We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Derivatization methods for LC–MS analysis of endogenous compounds

    Yunting Zhu

    Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, P R China

    Authors contributed equally

    Search for more papers by this author

    ,
    Pan Deng

    Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, P R China

    Authors contributed equally

    Search for more papers by this author

    &
    Dafang Zhong

    *Author for correspondence:

    E-mail Address: dfzhong@simm.ac.cn

    Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, P R China

    Published Online:https://doi.org/10.4155/bio.15.183

    Sensitive and reliable analysis of endogenous compounds is critically important for many physiological and pathological studies. Methods based on LC–MS have progressed to become the method of choice for analyzing endogenous compounds. However, the analysis can be challenging due to various factors, including inherent low concentrations in biological samples, low ionization efficiency, undesirable chromatographic behavior and interferences of complex biological. The integration of chemical derivatization with LC–MS could enhance its capabilities in sensitivity and selectivity, and extend its application to a wider range of analytes. In this article, we will review the derivatization strategies in the LC–MS analysis of various endogenous compounds, and provide applications highlighting the impact of these important techniques in the evaluation of pathological events.

    References

    • 1 Isokawa M, Kanamori T, Funatsu T, Tsunoda M. Recent advances in hydrophilic interaction chromatography for quantitative analysis of endogenous and pharmaceutical compounds in plasma samples. Bioanalysis 6(18), 2421–2439 (2014).
    • 2 Scarth JP, Kay J, Teale P et al. A review of analytical strategies for the detection of ‘endogenous’ steroid abuse in food production. Drug Test. Anal. 4(Suppl. 1), 40–49 (2012).
    • 3 Couchman L, Vincent RP, Ghataore L, Moniz CF, Taylor NF. Challenges and benefits of endogenous steroid analysis by LC-MS/MS. Bioanalysis 3(22), 2549–2572 (2011).
    • 4 Jemal M. High-throughput quantitative bioanalysis by LC/MS/MS. Biomed. Chromatogr. 14(6), 422–429 (2000).
    • 5 Deng P, Chen X, Zhong D. Quantification of polar drugs in human plasma with liquid chromatography-tandem mass spectrometry. Bioanalysis 1(1), 187–203 (2009).
    • 6 Deng P, Zhan Y, Chen X, Zhong D. Derivatization methods for quantitative bioanalysis by LC-MS/MS. Bioanalysis 4(1), 49–69 (2012).
    • 7 Niwa M. Chemical derivatization as a tool for optimizing MS response in sensitive LC-MS/MS bioanalysis and its role in pharmacokinetic studies. Bioanalysis 4(2), 213–220 (2012).
    • 8 Bruheim P, Kvitvang HF, Villas-Boas SG. Stable isotope coded derivatizing reagents as internal standards in metabolite profiling. J. Chromatogr. A 1296, 196–203 (2013).
    • 9 Qi B-L, Liu P, Wang Q-Y, Cai W-J, Yuan B-F, Feng Y-Q. Derivatization for liquid chromatography-mass spectrometry. TrAC Trends Analyt. Chem. 59, 121–132 (2014).
    • 10 Iwasaki Y, Nakano Y, Mochizuki K et al. A new strategy for ionization enhancement by derivatization for mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(17–18), 1159–1165 (2011).
    • 11 Xu F, Zou L, Liu Y, Zhang Z, Ong CN. Enhancement of the capabilities of liquid chromatography-mass spectrometry with derivatization: general principles and applications. Mass Spectrom. Rev. 30(6), 1143–1172 (2011).
    • 12 Santa T. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry. Biomed. Chromatogr. 25(1–2), 1–10 (2011).
    • 13 Wang H, Zhao Z, Guo Y. Chemical and biochemical applications of MALDI TOF-MS based on analyzing the small organic compounds. Top. Curr. Chem. 331, 165–192 (2013).
    • 14 Wang HY, Chu X, Zhao ZX, He XS, Guo YL. Analysis of low molecular weight compounds by MALDI-FTICR-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(17–18), 1166–1179 (2011).
