We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Modulating 5-HT4 and 5-HT6 receptors in Alzheimer’s disease treatment

    Julien Lalut

    Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ, UNICAEN, CERMN, 14000 Caen, France

    ,
    Delphine Karila

    Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ, UNICAEN, CERMN, 14000 Caen, France

    ,
    Patrick Dallemagne

    Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ, UNICAEN, CERMN, 14000 Caen, France

    &
    Christophe Rochais

    *Author for correspondence:

    E-mail Address: christophe.rochais@unicaen.fr

    Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ, UNICAEN, CERMN, 14000 Caen, France

    Published Online:https://doi.org/10.4155/fmc-2017-0031

    Alzheimer’s disease (AD) is the most common form of dementia affecting millions of patients worldwide which can only be treated with symptomatic drugs. Among the numbers of biological targets which are today explored in order to prevent or limit the progression of AD, the modulation of 5-HT6R and 5-HT4R appeared to be promising. This modulation has been proved to enhance the cognition in AD through modulation of the neurotransmitter system but could also be beneficial in order to limit the amyloid pathology. This review will describe recent advances in the understanding of this modulation as well as the medicinal chemistry of 5-HT6R or 5-HT4R ligands from synthesis to ongoing clinical trials.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Féger J, Hirsch EC. In search of innovative therapeutics for neuropsychiatric disorders: the case of neurodegenerative diseases. Ann. Pharm. Françaises 73, 3–12 (2015).
    • 2 Gandy S. The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J. Clin. Invest. 115, 1121–1129 (2005).
    • 3 Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat. Rev. Drug Discov. 6, 464–479 (2007).
    • 4 Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol. 11, 338–378 (2013).
    • 5 Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10(9), 698–712 (2011).
    • 6 Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer's disease: clinical trials and drug development. Lancet Neurol. 9(7), 702–716 (2010).
    • 7 Cummings JL, Morstorf T, Zhong K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimers. Res. Ther. 6, 37 (2014).
    • 8 Thathiah A, De Strooper B. The role of G protein-coupled receptors in the pathology of Alzheimer's disease. Nat. Rev. Neurosci. 12(2), 73–87 (2011). • Role of G-protein-coupled receptor modulation in Alzheimer’s disease and description of amyloid precursor protein processing.
    • 9 Geldenhuys WJ, Van der Schyf CJ. Role of serotonin in Alzheimer's disease: a new therapeutic target? CNS Drugs 25(9), 765–781 (2011).
    • 10 Dumuis A, Bouhelal R, Sebben M, Cory R, Bockaert J. A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol. Pharmacol. 34(6), 880–887 (1988).
    • 11 Bockaert J, Claeysen S, Compan V, Dumuis A. 5-HT(4) receptors: history, molecular pharmacology and brain functions. Neuropharmacology 55, 922–931 (2008).
    • 12 Berthouze M, Ayoub M, Russo O et al. Constitutive dimerization of human serotonin 5-HT4 receptors in living cells. FEBS Lett. 579(14), 2973–2980 (2005).
    • 13 Claeysen S, Donneger R, Giannoni P, Gaven F, Pellissier LP. Serotonin type 4 receptor dimers. Methods Cell. Biol. 117, 123–139 (2013).
    • 14 Tack J, Camilleri M, Chang L et al. Systematic review: cardiovascular safety profile of 5-HT4 agonists developed for gastrointestinal disorders. Aliment. Pharmacol. Ther. 35, 745–767 (2012).
    • 15 Eglen RM, Wong EHF, Dumuis A, Bockaert J. Central 5-HT4 receptors. Trends Pharmacol. Sci. 16, 391–398 (1995).
    • 16 Reynolds GP, Mason SL, Meldrum A et al. 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br. J. Pharmacol. 114, 993–998 (1995).
