We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Current limitations and future opportunities for epigenetic therapies

    F Cherblanc

    Imperial College London, South Kensington Campus, Department of Chemistry, London SW7 2AZ, UK

    ,
    N Chapman-Rothe

    Ovarian Cancer Action Centre, Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK

    ,
    R Brown

    * Author for correspondence

    Ovarian Cancer Action Centre, Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 ONN, UK.

    &
    MJ Fuchter

    Imperial College London, South Kensington Campus, Department of Chemistry, London SW7 2AZ, UK

    Published Online:https://doi.org/10.4155/fmc.12.7

    This article reviews progress in epigenetic therapies that hope to improve the treatment of cancer. Tumors show widespread, aberrant epigenetic changes, leading to changes in the expression of genes involved in all the hallmarks of cancer. These epigenetic changes can potentially be reversed using small-molecule inhibitors of enzymes involved in maintenance of the epigenetic state. DNA-demethylating agents and histone deacetylase inhibitors have shown anti-tumor activity against certain hematological malignancies; however, their activity in solid tumors remains more uncertain. Major challenges remain in delivery of epigenetic therapy, maintenance of a pharmacodynamic response and achievement of a therapeutic index. We believe histone lysine methyl transferases are a highly promising epigenetic target, which has yet to be clinically exploited. Crystallographic studies on histone lysine methyl transferases provide insights into their mechanism and specificity crucial for the design and development of small-molecule inhibitors.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Jones PA, Baylin SB. The epigenomics of cancer. Cell128,683–692 (2007).
    • Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat. Rev. Genet.7(1),21–33 (2006).
    • Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. ChemBioChem12(2),206–222 (2011).
    • Jones PA, Liang GN. Rethinking how DNA methylation patterns are maintained. Nat. Rev. Genet.10(11),805–811 (2009).
    • Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci.31(2),89–97 (2006).
    • Watt F, Molloy Pl. Cytosine methylation prevents binding to DNA of a Hela-cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev.2(9),1136–1143 (1988).
    • Boyes J, Bird A. DNA methylation inhibits transcription indirectly via a methyl-Cpg binding-protein. Cell64(6),1123–1134 (1991).
    • Wade PA. Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene20(24),3166–3173 (2001).
    • Strahl BD, Allis CD. The language of covalent histone modifications. Nature403(6765),41–45 (2000).
    • 10  Lall S. Primers on chromatin. Nat. Struct. Biol.14(11),1110–1115 (2007).
    • 11  Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res.21(3),381–395 (2011).▪▪ Recent and comprehensive review on the effect of histone modifications on transcription.
    • 12  Suganuma T, Workman JL. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem.80,473–499 (2011).
    • 13  Kouzarides T. Chromatin modifications and their function. Cell128(4),693–705 (2007).
    • 14  Wiencke JK, Zheng S, Morrison Z, Yeh RF. Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells. Oncogene27(17),2412–2421 (2008).
    • 15  Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res.48(5),1159–1161 (1988).
    • 16  Lapeyre J-N, Becker FF. 5-methylcytosine content of nuclear DNA during chemical hepatocarcinogenesis and in carcinomas which result. Biochem. Biophys. Res. Commun.87(3),698–705 (1979).
    • 17  Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med.349(21),2042–2054 (2003).
    • 18  Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature395(6697),89–93 (1998).
    • 19  Taby R, Issa J-PJ. Cancer epigenetics. CA Cancer J. Clin.60(6),376–392 (2010).