    • 15 Vichi S, Cortes-Francisco N, Caixach J. Determination of volatile thiols in lipid matrix by simultaneous derivatization/extraction and liquid chromatography-high resolution mass spectrometric analysis. Application to virgin olive oil. J. Chromatogr. A 1318, 180–188 (2013).
    • 16 Cai HL, Zhu RH, Li HD. Determination of dansylated monoamine and amino acid neurotransmitters and their metabolites in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal. Biochem. 396(1), 103–111 (2010).
    • 17 Lu Y, Yao D, Chen C. 2-Hydrazinoquinoline as a derivatization agent for LC-MS-based metabolomic investigation of diabetic ketoacidosis. Metabolites 3(4), 993–1010 (2013).
    • 18 Van Wijk AM, Niederlander HA, Siebum AH, Vervaart MA, De Jong GJ. A new derivatization reagent for LC-MS/MS screening of potential genotoxic alkylation compounds. J. Pharm. Biomed. Anal. 74, 133–140 (2013).
    • 19 Bollineni RC, Fedorova M, Hoffmann R. Qualitative and quantitative evaluation of derivatization reagents for different types of protein-bound carbonyl groups. Analyst 138(17), 5081–5088 (2013).
    • 20 Santa T. Derivatization in liquid chromatography for mass spectrometric detection. Drug Discov. Ther. 7(1), 9–17 (2013).
    • 21 Huo F, Wang X, Han Y et al. A new derivatization approach for the rapid and sensitive analysis of brassinosteroids by using ultra high performance liquid chromatography-electrospray ionization triple quadrupole mass spectrometry. Talanta 99, 420–425 (2012).
    • 22 Bollinger JG, Naika GS, Sadilek M, Gelb MH. LC/ESI-MS/MS detection of FAs by charge reversal derivatization with more than four orders of magnitude improvement in sensitivity. J. Lipid Res. 54(12), 3523–3530 (2013).
    • 23 Kimura T, Noguchi Y, Shikata N, Takahashi M. Plasma amino acid analysis for diagnosis and amino acid-based metabolic networks. Curr. Opin. Clin. Nutr. Metab. Care 12(1), 49–53 (2009).
    • 24 Wang JH, Byun J, Pennathur S. Analytical approaches to metabolomics and applications to systems biology. Semin. Nephrol. 30(5), 500–511 (2010).
    • 25 Ni Y, Su M, Lin J et al. Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Lett. 582(17), 2627–2636 (2008).
    • 26 Becker S, Kortz L, Helmschrodt C, Thiery J, Ceglarek U. LC-MS-based metabolomics in the clinical laboratory. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 883–884, 68–75 (2012).
    • 27 Rebane R, Oldekop ML, Herodes K. Matrix influence on derivatization and ionization processes during selenoamino acid liquid chromatography electrospray ionization mass spectrometric analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 955–956, 34–41 (2014).
    • 28 Ziegler J, Abel S. Analysis of amino acids by HPLC/electrospray negative ion tandem mass spectrometry using 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) derivatization. Amino Acids 46(12), 2799–2808 (2014).
    • 29 Le A, Ng A, Kwan T, Cusmano-Ozog K, Cowan TM. A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 944, 166–174 (2014).
    • 30 Meesters RJ. Bioanalytical LC separation techniques for quantitative analysis of free amino acids in human plasma. Bioanalysis 5(4), 495–512 (2013).
    • 31 Rebane R, Oldekop ML, Herodes K. Comparison of amino acid derivatization reagents for LC–ESI-MS analysis. Introducing a novel phosphazene-based derivatization reagent. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 904, 99–106 (2012).
    • 32 Huo T, Zhang Y, Li W, Yang H, Jiang H, Sun G. Effect of realgar on extracellular amino acid neurotransmitters in hippocampal CA1 region determined by online microdialysis-dansyl chloride derivatization-high-performance liquid chromatography and fluorescence detection. Biomed. Chromatogr. 28(9), 1254–1262 (2014).
    • 33 Rebane R, Rodima T, Kutt A, Herodes K. Development of amino acid derivatization reagents for liquid chromatography electrospray ionization mass spectrometric analysis and ionization efficiency measurements. J. Chromatogr. A 1390, 62–70 (2015).
    • 34 Chen X, Gao D, Liu F et al. A novel quantification method for analysis of twenty natural amino acids in human serum based on N-phosphorylation labeling using reversed-phase liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 836, 61–71 (2014).
