We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/bio.12.150

Alternative specimens (e.g., hair and saliva) are well established in forensic toxicology and provide significant benefits as noninvasive, inexpensive alternatives to blood with access to improved long-term retrospection. Based on these experiences, the question of potential applications and limitations of alternative specimens in doping control arose. Compounds prohibited at all times (e.g., clenbuterol, β2 agonists, estrogen-receptor modulators) may be successfully tested and clearly interpreted in alternative specimens. In contrast, prohibition of certain compounds in sport are limited to time ranges (e.g., stimulants are only prohibited in-competition), dosages or administration routes (e.g., systemic uptake of glucocorticosteroids). This cannot be properly differentiated by semiquantitative tests (e.g., hair analyses), but may be distinguished in saliva. Similarly, proof of external administration of endogenous steroids (e.g., testosterone) only seems to be achievable by quantitative analysis of saliva. Moreover, the retrospective monitoring of the relevance of social drugs or upcoming (unapproved) substances represents promising applications of hair tests in doping control.

References

  • Gallardo E, Queiroz JA. The role of alternative specimens in toxicological analysis. Biomed. Chromatogr.22(8),795–821 (2008).
  • Thevis M, Schanzer W. Synthetic anabolic agents: steroids and nonsteroidal selective androgen receptor modulators. Handb. Exp. Pharmacol. (195),99–126 (2009).
  • Aps JK, Martens LC. Review: the physiology of saliva and transfer of drugs into saliva. Forensic Sci. Int.150(2–3),119–131 (2005).
  • Crouch DJ. Oral fluid collection: the neglected variable in oral fluid testing. Forensic Sci. Int.150(2–3),165–173 (2005).
  • Bosker WM, Huestis MA. Oral fluid testing for drugs of abuse. Clin. Chem.55(11),1910–1931 (2009).
  • Lewis JG. Steroid analysis in saliva: an overview. Clin. Biochem. Rev.27(3),139–146 (2006).
  • Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C. Diagnostic potential of saliva: current state and future applications. Clin. Chem.57(5),675–687 (2011).
  • Lund HM, Oiestad EL, Gjerde H, Christophersen AS. Drugs of abuse in oral fluid collected by two different sample kits – stability testing and validation using ultra-performance tandem mass spectrometry analysis. J. Chromatogr. B Analyt Technol. Biomed. Life Sci.879(30),3367–3377 (2011).
  • Moore C, Rana S, Coulter C. Simultaneous identification of 2-carboxy-tetrahydrocannabinol, etrahydrocannabinol, cannabinol and cannabidiol in oral fluid. J. Chromatogr. B Analyt Technol. Biomed. Life Sci.852(1–2),459–464 (2007).
  • 10  Department of Health and Human Services. Proposed revision to mandatory guidelines for federal workplace drug testing programs. Federal Register69,19673–19732 (2004).
  • 11  Coulter C, Garnier M, Moore C. Synthetic cannabinoids in oral fluid. J. Anal. Toxicol.35(7),424–430 (2011).
  • 12  Ramaekers JG, Moeller MR, van Ruitenbeek P, Theunissen EL, Schneider E, Kauert G. Cognition and motor control as a function of δ9-THC concentration in serum and oral fluid: limits of impairment. Drug Alcohol Depend.85(2),114–122 (2006).
  • 13  Moore C, Coulter C, Rana S, Vincent M, Soares J. Analytical procedure for the determination of the marijuana metabolite 11-nor-δ9-tetrahydrocannabinol-9-carboxylic acid in oral fluid specimens. J. Anal. Toxicol.30(7),409–412 (2006).
  • 14  Moore C, Ross W, Coulter C et al. Detection of the marijuana metabolite 11-nor-δ9-tetrahydrocannabinol-9-carboxylic acid in oral fluid specimens and its contribution to positive results in screening assays. J. Anal. Toxicol.30(7),413–418 (2006).
  • 15  Schonfelder M, Hofmann H, Anielski P, Thieme D, Oberhoffer R, Michna H. Gene expression profiling in human whole blood samples after controlled testosterone application and exercise. Drug Test. Anal.3(10),652–660 (2011).
  • 16  Gatti R, De Palo EF. An update: salivary hormones and physical exercise. Scand. J. Med. Sci. Sports21(2),157–169 (2011).
  • 17  Wood P. Salivary steroid assays – research or routine? Ann. Clin. Biochem.46(Pt 3),183–196 (2009).
  • 18  Hung GY, Jeng MJ, Lin CY, Soong WJ, Hwang B. The relationship between serum and saliva erythropoietin concentrations in adults, full-term and premature infants. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi39(6),380–385 (1998).
  • 19  Rantonen PJ, Penttila I, Meurman JH, Savolainen K, Narvanen S, Helenius T. Growth hormone and cortisol in serum and saliva. Acta Odontol. Scand.58(6),299–303 (2000).
  • 20  Ryan J, Mantle T, McQuaid S, Costigan DC. Salivary insulin-like growth factor-I originates from local synthesis. J. Endocrinol.135(1),85–90 (1992).