    • 20  Eden A, Gaudet F, Waghmare A, Jaenisch R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science300(5618),455 (2003).
    • 21  Toyota M, Issa J-PJ. The role of DNA hypermethylation in human neoplasia. Electrophoresis21(2),329–333 (2000).
    • 22  Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene21(35),5427–5440 (2002).
    • 23  Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Gen.16(R1),R50–R59 (2007).
    • 24  Tsai HC, Baylin SB. Cancer epigenetics: linking basic biology to clinical medicine. Cell Res.21(3),502–517 (2011).
    • 25  Schuebel KE, Chen W, Cope L et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLos Genet.3(9),1709–1723 (2007).
    • 26  Zardo G, Tirikainen MI, Hong CB et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat. Genet.32(3),453–458 (2002).
    • 27  Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell5(5),455–463 (2004).
    • 28  Ropero S, Fraga MF, Ballestar E et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat. Genet.38(5),566–569 (2006).
    • 29  Moore SDP, Herrick SR, Ince TA et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res.64(16),5570–5577 (2004).
    • 30  Bryan EJ, Jokubaitis VJ, Chamberlain NL et al. Mutation analysis of EP300 in colon, breast and ovarian carcinomas. Int. J. Cancer102(2),137–141 (2002).
    • 31  Dalgliesh GL, Furge K, Greenman C et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature463(7279),360–363 (2010).
    • 32  Hamamoto R, Furukawa Y, Morita M et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat. Cell Biol.6(8),731–740 (2004).
    • 33  Portela A, Esteller M. Epigenetic modifications and human disease. Nat. Biotechnol.28,1057–1068 (2010).
    • 34  Fraga MF, Ballestar E, Villar-Garea A et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet.37(4),391–400 (2005).
    • 35  Kondo Y, Shen L, Suzuki S et al. Alterations of DNA methylation and histone modifications contribute to gene silencing in hepatocellular carcinomas. Hepatol. Res.37(11),974–983 (2007).
    • 36  Vire E, Brenner C, Deplus R et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature439(7078),871–874 (2006).▪ Demonstration of interplay between H3K27 methylation by EZH2 and DNA methylation.
    • 37  Derks S, Bosch LJW, Niessen HEC et al. Promoter CpG island hypermethylation- and H3K9me3 and H3K27me3-mediated epigenetic silencing targets the deleted in colon cancer (DCC) gene in colorectal carcinogenesis without affecting neighboring genes on chromosomal region 18q21. Carcinogenesis30(6),1041–1048 (2009).
    • 38  Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet.21(1),103–107 (1999).
    • 39  Plumb JA, Steele N, Finn P, Brown R. Combined inhibition of DNA methylation and histone acetylation enhances gene re-expression and drug sensitivity in vivo. Br. J. Cancer100(5),758–763 (2009).
    • 40  Issa JP, Kantarjian HM. Targeting DNA methylation. Clin. Cancer Res.15,3938–3946 (2009).
    • 41  Weinstein IB, Joe A. Oncogene addiction. Cancer Res.68(9),3077–3080 (2008).
    • 42  Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat. Biotech.28(10),1069–1078 (2010).
    • 43  Plagemann PGW, Behrens M, Abraham D. Metabolism and cytotoxicity of 5-azacytidine in cultured Novikoff rat hepatoma and P388 mouse leukemia-cells and their enhancement by pre-incubation with pyrazofurin. Cancer Res.38(8),2458–2466 (1978).
    • 44  Stresemann C, Lyko F: Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer123(1),8–13 (2008).
    • 45  Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res.66(5),2794–2800 (2006).
    • 46  Chuang JC, Yoo CB, Kwan JM et al. Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2′-deoxycytidine. Mol. Cancer Ther.4(10),1515–1520 (2005).
    • 47  Siedlecki P, Boy RG, Musch T et al. Discovery of two novel, small-molecule inhibitors of DNA methylation. J. Med. Chem.49(2),678–683 (2005).
    • 48  Suzuki T, Tanaka R, Hamada S, Nakagawa H, Miyata N. Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase 1 inhibitors. Bioorg. Med. Chem. Lett.20(3),1124–1127 (2010).