    • 35 Li G, Cui Y, You J et al. Determination of trace amino acids in human serum by a selective and sensitive pre-column derivatization method using HPLC-FLD-MS/MS and derivatization optimization by response surface methodology. Amino Acids 40(4), 1185–1193 (2011).
    • 36 Sakaguchi Y, Kinumi T, Yamazaki T, Takatsu A. A novel amino acid analysis method using derivatization of multiple functional groups followed by liquid chromatography/tandem mass spectrometry. Analyst 140(6), 1965–1973 (2015).
    • 37 Li G, Wu D, Xie W, Sha Y, Lin H, Liu B. Analysis of amino acids in tobacco by derivatization and dispersive liquid-liquid microextraction based on solidification of floating organic droplet method. J. Chromatogr. A 1296, 243–247 (2013).
    • 38 Zhang X, Zhao T, Cheng T, Liu X, Zhang H. Rapid resolution liquid chromatography (RRLC) analysis of amino acids using pre-column derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 906, 91–95 (2012).
    • 39 Mudiam MK, Ratnasekhar C, Jain R, Saxena PN, Chauhan A, Murthy RC. Rapid and simultaneous determination of twenty amino acids in complex biological and food samples by solid-phase microextraction and gas chromatography-mass spectrometry with the aid of experimental design after ethyl chloroformate derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 907, 56–64 (2012).
    • 40 Visser WF, Verhoeven-Duif NM, Ophoff R et al. A sensitive and simple ultra-high-performance-liquid chromatography-tandem mass spectrometry based method for the quantification of D-amino acids in body fluids. J. Chromatogr. A 1218(40), 7130–7136 (2011).
    • 41 Min JZ, Hatanaka S, Yu HF, Higashi T, Inagaki S, Toyo'oka T. Determination of DL-amino acids, derivatized with R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benz oxadiazole, in nail of diabetic patients by UPLC–ESI-TOF-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(29), 3220–3228 (2011).
    • 42 Ogawa S, Tadokoro H, Sato M, Hanawa T, Higashi T. (S)-1-(4-Dimethylaminophenylcarbonyl)-3-aminopyrrolidine: a derivatization reagent for enantiomeric separation and sensitive detection of chiral carboxylic acids by LC/ESI-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 940, 7–14 (2013).
    • 43 Mochizuki T, Taniguchi S, Tsutsui H et al. Relative quantification of enantiomers of chiral amines by high-throughput LC–ESI-MS/MS using isotopic variants of light and heavy L-pyroglutamic acids as the derivatization reagents. Anal. Chim. Acta 773, 76–82 (2013).
    • 44 Reischl RJ, Lindner W. Methoxyquinoline labeling—a new strategy for the enantioseparation of all chiral proteinogenic amino acids in 1-dimensional liquid chromatography using fluorescence and tandem mass spectrometric detection. J. Chromatogr. A 1269, 262–269 (2012).
    • 45 Zhou G, Pang H, Tang Y et al. Hydrophilic interaction ultra-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry for highly rapid and sensitive analysis of underivatized amino acids in functional foods. Amino Acids 44(5), 1293–1305 (2013).
    • 46 De Person M, Chaimbault P, Elfakir C. Analysis of native amino acids by liquid chromatography/electrospray ionization mass spectrometry: comparative study between two sources and interfaces. J. Mass Spectrom. 43(2), 204–215 (2008).
    • 47 Cai HL, Zhu RH, Li HD, Zhang J, Li LF. MultiSimplex optimization of chromatographic separation and dansyl derivatization conditions in the ultra performance liquid chromatography-tandem mass spectrometry analysis of risperidone, 9-hydroxyrisperidone, monoamine and amino acid neurotransmitters in human urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(21), 1993–1999 (2011).
    • 48 Nirogi R, Komarneni P, Kandikere V et al. A sensitive and selective quantification of catecholamine neurotransmitters in rat microdialysates by pre-column dansyl chloride derivatization using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 913–914, 41–47 (2013).
    • 49 Song P, Mabrouk OS, Hershey ND, Kennedy RT. In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography-mass spectrometry. Anal. Chem. 84(1), 412–419 (2012).
