We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Manufacturing peptides as active pharmaceutical ingredients

    Aikaterini A Zompra

    † Author for correspondence

    Institute for Research in Biomedicine, Barcelona Science Park, 08028 Barcelona, Spain

    ,
    Athanassios S Galanis

    Institute for Research in Biomedicine, Barcelona Science Park, 08028 Barcelona, Spain

    ,
    Oleg Werbitzky

    Lonza AG, CH-3930 Visp, Switzerland

    &
    Fernando Albericio

    † Author for correspondence

    CIBER-BBN, Networking Centre on Bioengineering, Biomaterials & Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona, Spain

    Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain

    Published Online:https://doi.org/10.4155/fmc.09.23

    Background: Today, there are more than 40 peptides on the pharmaceutical world market and more than 100 in several clinical phases. Although in the past the pharmaceutical industries had reduced their interest in peptides research, in recent decades, they have rekindled their interest in peptides as a result of contemporary novel technological accomplishments, strategic developments, advances in the areas of formulation and enhanced drug delivery technology of peptides. Thus, eight new peptide drugs that could previously have been characterized as difficult to prepare on the large scale required by industry, have entered the pharmaceutical market at the new millennium. Discussion: The manufacturing of most of these drugs has benefited from new technological advances. Traditional and most modern techniques have been applied to the manufacture of these new entries. Conclusion: Recent accomplishments, together with the traditional benefits of peptides (high biological activity, high specificity and low toxicity), have led pharmaceutical companies to refocus their attention on peptide-based agents. Therefore, several serious diseases can be treated using the potential next generation of peptide drugs.