    • 49  Piña IC, Gautschi JT, Wang G-Y-S et al. Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. J. Org. Chem.68(10),3866–3873 (2003).
    • 50  Nebbioso A, Pereira R, Khanwalkar H et al. Death receptor pathway activation and increase of ROS production by the triple epigenetic inhibitor, UVI5008. Mol. Cancer Ther.10(12),2394–2404 (2011).
    • 51  Lin J, Haffner MC, Zhang Y et al. Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth. Prostate71(4),333–343 (2011).
    • 52  García J, Franci G, Pereira R et al. Epigenetic profiling of the antitumor natural product psammaplin A and its analogues. Bioorg. Med. Chem.19(12),3637–3649 (2011).
    • 53  Baud MGJ, Leiser T, Haus P et al. Defining the mechanism of action and enzymatic selectivity of psammaplin A against its epigenetic targets. J. Med. Chem. doi: 10.1021/jm2016182 (2012) (Epub ahead of print).
    • 54  Godert AM, Angelino N, Woloszynska-Read A et al. An improved synthesis of psammaplin A. Bioorg. Med. Chem. Lett.16(12),3330–3333 (2006).
    • 55  Beisler JA. Isolation, characterization, and properties of a labile hydrolysis product of the antitumor nucleoside, 5-azacytidine. J. Med. Chem.21(2),204–208 (1978).
    • 56  Yoo CB, Jeong S, Egger G et al. Delivery of 5-aza-2´-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res.67(13),6400–6408 (2007).
    • 57  Chabot GG, Rivard GE, Momparler RL. Plasma and cerebrospinal-fluid pharmacokinetics of 5-aza-2´-deoxycytidine in rabbits and Dogs. Cancer Res.43(2),592–597 (1983).
    • 58  Mcgarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB. Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res.66(7),3541–3549 (2006).
    • 59  Cheng JC. Preferential response of cancer cells to zebularine. Cancer Cell6,151–158 (2004).
    • 60  Chuang JC, Warner SL, Vollmer D et al. S110, a 5-aza-2´-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol. Cancer Ther.9(5),1443–1450 (2010).
    • 61  Flotho C, Claus R, Batz C et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia23(6),1019–1028 (2009).
    • 62  Zhu WG, Dai ZY, Ding HM et al. Increased expression of unmethylated CDKN2D by 5-aza-2´-deoxycytidine in human lung cancer cells. Oncogene20(53),7787–7796 (2001).
    • 63  De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc. Natl Acad. Sci. USA93(14),7149–7153 (1996).
    • 64  Oki Y, Jelinek J, Shen L, Kantarjian HM, Issa J-PJ. Induction of hypomethylation and molecular response after decitabine therapy in patients with chronic myelomonocytic leukemia. Blood111(4),2382–2384 (2008).▪▪ Global analysis of lysine acetylation’s cellular roles, demonstrating the broad implication of this modification in many cellular processes.
    • 65  Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: what are the cancer relevant targets? Cancer Lett.277(1),8–21 (2009).
    • 66  North B, Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol.5(5),224 (2004).
    • 67  Glozak Ma, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene363,15–23 (2005).
    • 68  Yao Y-L, Yang W-M. Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. J. Biomed. Biotechnol. doi:10.1155/2011/146493 (2011) (Epub ahead of print).
    • 69  Wilson BJ, Tremblay AM, Deblois G, Sylvain-Drolet G, Giguère V. An acetylation switch modulates the transcriptional activity of estrogen-related receptor α. Mol. Endocrinol.24(7),1349–1358 (2010).
    • 70  Mann M, Choudhary C, Kumar C et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science325(5942),834–840 (2009).
    • 71  Xiong Y, Zhao SM, Xu W et al. Regulation of cellular metabolism by protein lysine acetylation. Science327(5968),1000–1004 (2010).
    • 72  Zhao SM, Wang QJ, Zhang YK et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science327(5968),1004–1007 (2010).
    • 73  Norvell A, Mcmahon SB. Rise of the rival. Science327(5968),964–965 (2010).