    • 50 Bourgogne E, Mathy FX, Boucaut D, Boekens H, Laprevote O. Simultaneous quantitation of histamine and its major metabolite 1-methylhistamine in brain dialysates by using precolumn derivatization prior to HILIC-MS/MS analysis. Anal. Bioanal. Chem. 402(1), 449–459 (2012).
    • 51 Greco S, Danysz W, Zivkovic A, Gross R, Stark H. Microdialysate analysis of monoamine neurotransmitters – a versatile and sensitive LC-MS/MS method. Anal. Chim. Acta 771, 65–72 (2013).
    • 52 Zhang M, Fang C, Smagin G. Derivatization for the simultaneous LC/MS quantification of multiple neurotransmitters in extracellular fluid from rat brain microdialysis. J. Pharm. Biomed. Anal. 100, 357–364 (2014).
    • 53 Nelson LR, Bulun SE. Estrogen production and action. J. Am. Acad. Dermatol. 45(Suppl. 3), S116–S124 (2001).
    • 54 Saldanha T, Sawaya AC, Eberlin MN, Bragagnolo N. HPLC separation and determination of 12 cholesterol oxidation products in fish: comparative study of RI, UV, and APCI-MS detectors. J. Agric. Food Chem. 54(12), 4107–4113 (2006).
    • 55 Kushnir MM, Rockwood AL, Roberts WL, Yue B, Bergquist J, Meikle AW. Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical laboratories. Clin. Biochem. 44(1), 77–88 (2011).
    • 56 Weismiller DG. Menopause. Prim. Care 36(1), 199–226 (2009).
    • 57 Rosner W, Hankinson SE, Sluss PM, Vesper HW, Wierman ME. Challenges to the measurement of estradiol: an endocrine society position statement. J. Clin. Endocrinol. Metab. 98(4), 1376–1387 (2013).
    • 58 Fiers T, Casetta B, Bernaert B, Vandersypt E, Debock M, Kaufman JM. Development of a highly sensitive method for the quantification of estrone and estradiol in serum by liquid chromatography tandem mass spectrometry without derivatization. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 893–894, 57–62 (2012).
    • 59 Honda A, Miyazaki T, Ikegami T et al. Highly sensitive and specific analysis of sterol profiles in biological samples by HPLC–ESI-MS/MS. J. Steroid Biochem. Mol. Biol. 121(3–5), 556–564 (2010).
    • 60 Juang YM, She TF, Chen HY, Lai CC. Comparison of CID versus ETD-based MS/MS fragmentation for the analysis of doubly derivatized steroids. J. Mass Spectrom. 48(12), 1349–1356 (2013).
    • 61 Shibata Y, Arai S, Honma S. Methodological approach to the intracrine study and estimation of DHEA and DHEA-S using liquid chromatography-tandem mass spectrometry (LC-MS/MS). J. Steroid Biochem. Mol. Biol. 145, 193–199 (2015).
    • 62 Athanasiadou I, Angelis YS, Lyris E, Georgakopoulos C, Athanasiadou I, Georgakopoulos C. Chemical derivatization to enhance ionization of anabolic steroids in LC-MS for doping-control analysis. TrAC Trends Analyt. Chem. 42, 137–156 (2013).
    • 63 Ke Y, Bertin J, Gonthier R, Simard JN, Labrie F. A sensitive, simple and robust LC-MS/MS method for the simultaneous quantification of seven androgen- and estrogen-related steroids in postmenopausal serum. J. Steroid Biochem. Mol. Biol. 144(Pt B), 523–534 (2014).
    • 64 Riffle BW, Henderson WM, Laws SC. Measurement of steroids in rats after exposure to an endocrine disruptor: mass spectrometry and radioimmunoassay demonstrate similar results. J. Pharmacol. Toxicol. Methods 68(3), 314–322 (2013).
    • 65 Li X, Franke AA. Improved profiling of estrogen metabolites by orbitrap LC/MS. Steroids 99(Pt A), 84–90 (2014).
    • 66 Higashi T, Kawasaki K, Matsumoto N, Ogawa S, Mitamura K, Ikegawa S. LC/MS/MS of steroids having vicinal diol as electrospray-active boronates. Chem. Pharm. Bull. (Tokyo) 61(3), 326–332 (2013).
    • 67 Hala D, Overturf MD, Petersen LH, Huggett DB. Quantification of 2-hydrazinopyridine derivatized steroid hormones in fathead minnow (Pimephales promelas) blood plasma using LC–ESI+/MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(9–10), 591–598 (2011).
    • 68 Kushnir MM, Blamires T, Rockwood AL et al. Liquid chromatography-tandem mass spectrometry assay for androstenedione, dehydroepiandrosterone, and testosterone with pediatric and adult reference intervals. Clin. Chem. 56(7), 1138–1147 (2010).