    Bibliography

    • Kent S. Obituary: Bruce Merrifield (1921–2006). Inventor of solid-phase peptide synthesis. Nature441,824 (2006).
    • Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc.85,2149–2154 (1963).
    • Bruckdorfer T, Marder O, Albericio F. From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr. Pharm. Biotech.5,29–43 (2004).
    • Pichereau C, Allary C. Therapeutic peptides under the spotlight. Eur. Biopharm. Rev.Winter issue,88–93 (2005).
    • Sehgal A. New Applications In Discovery, Manufacturing, and Therapeutics: Peptides 2006, Research and Markets. D&MD Publications, MA, USA (2006).
    • Ayoub M, Scheidegger D. Peptide drugs, overcoming the challenges, a growing business. Chem. Today.24,46–48 (2006).
    • Bray BL. Innovation: large-scale manufacture of peptide therapeutics by chemical synthesis. Nature Rev. Drug Discovery.2,587–593 (2003).
    • Werbitzky O, Brichard MH. Technology for peptide large scale manufacturing: technical, quality, and regulatory challenges. Presented at: TIDES Conference. Taipei, Taiwan, 20 May 2008.
    • Tam JP, Lu YA. Coupling difficulty associated with interchain clustering and phase transition in solid phase peptide synthesis. J. Am. Chem. Soc.117,12058–12063 (1995).
    • 10  Andersson L, Blomberg L, Flegel M, Lepsa L, Nilsson B, Verlander M. Large-scale synthesis of peptides. Biopolymers55,227–250 (2000).
    • 11  Lloyd-Williams P, Albericio F, Giralt E. Convergent solid-phase peptide synthesis. Tetrahedron49,11065–11133 (1993).
    • 12  Du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG, Gordon S. The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J. Am. Chem. Soc.75,4879–4880 (1953).
    • 13  Werbitzky O, Oehlers D. Manufacturing peptide APIs in the scope of upcoming new challenges higher complexity and industrialization. Chem. Today26,26–28 (2008).
    • 14  Miranda LP, Alewood PF. Challenges for protein chemical synthesis in the 21st century: bridging genomics and proteomics. Biopolymers55,217–226 (2000).
    • 15  Garcia Martin F, Albericio F. Solid supports for the synthesis of peptides. From the first resin used to the most sophisticated in the market. Chem. Today26,29–34 (2008).
    • 16  Albericio F, Chinchilla R, Dodsworth DJ, Najera C. New trends in peptide coupling reagents. Org. Prep. Proc. Int.33,203–303 (2001).
    • 17  Albericio F. Developments in peptide and amide synthesis. Curr. Opin. Chem. Biol.8,211–221 (2004).
    • 18  Carpino LA, Han GY. The 9-fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J. Am. Chem. Soc.92,5748–5749 (1970).
    • 19  Kimmerlin T, Seebach D. 100 years of peptide synthesis: ligation methods for peptide and protein synthesis with applications to b-peptide assemblies. J. Pep. Res.65,229–260 (2005).
    • 20  García-Martín F, Quintanar-Audelo M, García-Ramos Y et al. ChemMatrix, a poly(ethylene glycol)-based support for the solid-phase synthesis of complex peptides. J. Comb. Chem.8,213–220 (2006).
    • 21  Albericio F, van Abel R, Barany G. Solid-phase synthesis of peptides with C-terminal asparagine or glutamine. Int. J. Peptide Protein Res.35,284–286 (1990).
    • 22  Mutter M, Nefzi A, Sato T, Sun X, Wahl F, Wuhr T. Pseudo-prolines (ψ Pro) for accessing inaccessible peptides. Peptide Res.8,145–153 (1995).
    • 23  García-Martín F, White P, Steinauer R, Côté S, Tulla-Puche J, Albericio F. The synergy of ChemMatrix resin and pseudoproline building blocks renders Rantes, a complex aggregated chemokine. Biopolymers84,566–575 (2006).
    • 24  Vázquez J, Qushair G, Albericio F. Qualitative colorimetric tests for solid phase synthesis. In: Methods in Enzymology (Volume 369) Morales G (Ed.). Academic Press, CA, USA 21–35 (2003).
    • 25  Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet368,1696–1705 (2006).
    • 26  Blonde L, Klein EJ, Han J et al. Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes. Diabetes Obes. Metab.8,436–447 (2006).
    • 27  Nauck MA, Hompesch M, Filipczak R, Le TD, Zdravkovic M, Gumprecht J; NN2211–1499 Study Group. Five weeks of treatment with the GLP-1 analogue liraglutide improves glycaemic control and lowers body weight in subjects with Type 2 diabetes. Exp. Clin. Endocrinol. Diabetes114,417–423 (2006).
    • 28  Madsen K, Knudsen LB, Agersoe H et al. Structure–activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: importance of fatty acid length, polarity, and bulkiness. J. Med. Chem.50,6126–6132 (2007).
    • 29  Williams JA, Day M, Heavner JE. Ziconotide: an update and review. Expert Opin. Pharmacother.9,1575–1583 (2008).
    • 30  Bodanszky M. Peptide Chemistry: a Practical Textbook. Springer-Verlag, Berlin, Germany (1988).
    • 31  Sieber P. A new acid-labile anchor group for the solid-phase synthesis of C-terminal peptide amides by the Fmoc method. Tetrahedron Lett.28,2107–2110 (1987).