    • 74  Marks PA, Xu WS, Parmigiani Rb. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene26(37),5541–5552 (2007).
    • 75  Ellis DJP, Lawman ZK, Bonham K. Histone acetylation is not an accurate predictor of gene expression following treatment with histone deacetylase inhibitors. Biochem. Biophys. Res. Commun.367(3),656–662 (2008).
    • 76  Mottet D, Pirotte S, Lamour V et al. HDAC4 represses p21WAF1/Cip1 expression in human cancer cells through a Sp1-dependent, p53-independent mechanism. Oncogene28(2),243–256 (2008).
    • 77  Sawa H, Murakami H, Kumagai M et al. Histone deacetylase inhibitor, FK228, induces apoptosis and suppresses cell proliferation of human glioblastoma cells in vitro and in vivo. Acta Neuropathol.107(6),523–531 (2004).
    • 78  Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl Acad. Sci. USA97(18),10014–10019 (2000).
    • 79  Schrump DS. Cytotoxicity mediated by histone deacetylase inhibitors in cancer cells: mechanisms and potential clinical implications. Clin. Cancer Res.15(12),3947–3957 (2009).
    • 80  Chen Cs, Weng SC, Tseng PH, Lin HP. Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. J. Biol. Chem.280(46),38879–38887 (2005).
    • 81  Rhodes LV, Nitschke AM, Segar HC et al. The histone deacetylase inhibitor trichostatin A alters microRNA expression profiles in apoptosis-resistant breast cancer cells. Oncol. Rep. (1),10–16 (2011).
    • 82  Brest P, Lassalle S, Hofman V et al. MiR-129 5p is required for histone deacetylase inhibitor-induced cell death in thyroid cancer cells. Endocr Relat Cancer18(6),711–719 (2011).
    • 83  Lane AA, Chabner BA. Histone deacetylase inhibitors in cancer therapy. J. Clin. Oncol.27,5459–5468 (2009).
    • 84  Baud MGJ, Leiser T, Meyer-Almes F-J, Fuchter MJ. New synthetic strategies towards psammaplin A, access to natural product analogues for biological evaluation. Org. Biomol. Chem.9(3),659–662 (2011).
    • 85  Peter A. Development of the pan-DAC inhibitor panobinostat (LBH589): successes and challenges. Cancer Lett.280(2),233–241 (2009).
    • 86  Mann BS, Johnson JR Cohen MH, Justice R, Pazdur R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist12(10),1247–1252 (2007).
    • 87  Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol.25(1),84–90 (2007).
    • 88  Whittaker SJ, Demierre M-F, Kim EJ et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol.28(29),4485–4491 (2010).
    • 89  Piekarz Rl, Frye R, Turner M et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol.27(32),5410–5417 (2009).
    • 90  Ma X, Ezzeldin HH, Diasio RB. Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs69,1911–1934 (2009).
    • 91  Balasubramanian S, Verner E, Buggy JJ. Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett.280(2),211–221 (2009).
    • 92  Graham JS, Kaye SB, Brown R. The promises and pitfalls of epigenetic therapies in solid tumours. Eur. J. Cancer45(7),1129–1136 (2009).
    • 93  Siegel D, Hussein M, Belani C et al. Vorinostat in solid and hematologic malignancies. J. Hematol. Oncol.27(2),31 (2009).
    • 94  Galanis E, Jaeckle KA, Maurer MJ et al. Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J. Clin. Oncol.27(12),2052–2058 (2009).
    • 95  Steele NL, Plumb JA, Vidal L et al. A Phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors. Clin. Cancer Res.14(3),804–810 (2008).
    • 96  Modesitt SC, Sill M, Hoffman JS, Bender DP. A Phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecologic Oncol.109(2),182–186 (2008).
    • 97  Hussain M, Bradley D, Rathkopf D et al. Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862) trial results and interleukin-6 analysis: a study by the department of defense prostate cancer clinical trial consortium and University of Chicago Phase II consortium. Cancer115(23),5541–5549 (2009).
    • 98  Blumenschein GR, Kies MS, Papadimitrakopoulou VA et al. Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza™, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Invest. New Drugs 26(1),81–87 (2008).