    • 69 Lavrynenko O, Nedielkov R, Moller HM, Shevchenko A. Girard derivatization for LC-MS/MS profiling of endogenous ecdysteroids in Drosophila. J. Lipid Res. 54(8), 2265–2272 (2013).
    • 70 Star-Weinstock M, Williamson BL, Dey S, Pillai S, Purkayastha S. LC–ESI-MS/MS analysis of testosterone at sub-picogram levels using a novel derivatization reagent. Anal. Chem. 84(21), 9310–9317 (2012).
    • 71 Wang Q, Rangiah K, Mesaros C et al. Ultrasensitive quantification of serum estrogens in postmenopausal women and older men by liquid chromatography–tandem mass spectrometry. Steroids 96, 140–152 (2015).
    • 72 Santen RJ, Lee JS, Wang S et al. Potential role of ultra-sensitive estradiol assays in estimating the risk of breast cancer and fractures. Steroids 73(13), 1318–1321 (2008).
    • 73 Olson SH, Bandera EV, Orlow I. Variants in estrogen biosynthesis genes, sex steroid hormone levels, and endometrial cancer: a HuGE review. Am. J. Epidemiol. 165(3), 235–245 (2007).
    • 74 Saxena A, Gupta A, Kasibhatta R, Bob M, Kumar VP, Purwar B. Rapid and sensitive method for quantification of gestodene in human plasma as the oxime derivative by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and its application to bioequivalence study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 945, 240–246 (2014).
    • 75 Prentice A, Goldberg GR, Schoenmakers I. Vitamin D across the lifecycle: physiology and biomarkers. Am. J. Clin. Nutr. 88(2), 500s–506s (2008).
    • 76 Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 88(2), s491–s499 (2008).
    • 77 Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann. Epidemiol. 19(2), 73–78 (2009).
    • 78 Volmer DA, Mendes LR, Stokes CS. Analysis of vitamin D metabolic markers by mass spectrometry: current techniques, limitations of the “gold standard” method, and anticipated future directions. Mass Spectrom. Rev. 34(1), 2–23 (2015).
    • 79 Higashi T, Shimada K, Toyo'oka T. Advances in determination of vitamin D related compounds in biological samples using liquid chromatography-mass spectrometry: a review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(20), 1654–1661 (2010).
    • 80 Ding S, Schoenmakers I, Jones K, Koulman A, Prentice A, Volmer DA. Quantitative determination of vitamin D metabolites in plasma using UHPLC-MS/MS. Anal. Bioanal. Chem. 398(2), 779–789 (2010).
    • 81 Higashi T, Suzuki M, Hanai J et al. A specific LC/ESI-MS/MS method for determination of 25-hydroxyvitamin D3 in neonatal dried blood spots containing a potential interfering metabolite, 3-epi-25-hydroxyvitamin D3. J. Sep. Sci. 34(7), 725–732 (2011).
    • 82 Lipkie TE, Janasch A, Cooper BR, Hohman EE, Weaver CM, Ferruzzi MG. Quantification of vitamin D and 25-hydroxyvitamin D in soft tissues by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 932, 6–11 (2013).
    • 83 Ogawa S, Ooki S, Morohashi M, Yamagata K, Higashi T. A novel Cookson-type reagent for enhancing sensitivity and specificity in assessment of infant vitamin D status using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 27(21), 2453–2460 (2013).
    • 84 Strathmann FG, Laha TJ, Hoofnagle AN. Quantification of 1alpha,25-dihydroxy vitamin D by immunoextraction and liquid chromatography-tandem mass spectrometry. Clin. Chem. 57(9), 1279–1285 (2011).
    • 85 Wang Z, Senn T, Kalhorn T et al. Simultaneous measurement of plasma vitamin D(3) metabolites, including 4beta,25-dihydroxyvitamin D(3), using liquid chromatography-tandem mass spectrometry. Anal. Biochem. 418(1), 126–133 (2011).
    • 86 Xie W, Chavez-Eng CM, Fang W et al. Quantitative liquid chromatographic and tandem mass spectrometric determination of vitamin D3 in human serum with derivatization: a comparison of in-tube LLE, 96-well plate LLE and in-tip SPME. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(17–18), 1457–1466 (2011).
    • 87 Duan X, Weinstock-Guttman B, Wang H et al. Ultrasensitive quantification of serum vitamin D metabolites using selective solid-phase extraction coupled to microflow liquid chromatography and isotope-dilution mass spectrometry. Anal. Chem. 82(6), 2488–2497 (2010).
