Biol. Interact.129(1–2),171–193 (2000).
    • 90  Schulz C, Boeck S, Heinemann V, Stemmler HJ. UGT1A1 genotyping: a predictor of irinotecan-associated side effects and drug efficacy? Anticancer Drugs20(10),867–879 (2009).
    • 91  Saudan C, Baume N, Robinson N, Avois L, Mangin P, Saugy M. Testosterone and doping control. Br. J. Sports. Med.40 (Suppl. 1),i21–i24 (2006).
    • 92  Alonen A, Gartman M, Aitio O, Finel M, Yli-Kauhaluoma J, Kostiainen R. Synthesis, structure characterization, and enzyme screening of clenbuterol glucuronides. Eur. J. Pharm. Sci.37(5),581–587 (2009).
    • 93  Thevis M, Opfermann G, Schmickler H, Schanzer W. Mass spectrometry of steroid glucuronide conjugates. Ii-electron impact fragmentation of 3-keto-4-en- and 3-keto-5 α-steroid-17-o-β glucuronides and 5 α-steroid-3 α,17β-diol 3- and 17-glucuronides. J. Mass. Spectrom.36(9),998–1012 (2001).
    • 94  Dell D. Labile metabolites. Chromatographia59,S139–S148 (2004).
    • 95  Johnson CH, Wilson ID, Harding JR et al. NMR spectroscopic studies on the in vitro acyl glucuronide migration kinetics of ibuprofen ((+/-)-(r,s)-2-(4-isobutylphenyl) propanoic acid), its metabolites, and analogues. Anal. Chem.79(22),8720–8727 (2007).
    • 96  Kenny JR, Maggs JL, Meng X et al. Syntheses and characterization of the acyl glucuronide and hydroxy metabolites of diclofenac. J. Med. Chem.47(11),2816–2825 (2004).
    • 97  Meng X, Maggs JL, Pryde Dc et al. Cyclization of the acyl glucuronide metabolite of a neutral endopeptidase inhibitor to an electrophilic glutarimide: synthesis, reactivity, and mechanistic analysis. J. Med. Chem.50(24),6165–6176 (2007).
    • 98  Al-Zoughool M, Talaska G. High performance liquid chromatography method for determination of N-glucuronidation of 4-aminobiphenyl by mouse, rat, and human liver microsomes. Anal. Biochem.340(2),352–358 (2005).
    • 99  Luo H, Hawes EM, Mckay G, Midha KK. Synthesis and characterization of quaternary ammonium-linked glucuronide metabolites of drugs with an aliphatic tertiary amine group. J. Pharm. Sci.81(11),1079–1083 (1992).
    • 100  Mutlib AE, Nelson WL. Synthesis and identification of the N-glucuronides of norgallopamil and norverapamil, unusual metabolites of gallopamil and verapamil.J. Pharmacol. Exp. Ther.252(2),593–599 (1990).
    • 101  Vashishtha SC, Hawes EM, Mckay G, Mccann DJ. Synthesis and identification of the quaternary ammonium-linked glucuronide of 1-phenylimidazole in human liver microsomes and investigation of the human UDP-glucuronosyltransferases involved. Drug Metab. Dispos.28(9),1009–1013 (2000).
    • 102  Pallmann T, Jonas U, Wagner M et al. Enzyme-assisted synthesis and structural characterization of pure benzodiazepine glucuronide epimers. Eur. J. Pharm. Sci.29,29 (2009).
    • 103  Anderson S, Luffer-Atlas D, Knadler MP. Predicting circulating human metabolites: how good are we? Chem. Res. Toxicol.22(2),243–256 (2009).▪▪ Excellent review of the subject.
    • 104  Dragan CA, Buchheit D, Bischoff D, Ebner T, Bureik M. Glucuronide production by whole-cell biotransformation using genetically engineered fission yeast schizosaccharomyces pombe. Drug Metab. Dispos.38(3),509–515 (2010).▪▪ First report on the production of human glucuronides by whole-cell biotransformation with recombinant microbes.
    • 105  Amadio J, Murphy CD. Biotransformation of fluorobiphenyl by cunninghamella elegans. Appl. Microbiol. Biotechnol.3,3 (2009).
    • 106  Collier AC, Keelan JA, Van Zijl PE, Paxton JW, Mitchell MD, Tingle MD. Human placental glucuronidation and transport of 3´azido-3´-deoxythymidine and uridine diphosphate glucuronic acid. Drug Metab. Dispos.32(8),813–820 (2004).
    • 107  Freiser H, Jiang Q. Optimization of the enzymatic hydrolysis and analysis of plasma conjugated γ-CEHC and sulfated long-chain carboxychromanols, metabolites of vitamin E. Anal. Biochem.388(2),260–265 (2009).
    • 108  Liu X, Tam VH, Hu M. Disposition of flavonoids via enteric recycling: determination of the UDP-glucuronosyltransferase isoforms responsible for the metabolism of flavonoids in intact CACO-2 TC7 cells using sirna. Mol. Pharm.4(6),873–882 (2007).
    • 109  Bai X, Xie YY, Liu J, Qu JL, Kano Y, Yuan D. Isolation and identification of urinary metabolites of kakkalide in rats. Drug Metab. Dispos.38(2),281–286 (2010).