    • 99  Somlo G, Luu TH, Morgan RJ et al. A Phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium Study. Clin. Cancer Res.14(21),7138–7142 (2008).
    • 100  Thaler F, Minucci S. Next generation histone deacetylase inhibitors: the answer to the search for optimized epigenetic therapies? Expert Opin. Drug Disc.6(4),393–404 (2011).
    • 101  Toyota M, Shen L, Ohe-Toyota M, Hamilton SR, Sinicrope FA, Issa J-PJ. Aberrant methylation of the cyclooxygenase 2 CpG island in colorectal tumors. Cancer Res.60(15),4044–4048 (2000).
    • 102  Chapman-Rothe N, Brown R. Approaches to target the genome and its epigenome in cancer. Future Med. Chem.1(8),1481–1495 (2009).
    • 103  Yao X, Hu J-F, Daniels M et al. A methylated oligonucleotide inhibits IGF2 expression and enhances survival in a model of hepatocellular carcinoma. J. Clin. Invest.111(2),265–273 (2003).
    • 104  Sasaki H, Moriyama S, Nakashima Y et al. Histone deacetylase 1 mRNA expression in lung cancer. Lung Cancer46(2),171–178 (2004).
    • 105  Gao D-J, Xu M, Zhang Y-Q et al. Upregulated histone deacetylase 1 expression in pancreatic ductal adenocarcinoma and specific SiRNA inhibits the growth of cancer cells. Pancreas39(7),949–1001 (2010).
    • 106  Zhang Z, Yamashita H, Toyama T et al. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast. Breast Cancer Res. Tr.94(1),11–16 (2005).
    • 107  Krusche C, Wülfing P, Kersting C et al. Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res. Treat.90(1),15–23 (2005).
    • 108  Piekarz RL, Bates SE. Epigenetic modifiers: basic understanding and clinical development. Clin. Cancer Res.15(12),3918–3926 (2009).
    • 109  Qin T, Jelinek J, Si J, Shu J, Issa J-PJ. Mechanisms of resistance to 5-aza-2´-deoxycytidine in human cancer cell lines. Blood113(3),659–667 (2009).
    • 110  La Thangue NB, Khan O, Fotheringham S et al. HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy. Proc. Natl Acad. Sci. USA107(14),6532–6537 (2010).
    • 111  Spannhoff A, Sippl W, Jung M. Cancer treatment of the future: inhibitors of histone methyltransferases. Int. J. Biochem. Cell Biol.41(1),4–11 (2009).
    • 112  Spannhoff A, Hauser AT, Heinke R, Sippl W, Jung M. The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem4(10),1568–1582 (2009).
    • 113  Lohse B, Kristensen JL, Kristensen LH et al. Inhibitors of histone demethylases. Bioorg. Med. Chem.19(12),3625–3636 (2011).
    • 114  Allis CD, Berger SL, Cote J et al. New nomenclature for chromatin-modifying enzymes. Cell131(4),633–636 (2007).
    • 115  Copeland RA, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat. Rev. Drug Discov.8(9),724–732 (2009).▪▪ Comprehensive review on the promises of histone protein methyltransferase as targets.
    • 116  Hansen KH, Bracken AP, Pasini D et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol.10(11),1291–1300 (2008).
    • 117  Qian C, Zhou M. SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cell. Mol. Life Sci.63(23),2755–2763 (2006).
    • 118  Chuikov S, Kurash JK, Wilson JR et al. Regulation of p53 activity through lysine methylation. Nature432(7015),353–360 (2004).
    • 119  Huang J. G9a and Glp methylate lysine 373 in the tumor suppressor p53. J. Biol. Chem.285,9636–9641 (2010).
    • 120  Huang J, Perez-Burgos L, Placek Bj et al. Repression of p53 activity by Smyd2-mediated methylation. Nature444(7119),629–632 (2006).
    • 121  Shi X, Kachirskaia I, Yamaguchi H et al. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol. Cell27(4),636–646 (2007).
    • 122  Pradhan S, Chin HG, Estève P-O, Jacobsen SE: SET7/9 mediated methylation of non-histone proteins in mammalian cells. Epigenetics4(6),383–387 (2009).
    • 123  Yang X-D, Lamb A, Chen L-F. Methylation, a new epigenetic mark for protein stability. Epigenetics4(7),429–433 (2009).
    • 124  Rathert P, Dhayalan A, MAH, Jeltsch A. Specificity of protein lysine methyltransferases and methods for detection of lysine methylation of non-histone proteins. Mol. Biosyst.4(12),1186–1190 (2008).