    • 88 Ogawa S, Ooki S, Shinoda K, Higashi T. Analysis of urinary vitamin D(3) metabolites by liquid chromatography/tandem mass spectrometry with ESI-enhancing and stable isotope-coded derivatization. Anal. Bioanal. Chem. 406(26), 6647–6654 (2014).
    • 89 Hedman CJ, Wiebe DA, Dey S, Plath J, Kemnitz JW, Ziegler TE. Development of a sensitive LC/MS/MS method for vitamin D metabolites: 1,25 Dihydroxyvitamin D2&3 measurement using a novel derivatization agent. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 953–954, 62–67 (2014).
    • 90 Zhang H, Dellsperger KC, Zhang C. The link between metabolic abnormalities and endothelial dysfunction in Type 2 diabetes: an update. Basic Res. Cardiol. 107(1), 237 (2012).
    • 91 Conroy KP, Davidson IM, Warnock M. Pathogenic obesity and nutraceuticals. Proc. Nutr. Soc. 70(4), 426–438 (2011).
    • 92 Bielawska K, Dziakowska I, Roszkowska-Jakimiec W. Chromatographic determination of fatty acids in biological material. Toxicol. Mech. Methods 20(9), 526–537 (2010).
    • 93 Hellmuth C, Weber M, Koletzko B, Peissner W. Nonesterified fatty acid determination for functional lipidomics: comprehensive ultrahigh performance liquid chromatography-tandem mass spectrometry quantitation, qualification, and parameter prediction. Anal. Chem. 84(3), 1483–1490 (2012).
    • 94 Leng J, Guan Q, Sun T, Wu Y, Cao Y, Guo Y. Application of isotope-based carboxy group derivatization in LC-MS/MS analysis of tissue free-fatty acids for thyroid carcinoma. J. Pharm. Biomed. Anal. 84, 256–262 (2013).
    • 95 Zehethofer N, Pinto DM, Volmer DA. Plasma free fatty acid profiling in a fish oil human intervention study using ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 22(13), 2125–2133 (2008).
    • 96 Kloos D, Lingeman H, Mayboroda OA, Deelder AM, Niessen WMA, Giera M. Analysis of biologically-active, endogenous carboxylic acids based on chromatography-mass spectrometry. TrAC Trends Analyt. Chem. 61, 17–28 (2014).
    • 97 Liu X, Moon SH, Mancuso DJ et al. Oxidized fatty acid analysis by charge-switch derivatization, selected reaction monitoring, and accurate mass quantitation. Anal. Biochem. 442(1), 40–50 (2013).
    • 98 Li X, Franke AA. Improved LC-MS method for the determination of fatty acids in red blood cells by LC-orbitrap MS. Anal. Chem. 83(8), 3192–3198 (2011).
    • 99 Neuber C, Schumacher F, Gulbins E, Kleuser B. Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry. Anal. Chem. 86(18), 9065–9073 (2014).
    • 100 Han J, Lin K, Sequeira C, Borchers CH. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 854, 86–94 (2015).
    • 101 Lee SH, Pettinella C, Blair IA. LC/ESI/MS analysis of saturated and unsaturated fatty acids in rat intestinal epithelial cells. Curr. Drug Metab. 7(8), 929–937 (2006).
    • 102 Nunes-Nesi A, Araujo WL, Obata T, Fernie AR. Regulation of the mitochondrial tricarboxylic acid cycle. Curr. Opin. Plant Biol. 16(3), 335–343 (2013).
    • 103 Yang WC, Sedlak M, Regnier FE, Mosier N, Ho N, Adamec J. Simultaneous quantification of metabolites involved in central carbon and energy metabolism using reversed-phase liquid chromatography-mass spectrometry and in vitro 13C labeling. Anal. Chem. 80(24), 9508–9516 (2008).
    • 104 Kanani H, Chrysanthopoulos PK, Klapa MI. Standardizing GC-MS metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871(2), 191–201 (2008).
    • 105 Fiehn O, Kopka J, Trethewey RN, Willmitzer L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 72(15), 3573–3580 (2000).
    • 106 Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A 1125(1), 76–88 (2006).
    • 107 Kloos D, Derks RJ, Wijtmans M et al. Derivatization of the tricarboxylic acid cycle intermediates and analysis by online solid-phase extraction-liquid chromatography-mass spectrometry with positive-ion electrospray ionization. J. Chromatogr. A 1232, 19–26 (2012).
    • 108 Lu W, Clasquin MF, Melamud E, Amador-Noguez D, Caudy AA, Rabinowitz JD. Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Anal. Chem. 82(8), 3212–3221 (2010).