    • 17 Cachard-Chastel M, Devers S, Sicsic S et al. Prucalopride and donepezil act synergistically to reverse scopolamine-induced memory deficit in C57Bl/6j mice. Behav. Brain Res. 187, 455–461 (2008).
    • 18 Bockaert J, Claeysen S, Compan V, Dumuis A. 5HT(4)) receptors, a place in the sun: act two. Curr. Opin. Pharmacol. 11, 87–93 (2011).
    • 19 Furukawa K, Sopher BL, Rydel RE et al. Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J. Neurochem. 67, 1882–1896 (1996).
    • 20 Small DH, Nurcombe V, Reed G et al. A heparin-binding domain in the amyloid protein precursor of Alzheimer's disease is involved in the regulation of neurite outgrowth. J. Neurosci. 14(4), 2117–2127 (1994).
    • 21 Ishida A, Furukawa K, Keller JN, Mattson MP. Secreted form of beta-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. Neuroreport 8, 2133–2137 (1997).
    • 22 Sennvik K, Fastbom J, Blomberg M, Wahlund LO, Winblad B, Benedikz E. Levels of alpha- and beta-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients. Neurosci. Lett. 278, 169–172 (2000).
    • 23 Tippmann F, Hundt J, Schneider A, Endres K, Fahrenholz F. Up-regulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin. FASEB J. 23, 1643–1654 (2009).
    • 24 Jarvis CI, Clarke E, Dogruel M et al. Retinoic acid receptor-alpha signalling antagonizes both intracellular and extracellular amyloid-beta production and prevents neuronal cell death caused by amyloid-beta. Eur. J. Neurosci. 32, 1246–1255 (2010).
    • 25 Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alphasecretase gene ADAM10. Cell 142, 320–332 (2010).
    • 26 Robert SJ, Zugaza JL, Fischmeister R, Gardier AM, Lezoualc'h F. The human serotonin 5-HT4 receptor regulates secretion of non-amyloidogenic precursor protein. J. Biol. Chem. 276(48), 44881–44888 (2001).
    • 27 Maillet M, Robert SJ, Cacquevel M et al. Crosstalk between Rap1 and Rac regulates secretion of sAPPalpha. Nat. Cell Biol. 5, 633–639 (2003).
    • 28 Cho S, Hu Y. Activation of 5-HT4 receptors inhibits secretion of beta-amyloid peptides and increases neuronal survival. Exp. Neurol. 203, 274–278 (2007).
    • 29 Cochet M, Donneger R, Cassier E et al. 5-HT4 receptors constitutively promote the non-amyloidogenic pathway of APP cleavage and interact with ADAM10. ACS Chem. Neurosci. 4, 130–140 (2013).
    • 30 Gherlardini C, Meoni P, Galleotti N, Malmberg-Aiello P, Rizzi CA, Bartolini A. Effect of the two benzimidazolone derivates: BIMU 1 and BIMU 8 on a model of hypoxia-induced amnesia in the mouse. Presented at: The Third IUPHAR Satellite Meeting on Serotonin. Chicago, IL, USA, 30 July–3 August 1994.
    • 31 Letty S, Child R, Gale JD, Dumuis A, Bockaert J, Rondouin G. 5-HT4 receptors improve social olfactory memory in rat. Neuropharmacology 36, 681–687 (1997).
    • 32 Marchetti-Gauthier E, Roman FS, Dumuis A, Bockaert J, Soumireu-Mourat B. BIMU1 increases associative memory in rats by activating 5-HT4 receptors. Neuropharmacology 36, 697–706 (1997).
    • 33 Moser PC, Bergis OE, Jegham S et al. SL65.0155, a novel 5-hydroxytryptamine 4 receptor partial agonist with potent cognition-enhancing properties. J. Pharmacol. Exp. Ther. 302, 731–741 (2002).
    • 34 Micale V, Leggio GM, Mazzola C, Drago F. Cognitive effects of SL65.0155, a serotonin 5-HT4 receptor partial agonist, in animal models of amnesia. Brain Res. 1121(1), 207–215 (2006).
    • 35 Mohler EG, Shacham S, Noiman S et al. VRX-03011, a novel 5-HT4 agonist, enhances memory and hippocampal acetylcholine efflux. Neuropharmacology 53, 563–573 (2007).
    • 36 Brodney MA, Johnson DE, Sawant-Basak A et al. Identification of multiple 5-HT4 partial agonist clinical candidates for the treatment of Alzheimer's disease. J. Med. Chem. 55(21), 9240–9254 (2012).
    • 37 Eglen RM, Bonhaus DW, Clark RD et al. Effects of a selective and potent 5-HT receptor agonist, RS-67333 and antagonist, RS-67352 in a rodent model of spatial learning and memory. Br. J. Pharmacol. 116, 235 (1995).