  • 21  Antonelli G, Cappellin E, Gatti R, Chiappin S, Spinella P, De Palo EF. Measurement of free IGF-I saliva levels: perspectives in the detection of GH/IGF axis in athletes. Clin. Biochem.40(8),545–550 (2007).
  • 22  Groschl M. Current status of salivary hormone analysis. Clin. Chem.54(11),1759–1769 (2008).
  • 23  Schummer C, Appenzeller BM, Wennig R. Quantitative determination of ethyl glucuronide in sweat. Ther. Drug Monit.30(4),536–539 (2008).
  • 24  Huestis MA, Oyler JM, Cone EJ, Wstadik AT, Schoendorfer D, Joseph RE Jr. Sweat testing for cocaine, codeine and metabolites by gas chromatography–mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl.733(1–2),247–264 (1999).
  • 25  Chawarski MC, Fiellin DA, O’Connor PG, Bernard M, Schottenfeld RS. Utility of sweat patch testing for drug use monitoring in outpatient treatment for opiate dependence. J. Subst. Abuse Treat.33(4),411–415 (2007).
  • 26  De Martinis BS, Barnes AJ, Scheidweiler KB, Huestis MA. Development and validation of a disk solid phase extraction and gas chromatography–mass spectrometry method for MDMA, MDA, HMMA, HMA, MDEA, methamphetamine and amphetamine in sweat. J. Chromatogr. B Analyt Technol. Biomed. Life Sci.852(1–2),450–458 (2007).
  • 27  Thieme D, Anielski P, Grosse J, Mueller RK, Sachs H. Identification of anabolic steroids in serum, urine, sweat and hair. Comparison of metabolic patterns. Anal. Chim. Acta483,299–306 (2003).
  • 28  Potsch L. A discourse on human hair fibers and reflections on the conservation of drug molecules. Int. J. Legal Med.108(6),285–293 (1996).
  • 29  Anielski P. Hair analysis of anabolic steroids in connection with doping control – results from horse samples. J. Mass Spectrom.43(7),1001–1008 (2008).
  • 30  Thieme D, Grosse J, Sachs H, Mueller RK. Analytical strategy for detecting doping agents in hair. Forensic Sci. Int.107(1–3),335–345 (2000).
  • 31  Deshmukh N, Hussain I, Barker J, Petroczi A, Naughton DP. Analysis of anabolic steroids in human hair using LC–MS/MS. Steroids75(10),710–714 (2010).
  • 32  Kintz P, Cirimele V, Ludes B. Discrimination of the nature of doping with 19-norsteroids through hair analysis. Clin. Chem.46(12),2020–2022 (2000).
  • 33  Cirimele V, Kintz P, Ludes B. Testing of the anabolic stanozolol in human hair by gas chromatography–negative ion chemical ionization mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl.740(2),265–271 (2000).
  • 34  Bresson M, Cirimele V, Villain M, Kintz P. Doping control for metandienone using hair analyzed by gas chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.836(1–2),124–128 (2006).
  • 35  Deng XS, Kurosu A, Pounder DJ. Detection of anabolic steroids in head hair. J. Forensic Sci.44(2),343–346 (1999).
  • 36  Shen M, Xiang P, Shen B, Bu J, Wang M. Physiological concentrations of anabolic steroids in human hair. Forensic Sci. Int.184(1–3),32–36 (2009).
  • 37  McKinney AR. Modern techniques for the determination of anabolic–androgenic steroid doping in the horse. Bioanalysis1(4),785–803 (2009).
  • 38  Li J, Xie Q, Gao W et al. Time course of cortisol loss in hair segments under immersion in hot water. Clin. Chim. Acta413(3–4),434–440 (2012).
  • 39  Dettenborn L, Tietze A, Bruckner F, Kirschbaum C. Higher cortisol content in hair among long-term unemployed individuals compared with controls. Psychoneuroendocrinology35(9),1404–1409 (2010).
  • 40  Vulic A, Pleadin J, Persi N, Stojkovic R, Ivankovic S. Accumulation of β-agonists clenbuterol and salbutamol in black and white mouse hair. J. Anal. Toxicol.35(8),566–570 (2011).
  • 41  Kintz P, Dumestre-Toulet V, Jamey C, Cirimele V, Ludes B. Doping control for β-adrenergic compounds through hair analysis. J. Forensic Sci.45(1),170–174 (2000).
  • 42  Anielski P, Thieme D, Schlupp A, Grosse J, Ellendorff F, Mueller RK. Detection of testosterone, nandrolone and precursors in horse hair. Anal. Bioanal. Chem.383(6),903–908 (2005).
  • 43  Schlupp A, Anielski P, Thieme D, Muller RK, Meyer H, Ellendorff F. The β-agonist clenbuterol in mane and tail hair of horses. Equine Vet. J.36(2),118–122 (2004).
  • 44  Cristino A, Ramos F, da Silveira MI. Control of the illegal use of clenbuterol in bovine production. J. Pharm. Biomed. Anal.32(2),311–316 (2003).
  • 45  Salquebre G, Bresson M, Villain M, Cirimele V, Kintz P. Clenbuterol determination in calf hair by UPLC–MS/MS: case report of a fraudulent use for cattle growth. J. Anal. Toxicol.31(2),114–118 (2007).
  • 46  Petroczi A, Aidman EV, Hussain I et al. Virtue or pretense? Looking behind self-declared innocence in doping. PLoS One5(5),e10457 (2010).
  • 47  Segura J. Is anti-doping analysis so far from clinical, legal or forensic targets?: The added value of close relationships between related disciplines. Drug Test. Anal.1(11–12),479–484 (2009).
  • 101  World Anti-Doping Agency. The World Anti-Doping Code (2012). www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-The-Code/WADA_Anti-Doping_CODE_2009_EN.pdf