    • 109 Kloos DP, Lingeman H, Niessen WM, Deelder AM, Giera M, Mayboroda OA. Evaluation of different column chemistries for fast urinary metabolic profiling. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 927, 90–96 (2013).
    • 110 Tan B, Lu Z, Dong S, Zhao G, Kuo MS. Derivatization of the tricarboxylic acid intermediates with O-benzylhydroxylamine for liquid chromatography-tandem mass spectrometry detection. Anal. Biochem. 465C, 134–147 (2014).
    • 111 Jaitz L, Mueller B, Koellensperger G et al. LC-MS analysis of low molecular weight organic acids derived from root exudation. Anal. Bioanal. Chem. 400(8), 2587–2596 (2011).
    • 112 Zimmermann M, Sauer U, Zamboni N. Quantification and mass isotopomer profiling of alpha-keto acids in central carbon metabolism. Anal. Chem. 86(6), 3232–3237 (2014).
    • 113 Henning C, Liehr K, Girndt M, Ulrich C, Glomb MA. Extending the spectrum of alpha-dicarbonyl compounds in vivo. J. Biol. Chem. 289(41), 28676–28688 (2014).
    • 114 Han J, Gagnon S, Eckle T, Borchers CH. Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS. Electrophoresis 34(19), 2891–900 (2013).
    • 115 Kusmierek K, Chwatko G, Glowacki R, Kubalczyk P, Bald E. Ultraviolet derivatization of low-molecular-mass thiols for high performance liquid chromatography and capillary electrophoresis analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(17–18), 1290–1307 (2011).
    • 116 Moriarty-Craige SE, Jones DP. Extracellular thiols and thiol/disulfide redox in metabolism. Annu. Rev. Nutr. 24, 481–509 (2004).
    • 117 Zinellu A, Lepedda A Jr, Sotgia S et al. Albumin-bound low molecular weight thiols analysis in plasma and carotid plaques by CE. J. Sep. Sci. 33(1), 126–131 (2010).
    • 118 Kusmierek K, Chwatko G, Glowacki R, Bald E. Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877(28), 3300–3308 (2009).
    • 119 Toyo'oka T. Recent advances in separation and detection methods for thiol compounds in biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877(28), 3318–3330 (2009).
    • 120 Norris RL, Paul M, George R et al. A stable-isotope HPLC-MS/MS method to simplify storage of human whole blood samples for glutathione assay. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 898, 136–140 (2012).
    • 121 Squellerio I, Caruso D, Porro B, Veglia F, Tremoli E, Cavalca V. Direct glutathione quantification in human blood by LC-MS/MS: comparison with HPLC with electrochemical detection. J. Pharm. Biomed. Anal. 71, 111–118 (2012).
    • 122 Hansen RE, Winther JR. An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations. Anal. Biochem. 394(2), 147–158 (2009).
    • 123 Liem-Nguyen V, Bouchet S, Bjorn E. Determination of sub-nanomolar levels of low molecular mass thiols in natural waters by liquid chromatography tandem mass spectrometry after derivatization with p-(hydroxymercuri) benzoate and online preconcentration. Anal. Chem. 87(2), 1089–1096 (2015).
    • 124 Zhang W, Li P, Geng Q, Duan Y, Guo M, Cao Y. Simultaneous determination of glutathione, cysteine, homocysteine, and cysteinylglycine in biological fluids by ion-pairing high-performance liquid chromatography coupled with precolumn derivatization. J. Agric. Food Chem. 62(25), 5845–5852 (2014).
    • 125 Karakosta TD, Tzanavaras PD, Themelis DG. Determination of glutathione and cysteine in yeasts by hydrophilic interaction liquid chromatography followed by on-line postcolumn derivatization. J. Sep. Sci. 36(12), 1877–1882 (2013).
    • 126 Zacharis CK, Tzanavaras PD, Zotou A. Ethyl propiolate as a post-column derivatization reagent for thiols: development of a green liquid chromatographic method for the determination of glutathione in vegetables. Anal. Chim. Acta 690(1), 122–128 (2011).
    • 127 Tzanavaras PD, Tsiomlektsis A, Zacharis CK. Derivatization of thiols under flow conditions using two commercially available propiolate esters. J. Pharm. Biomed. Anal. 53(3), 790–794 (2010).
    • 128 Xu K, Zhang Y, Tang B, Laskin J, Roach PJ, Chen H. Study of highly selective and efficient thiol derivatization using selenium reagents by mass spectrometry. Anal. Chem. 82(16), 6926–6932 (2010).