    • 38 Fontana DJ, Daniels SE, Wong EHF, Clark RD, Eglen RM. The effects of novel, selective 5-hydroxytryptamine (5-HT)4 receptor ligands in rat spatial navigation. Neuropharmacology 36, 689–696 (1997).
    • 39 Marchetti E, Dumuis A, Bockaert J, Soumireu-Mourat B, Roman FS. Differential modulation of the 5-HT4 receptor agonists and antagonists on rat learning and memory. Neuropharmacology 39, 2017–2027 (2000).
    • 40 Lamirault L, Simon H. Enhancement of place and object recognition memory in young adult and old rats by RS 67333, a partial agonist of 5-HT4 receptors. Neuropharmacology 41, 844–853 (2001).
    • 41 Lelong V, Lhonneur L, Dauphin F, Boulouard M. BIMU 1 and RS 7333, two 5-HT4 receptor agonists, modulate spontaneous alternation deficits induced by scopolamine in the mouse. Naunyn Schmiedebergs Arch. Pharmacol. 367, 621–628 (2003).
    • 42 Marchetti E, Chaillan FA, Dumuis A, Bockaert J, Soumireu-Mourat B, Roman FS. Modulation of memory processes and cellular excitability in the dentate gyrus offreely moving rats by a 5-HT4 receptors partial agonist, and an antagonist. Neuropharmacology 47, 1021–1035 (2004).
    • 43 Orsetti M, Dellarole A, Ferri S, Ghi P. Acquisition, retention, and recall of memory after injection of RS67333, a 5-HT(4) receptor agonist, into the nucleus basalis magnocellularis of the rat. Learn. Mem. 10(5), 420–426 (2003).
    • 44 Giannoni P, Gaven F, De Bundel D et al. Early administration of RS 67333, a specific 5-HT4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5XFAD mouse model of Alzheimer's disease. Front. Aging Neurosci. 5(96), 1–12 (2013). •• Reduction of amyloid pathology in transgenic mice model after chronic administration of a 5-HT4R agonist.
    • 45 Monsma DR, Shen FJ, Ward Y, Hamblin RP, Sibley MW. Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol. Pharmacol. 43, 320–327 (1993).
    • 46 Unsworth PB, Molinoff CD. Characterization of a 5-hydroxytryptamine receptor in mouse neuroblastoma N18TG2 cells. J. Pharmacol. Exp. Ther. 269, 246 (1994).
    • 47 Kohen MW, Metcalf R, Khan MA et al. Cloning, characterization and chromosomal localization of a human 5-HT6 serotonin receptor. J. Neurochem. 66, 47–56 (1996).
    • 48 Roberts JC, Reavill C, East SZ et al. The distribution of 5-HT(6) receptors in rat brain: an autoradiographic binding study using the radiolabelled 5-HT(6) receptor antagonist [(125)I]SB-258585. Brain Res. 934(1), 49–57 (2002).
    • 49 Sebben M, Ansanay H, Bockaert J, Dumuis A. 5-HT6 receptors positively coupled to adenylyl cyclase in striatal neurones in culture. Neuroreport 5, 2553–2557 (1994).
    • 50 Gérard C, Martres M, Lefèvre K et al. Immuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system. Brain Res. 746, 207–219 (1997).
    • 51 Dawson LA, Nguyen HQ, Li P et al. In Vivo effects of the 5-HT(6) antagonist SB-271046 on striatal and frontal cortex extracellular concentrations of noradrenaline, dopamine, 5-HT, glutamate and aspartate. Br. J. Pharmacol. 130, 23–26 (2000).
    • 52 Dawson LA, Nguyen HQ, Li P. The 5-HT(6) receptor antagonist SB-271046 selectively enhances excitatory neurotransmission in the rat frontal cortex and hippocampus. Neuropsychopharmacology 25, 662–668 (2001).
    • 53 Tassone A, Madeo G, Schirinzi T et al. Activation of 5-HT6 receptors inhibits corticostriatal glutamatergic transmission. Neuropharmacology 61, 632–637 (2001).
    • 54 Fone KCF. An update on the role of the 5-hydroxytryptamine6 receptor in cognitive function. Neuropharmacology 55, 1015–1022 (2008).
    • 55 Heal DJ, Smith SL, Fisas A, Codony X, Buschmann H. Selective 5-HT6 receptor ligands: progress in the development of a novel pharmacological approach to the treatment of obesity and related metabolic disorders. Pharmacol. Ther. 117, 207–231 (2008).
    • 56 Ramírez MJ. 5-HT6 receptors and Alzheimer's disease. Alzheimers. Res. Ther. 5, 15 (2013).