    • 32  Barlos K, Gatos D, Kallitsis J et al. Darstellung geshutzter peptid-fragmente unter einsatz substituierter triphenylmethyl-harze. Tetrahedron Lett.30,3943–3946 (1989).
    • 33  Barlos K, Gatos D, Kapolos S, Papaphotiu G, Schäfer W, Wenqing Y. Veresterung von partiell geschutzten peptid-fragmenten mit harzen. Einsatz von 2-chlortritylchlorid zur synthese von Leu15-gastrin I. Tetrahedron Lett.30,3947–3950 (1989).
    • 34  Eipper BA, Milgram SL, Husten EJ, Yun HY, Mains RE. Peptidylglycine α-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains. Protein Sci.2,489–497 (1993).
    • 35  Bradbury AF, Finnie MDA, Smyth DG. Mechanism of C-terminal amide formation by pituitary enzymes. Nature298,686–688 (1982).
    • 36  Katopodis AG, Ping D, May SW. A novel enzyme from bovine neurointermediate pituitary catalyzes dealkylation of α-hydroxyglycine derivatives, thereby functioning sequentially with peptidylglycine α-amidating monooxygenase in peptide amidation. Biochemistry29,6115–6120 (1990).
    • 37  Dawson PE, Muir TW, Clark-Lewis I, Kent SB. Synthesis of proteins by native chemical ligation. Science266,776–779 (1994).
    • 38  Dawson PE, Kent SB. Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem.69,923–960 (2000).
    • 39  Macmillan D. Evolving strategies for protein synthesis converge on native chemical ligation. Angew. Chem. Int. Ed.45,7668–7672 (2006).
    • 40  Gill I, López-Fandiño R, Jorba X, Vulfson EN. Biologically active peptides and enzymatic approaches to their production. Enzyme Microb. Technol.18,163–183 (1996).
    • 41  Kumar D, Bhalla TC. Microbial proteases in peptide synthesis: approaches and applications. Appl. Microbiol. Biotechnol.68,726–736 (2005).
    • 42  Garoff H. Using recombinant DNA techniques to study protein targeting in the eucaryotic cell. Ann. Rev. Cell Biol.1,403–445 (1985).
    • 43  Wallace CJA. Protein Engineering by Semisynthesis. CRC Press, FL, USA (2000).
    • 44  Lloyd-Williams P, Albericio F, Giralt E. Chemical Approaches to the Synthesis of Peptides and Proteins. CRC Press, FL, USA (1997).
    • 45  Sallam LA, El-Refai AM, Hamdi AH, El-Minofi HA, Abd-Elsalam IS. Studies on the application of immobilization technique for the production of cyclosporin A by a local strain of Aspergillus terreusJ. Gen. Appl. Microbiol.51,143–149 (2005).
    • 46  Agathos SN, Madhosingh C, Marshall JW, Lee J. The fungal production of cyclosporine. Ann. NY Acad. Sci.506,657–662 (1987).
    • 47  Sekar C, Balaraman K. Optimization studies on the production of cyclosporin A by solid state fermentation. Biol. Eng.18,293–296 (1998).
    • 48  Nisha AK, Meignanalakshmi S, Ramasamy K. Comparative effect of amino acids in the production of cyclosporin by solid and submerged fermentation. Biotechnology7,205–208 (2008).
    • 49  Metha NM. Oral delivery and recombinant production of peptide hormones. Part II. Recombinant production of therapeutic peptides. BioPharm. Inter. July, 7–9 (2004).
    • 50  Shuman HA, Silhavy TJ. The art and design of genetic screens: Escherichia coli. Nat. Rev. Genet.4,419–431 (2003).
    • 51  Won JI, Barron AE. A new cloning method for the preparation of long repetitive polypeptides without a sequence requirement. Macromolecules35,8281–8287 (2002).
    • 52  De Wit H. Presented at: TIDES Conference. Las Vegas, NV, USA, 25–29 April 2004.
    • 53  Frost Sullivan. Strategic Analysis of the Therapeutic Peptides Market in Europe. San Antonio, TX, USA (2004).
    • 101  Scientific discussion www.emea.europa.eu/humandocs/PDFs/EPAR/angiox/103304en6.pdf
    • 102  Center for Drug Evaluation and Research: Chemistry review(s) www.fda.gov/cder/foi/nda/2005/021406s000_ChemR.pdf
    • 201  Ho G, Paone A, Forni L, Detollenaere C, Bonnett B. Processes for preparing eptifibatide and pertinent intermediate compounds. WO05100381 (2005).
    • 202  Cote S. New polyether based monomers, crosslinkers, and highly crosslinked amphiphile polyether resins. WO012277 (2005).
    • 203  Albericio F, Cruz LJ, Garcia-Martin F, Tulla-Puche J. Peptide synthesis of α-helixes on PEG resin. WO108594 (2006).
    • 204  Giraud M, Albericio F, Quattrini F, Werbitzky O, Senn K, Williner M. Method for peptide synthesis. WO040536 (2008).
    • 205  Werbitzky O, Varray S, Giraud M, Meininghaus C. Use of pseudoproline dipeptides in an improved solid phase synthesis of glucagon-like peptides. WO090496 (2007).
    • 206  Varray S, Werbitzky O, Zeiter T. On-resin peptide cyclization. WO06045483 (2006).
    • 207  Knudsen LB, Sorensen PO, Nielsen PF. GLP-1 derivatives. WO9808871 (1998).
    • 208  Giraud M, Williner M, Werbitzky O. Method for the synthesis of peptide amides. WO008050 (2006).
    • 209  Ko SY, Kobel H, Besemer-Rosenwirth B et al. Cyclosporin fermentation process. US6255100 (2001).