    • 129 Sentellas S, Morales-Ibanez O, Zanuy M, Alberti JJ. GSSG/GSH ratios in cryopreserved rat and human hepatocytes as a biomarker for drug induced oxidative stress. Toxicol. In Vitro 28(5), 1006–1015 (2014).
    • 130 Huang YQ, Ruan GD, Liu JQ, Gao Q, Feng YQ. Use of isotope differential derivatization for simultaneous determination of thiols and oxidized thiols by liquid chromatography tandem mass spectrometry. Anal. Biochem. 416(2), 159–166 (2011).
    • 131 Itabe H. Oxidized low-density lipoprotein as a biomarker of in vivo oxidative stress: from atherosclerosis to periodontitis. J. Clin. Biochem. Nutr. 51(1), 1–8 (2012).
    • 132 Giustarini D, Dalle-Donne I, Tsikas D, Rossi R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit. Rev. Clin. Lab. Sci. 46(5–6), 241–281 (2009).
    • 133 Il'yasova D, Scarbrough P, Spasojevic I. Urinary biomarkers of oxidative status. Clin. Chim. Acta 413(19–20), 1446–1453 (2012).
    • 134 Ogino K, Wang DH. Biomarkers of oxidative/nitrosative stress: an approach to disease prevention. Acta Med. Okayama 61(4), 181–189 (2007).
    • 135 Li J, Leung EM, Choi MM, Chan W. Combination of pentafluorophenylhydrazine derivatization and isotope dilution LC-MS/MS techniques for the quantification of apurinic/apyrimidinic sites in cellular DNA. Anal. Bioanal. Chem. 405(12), 4059–4066 (2013).
    • 136 Chan SW, Dedon PC. The biological and metabolic fates of endogenous DNA damage products. J. Nucleic Acids 2010, 929047 (2010).
    • 137 Bradley-Whitman MA, Lovell MA. Biomarkers of lipid peroxidation in Alzheimer disease (AD): an update. Arch. Toxicol. 89(7), 1035–1044 (2015).
    • 138 Negre-Salvayre A, Auge N, Ayala V et al. Pathological aspects of lipid peroxidation. Free Radic. Res. 44(10), 1125–1171 (2010).
    • 139 Haller E, Stubiger G, Lafitte D, Lindner W, Lammerhofer M. Chemical recognition of oxidation-specific epitopes in low-density lipoproteins by a nanoparticle based concept for trapping, enrichment, and liquid chromatography-tandem mass spectrometry analysis of oxidative stress biomarkers. Anal. Chem. 86(19), 9954–9961 (2014).
    • 140 Ni Z, Milic I, Fedorova M. Identification of carbonylated lipids from different phospholipid classes by shotgun and LC-MS lipidomics. Anal. Bioanal. Chem. 407(17), 5161–5173 (2015).
    • 141 Milic I, Fedorova M. Derivatization and detection of small aliphatic and lipid-bound carbonylated lipid peroxidation products by ESI-MS. Methods Mol. Biol. 1208, 3–20 (2015).
    • 142 Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic. Biol. Med. 47(5), 469–484 (2009).
    • 143 Wang M, Fang H, Han X. Shotgun lipidomics analysis of 4-hydroxyalkenal species directly from lipid extracts after one-step in situ derivatization. Anal. Chem. 84(10), 4580–4586 (2012).
    • 144 Manini P, Andreoli R, Sforza S et al. Evaluation of Alternate Isotope-Coded Derivatization Assay (AIDA) in the LC-MS/MS analysis of aldehydes in exhaled breath condensate. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 878(27), 2616–2622 (2010).
    • 145 Chen JL, Huang YJ, Pan CH, Hu CW, Chao MR. Determination of urinary malondialdehyde by isotope dilution LC-MS/MS with automated solid-phase extraction: a cautionary note on derivatization optimization. Free Radic. Biol. Med. 51(9), 1823–1829 (2011).
    • 146 Carretero A, Leon Z, Garcia-Canaveras JC et al. In vitro/in vivo screening of oxidative homeostasis and damage to DNA, protein, and lipids using UPLC/MS-MS. Anal. Bioanal. Chem. 406(22), 5465–5476 (2014).
    • 147 Uchiyama S, Inaba Y, Kunugita N. Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine and their subsequent determination by high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879(17–18), 1282–1289 (2011).
    • 148 Tomono S, Miyoshi N, Ohshima H. Comprehensive analysis of the lipophilic reactive carbonyls present in biological specimens by LC/ESI-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 988, 149–156 (2015).
    • 149 Toue S, Sugiura Y, Kubo A et al. Microscopic imaging mass spectrometry assisted by on-tissue chemical derivatization for visualizing multiple amino acids in human colon cancer xenografts. Proteomics 14(7–8), 810–819 (2014).