    • 57 Benhamú B, Martín-Fontecha M, Vázquez-Villa H, Pardo L, López-Rodríguez ML. Serotonin 5-HT6 receptor antagonists for the treatment of cognitive deficiency in Alzheimer's disease. J. Med. Chem. 57, 7160–7181 (2014). • Review containing structure–activity relationship (SAR) studies of most 5-HT6R antagonists.
    • 58 Karila D, Freret T, Bouet V et al. Therapeutic potential of 5-HT 6 receptor agonists. J. Med. Chem. 58(20), 7901–7912 (2015). • Review containing a description of potential of 5-HT6R agonists.
    • 59 Sleight AJ, Boess FG, Bos M, Levet-Trafit B, Riemer C, Bourson A. Characterization of Ro 04–6790 and Ro 63–0563: potent and selective antagonists at human and rat 5-HT6 receptors. Br. J. Pharmacol. 124, 556–562 (1998).
    • 60 Bromidge SM, Brown AM, Clarke SE et al. 5-Chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046): a potent, selective, and orally bioavailable 5-HT6 receptor antagonist. J. Med. Chem. 42, 202–205 (1999).
    • 61 Glennon RA, Lee M, Rangisetty JB et al. 2-Substituted tryptamines: agents with selectivity for 5-HT6 serotonin receptors. J. Med. Chem. 43, 1011–1018 (2000).
    • 62 Bernotas RC, Antane S, Shenoy R et al. 3-(Arylsulfonyl)-1-(azacyclyl)-1H-indoles are 5-HT(6) receptor modulators. Bioorg. Med. Chem. Lett. 20(5), 1657–60 (2010).
    • 63 Nirogi R, Dwarampudi A, Kambhampati R et al. Rigidized 1-aryl sulfonyl tryptamines: synthesis and pharmacological evaluation as 5-HT6 receptor ligands. Bioorg. Med. Chem. Lett. 21(15), 4577–4580 (2011).
    • 64 Mattsson C, Svensson P, Boettcher H, Sonesson C. Structure-activity relationship of 5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole analogues as 5-HT(6) receptor agonists. Eur. J. Med. Chem. 63, 578–588 (2013).
    • 65 Nirogi RVS, Deshpande AD, Kambhampati R et al. Indole-3-piperazinyl derivatives: novel chemical class of 5-HT(6) receptor antagonists. Bioorg. Med. Chem. Lett. 21(1), 346–349 (2011).
    • 66 Park CM, Choi J, Choi JH, Kim SY, Park WK, Seong CM. 1-(Arylsulfonyl)-2,3-dihydro-1H-quinolin-4-one derivatives as 5-HT(6) serotonin receptor ligands. Bioorg. Med. Chem. Lett. 21(2), 698–703 (2011).
    • 67 Ivachtchenko AV, Golovina ES, Kadieva MG et al. 2-Substituted 5,6-dimethyl-3-phenylsulfonyl-pyrazolo[1,5-a]pyrimidines: new series of highly potent and specific serotonin 5-HT6 receptor antagonists. Eur. J. Med. Chem. 46, 1189–1197 (2011).
    • 68 Elokdah HM, Greenfield AA, Liu K et al. US20070037802 A1 (2007).
    • 69 Upton N, Chuang TT, Hunter AJ, Virley DJ. 5-HT6 receptor antagonists as novel cognitive enhancing agents for Alzheimer's disease. Neurotherapeutics 5, 458–469 (2008).
    • 70 Arnt J, Bang-Andersen B, Grayson B et al. Lu AE58054, a 5-HT6 antagonist, reverses cognitive impairment induced by subchronic phencyclidine in a novel object recognition test in rats. Int. J. Neuropsychopharmacol. 13, 1021–1033 (2010).
    • 71 ClinicalTrials.gov. Clinical Trials database: NCT00672945 https://clinicaltrials.gov/ct2/show/NCT00672945?term=PRX-03140&rank=3
    • 72 ClinicalTrials.gov. Clinical Trials database: NCT01193062, NCT01173757, NCT01091272, NCT01169714, NCT01345864 https://clinicaltrials.gov/ct2/results?term=PF-04995274&Search=Search
    • 73 Nicholas T, Duvvuri S, Leurent C et al. Systems pharmacology modeling in neuroscience: prediction and outcome of PF-04995274, a 5HT4 partial agonist, in a clinical scopolamine impairment trial. Adv. Alzheimer's Dis. 2(3), 83–98 (2013).
    • 74 Bockaert J, Claeysen S, Compan V, Dumuis A. 5-HT4 receptors. Current drug targets. CNS Neurol. Disord. 3(1), 39–51 (2004).
    • 75 ClinicalTrials.gov. Clinical Trials database: NCT02575482, NCT03031574 https://clinicaltrials.gov/ct2/results?term=suvn-d4010&Search=Search
    • 76 Askat, portfolio. http://askat-inc.com/portfolio/
    • 77 Fujiuchi A, Sugiura A, Ohshiro H, Watanabe S, Yamamoto T, Take Y. RQ-00000009, a selective 5-HT4 receptor partial agonist, suppressed brain amyloid-b protein levels and improved memory and cognitive performances in rodents. Alzheimers Demen. 6, S53 (2010).