    • 110  Zhang ZF, Liu Y, Luo P, Zhang H. Separation and purification of two flavone glucuronides from erigeron multiradiatus (lindl.) benth with macroporous resins. J. Biomed. Biotechnol.11,875629 (2009).
    • 111  Kittelmann M, Rheinegger U, Espigat A et al. Preparative enzymatic synthesis of the acylglucuronide of mycophenolic acid. Biocatalysis345(6–7),825–829 (2003).
    • 112  Caron P, Trottier J, Verreault M, Belanger J, Kaeding J, Barbier O. Enzymatic production of bile acid glucuronides used as analytical standards for liquid chromatography-mass spectrometry analyses. Mol. Pharm.3(3),293–302 (2006).
    • 113  Schwaninger AE, Meyer MR, Zapp J, Maurer HH. The role of human UDP glucuronyltransferases on the formation of the methylenedioxymethamphetamine (ecstasy) phase II metabolites r- and s-3-methoxymethamphetamine 4-O-glucuronides. Drug Metab. Dispos.37(11),2212–2220 (2009).
    • 114  Fujita K, Mogami A, Hayashi A, Kamataki T. Establishment of Salmonella strain expressing catalytically active human UDP-glucuronosyltransferase 1A1 (UGT1A1). Life Sci.66(20),1955–1967 (2000).
    • 115  Dellinger RW, Chen G, Blevins-Primeau AS, Krzeminski J, Amin S, Lazarus P. Glucuronidation of phip and n-oh-phip by UDP-glucuronosyltransferase 1A10. Carcinogenesis28(11),2412–2418 (2007).
    • 116  Fisher MB, Paine MF, Strelevitz TJ, Wrighton SA. The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metab. Rev.33(3–4),273–297 (2001).
    • 117  Liu J, Balasubramanian MK. 1,3-β-glucan synthase: a useful target for antifungal drugs. Curr. Drug Targets Infect. Disord.1(2),159–169 (2001).
    • 118  Tanaka N, Konomi M, Osumi M, Takegawa K. Characterization of schizosaccharomyces pombe mutant deficient in UDP-galactose transport activity. Yeast18(10),903–914 (2001).
    • 119  Passarinha LA, Bonifacio MJ, Queiroz JA. Application of a fed-batch bioprocess for the heterologous production of hscomt in Escherichia coli. J. Microbiol. Biotechnol.19(9),972–981 (2009).
    • 120  Passarinha LA, Bonifacio MJ, Soares-Da-Silva P, Queiroz JA. A new approach on the purification of recombinant human soluble catechol-O-methyltransferase from an Escherichia coli extract using hydrophobic interaction chromatography. J. Chromatogr. A1177(2),287–296 (2008).
    • 121  Wang H, Vath GM, Kawamura A et al. Over-expression, purification, and characterization of recombinant human arylamine N-acetyltransferase 1. Protein J.24(2),65–77 (2005).
    • 122  Riches Z, Bloomer JC, Coughtrie MW. Comparison of 2-aminophenol and 4-nitrophenol as in vitro probe substrates for the major human hepatic sulfotransferase, sult1A1, demonstrates improved selectivity with 2-aminophenol. Biochem. Pharmacol.74(2),352–358 (2007).
    • 123  Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol. Sci.25(4),193–200 (2004).
    • 124  Daly AK. Pharmacogenetics and pharmacogenomics. Pharmacogenomics8(11),1493–1496 (2007).
    • 125  Rodriguez-Antona C, Jande M, Rane A, Ingelman-Sundberg M. Identification and phenotype characterization of two cyp3a haplotypes causing different enzymatic capacity in fetal livers. Clin. Pharmacol. Ther.77(4),259–270 (2005).
    • 126  Dai D, Tang J, Rose R et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J. Pharmacol. Exp. Ther.299(3),825–831 (2001).
    • 127  Blaisdell J, Jorge-Nebert LF, Coulter S et al. Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics14(8),527–537 (2004).
    • 128  Kirchheiner J, Klein C, Meineke I et al. Bupropion and 4-oh-bupropion pharmacokinetics in relation to genetic polymorphisms in cyp2B6. Pharmacogenetics.13(10),619–626 (2003).
    • 129  Komori M, Nishio K, Ohi H, Kitada M, Kamataki T. Molecular cloning and sequence analysis of CDNA containing the entire coding region for human fetal liver cytochrome P450. J. Biochem.105(2),161–163 (1989).
    • 130  Domanski TL, Finta C, Halpert JR, Zaphiropoulos PG. CDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol. Pharmacol.59(2),386–392 (2001).
    • 131  Westlind A, Malmebo S, Johansson I et al. Cloning and tissue distribution of a novel human cytochrome P450 of the CYP3A subfamily, CYP3A43. Biochem. Biophys. Res. Commun.281(5),1349–1355 (2001).
    • 132  Gellner K, Eiselt R, Hustert E et al. Genomic organization of the human CYP3A locus: identification of a new, inducible CYP3A gene. Pharmacogenetics.11(2),111–121 (2001).