    • 78 Bezprozvanny I. The rise and fall of Dimebon. Drug News Perspect. 23(8), 518–523 (2010).
    • 79 Cano-Cuenca N, Solís-García A, Del Pozo JE, Jordán J. Evidence for the efficacy of latrepirdine (Dimebon) treatment for improvement of cognitive function: a meta-analysis. J. Alzheimers Dis. 38(1), 155–164 (2014).
    • 80 ClinicalTrials.gov. Clinical Trials database: NCT00224497, NCT00708552, NCT00551772, NCT00348192, NCT00710684 https://clinicaltrials.gov/ct2/results?term=SB-742457&Search=Search
    • 81 ClinicalTrials.gov. Clinical Trials database: NCT02910102, NCT02586909, NCT02585934 https://clinicaltrials.gov/ct2/results?term=RVT-101&Search=Search
    • 82 ClinicalTrials.gov. Clinical Trials database: NCT01253655 https://clinicaltrials.gov/ct2/show/NCT01253655?term=PF-05212365&rank=1
    • 83 Clinical Trials database: NCT01712074. https://clinicaltrials.gov/ct2/show/NCT01712074
    • 84 Avineuro pipeline consulted online at: www.avineuro.com/pipeline/
    • 85 ClinicalTrials.gov. Clinical Trials database: NCT01908010 https://clinicaltrials.gov/ct2/show/NCT01908010?term=ABT-354&rank=1
    • 86 Abbvie pipeline consulted online at: www.abbvie.com/our-science/pipeline.html
    • 87 ClinicalTrials.gov. Clinical Trials database: NCT02580305 https://clinicaltrials.gov/ct2/show/NCT02580305?term=5-HT6&cond=Alzheimer&rank=2
    • 88 Hekmatimoghaddam S, Zare-Khormizi MR, Pourrajab F. Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases. Biofactors doi:10.1002/biof.1264 (2016) (Epub ahead of print).
    • 89 Bhat AH, Dar KB, Anees S et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother. 74, 101–110 (2015).
    • 90 Frautschy SA, Cole GM. Why pleiotropic interventions are needed for Alzheimer's disease. Mol. Neurobiol. 41, 392–409 (2010).
    • 91 Cavalli A, Bolognesi ML, Minarini A et al. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 51(3), 347–372 (2008).
    • 92 Lamirault L, Guillou C, Thal C, Simon H. Combined treatment with galanthaminium bromide, a new cholinesterase inhibitor, and RS67333, a partial agonist of 5-HT4 receptors, enhances place and object recognition in young adult and old rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 185–195 (2003).
    • 93 Freret T, Bouet V, Quiedeville A et al. Synergistic effect of acetylcholinesterase inhibition (donepezil) and 5HT(4)receptor activation (RS67333) on object trecognition in mice. Behav. Brain Res. 230, 304–308 (2012).
    • 94 Lecoutey C, Hedou D, Freret T et al. Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer's disease treatment. Proc. Natl Acad. Sci. USA 111(36), E3825–E3830 (2014). • First multitarget-directed ligand targeting the 5-HT4R with promnesiant activities.
    • 95 Rochais C, Lecoutey C, Gaven F et al. Novel multitarget-directed ligands (MTDLs) with acetylcholinesterase (AChE) inhibitory and serotonergic subtype 4 receptor (5-HT4R) agonist activities as potential agents against Alzheimer's disease: the design of donecopride. J. Med. Chem. 58, 3172–3187 (2015).
    • 96 Więckowska A, Kołaczkowski M, Bucki A et al. Novel multi-target-directed ligands for Alzheimer's disease: combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation. Eur. J. Med. Chem. 124, 63–81 (2016). • First report on cholinesterase inhibitors and 5-HT6 receptor antagonists as multitarget-directed ligands for Alzheimer’s disease.
    • 97 Quiedeville A, Boulouard M, Hamidouche K et al. Chronic activation of 5-HT4 receptors or blockade of 5-HT6 receptors improve memory performances. Behav. Brain Res. 293, 10–17 (2015).
    • 98 Yahiaoui S, Hamidouche K, Ballandonne C et al. Design, synthesis, and pharmacological evaluation of multitarget-directed ligands with both serotonergic subtype 4 receptor (5-HT4R) partial agonist and 5-HT6R antagonist activities, as potential treatment of Alzheimer's disease. Eur. J. Med. Chem. 121, 283–293 (2016).