    • 125  Bernstein BE, Mikkelsen TS, Xie X et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125(2),315–326 (2006).
    • 126  Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell7(3),299–313 (2010).
    • 127  Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet.8(1),9–22 (2007).
    • 128  Baylin SB. Stem cells, cancer, and epigenetics. In: Stembook. The Stem Cell Research Community, Baltimore, MD, USA (2009).
    • 129  Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res. Fundam. Mol. Mech. Mutagen.647(1–2),21–29 (2008).▪▪ Review on EZH2 as a promising cancer target.
    • 130  Clevers H. The cancer stem cell: premises, promises and challenges. Nat. Med.313–319 (2011).
    • 131  Suvà M-L, Riggi N, Janiszewska M et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res.69(24),9211–9218 (2009).
    • 132  Rizzo S, Hersey JM, Mellor P et al. Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol. Cancer Ther.10(2),325–335 (2011).
    • 133  Albert M, Helin K. Histone methyltransferases in cancer. Sem. Cell Dev. Biol.21(2),209–220 (2010).
    • 134  Varier RA, Timmers HTM. Histone lysine methylation and demethylation pathways in cancer. BBA-Rev. Cancer1815(1),75–89 (2011).
    • 135  Chase A, Cross NC. Aberrations of EZH2 in cancer. Clin. Cancer Res.17(9),2613–2618 (2011).
    • 136  Tsang DPF, Cheng ASL. Epigenetic regulation of signaling pathways in cancer: Role of the histone methyltransferase EZH2. J. Gastroen. Hepatol.26(1),19–27 (2011).
    • 137  Morin RD, Johnson NA, Severson TM et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet.42(2),181-U124 (2010).
    • 138  Sneeringer CJ, Scott MP, Kuntz KW et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl Acad. Sci.107(49),20980–20985 (2010).
    • 139  Yap DB, Chu J, Berg T et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood117(8),2451–2459 (2011).
    • 140  Van Haaften G, Dalgliesh GL, Davies H et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat. Genet.41(5),521–523 (2009).
    • 141  Takawa M, Masuda K, Kunizaki M et al. Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci.102(7),1298–1305 (2011).
    • 142  Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. BBA Gene Reg. Mech.1789(1),45–57 (2009).
    • 143  Cheng X, Zhang X. Structural dynamics of protein lysine methylation and demethylation. Mutat. Res. Fundam. Mol. Mech. Mutagen.618(1–2),102–115 (2007).
    • 144  Chin HG, Patnaik D, Esteve Po, Jacobsen SE, Pradhan S. Catalytic properties and kinetic mechanism of human recombinant lys-9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis. Biochemistry45(10),3272–3284 (2006).
    • 145  Patnaik D, Chin HG, Estève P-O, Benner J, Jacobsen Se, Pradhan S. Substrate specificity and kinetic mechanism of mammalian G9a histone H3 methyltransferase. J. Biol. Chem.279(51),53248–53258 (2004).
    • 146  Zhang X, Yang Z, Khan Si et al. Structural basis for the product specificity of histone lysine methyltransferases. Mol. Cell12(1),177–185 (2003).
    • 147  Zhang X, Bruice TC. Enzymatic mechanism and product specificity of SET-domain protein lysine methyltransferases. Proc. Natl Acad. Sci. USA105(15),5728–5732 (2008).
    • 148  Karaman MW, Herrgard S, Treiber DK et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol.26(1),127–132 (2008).
    • 149  Cheng XD, Collins RE, Zhang X. Structural and sequence motifs of protein (histone) methylation enzymes. Annu. Rev. Biophys. Biomol. Struct.34,267–294 (2005).
    • 150  Mccammon MT, Parks LW. Inhibition of sterol transmethylation by S-adenosylhomocysteine analogs. J. Bacteriol.145(1),106–112 (1981).
    • 151  Daigle SR, Olhava Ej, Therkelsen CA et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell20(1),53–65 (2011).
    • 152  Tan J, Yang XJ, Zhuang L et al. Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev.21(9),1050–1063 (2007).
    • 153  Glazer RI, Hartman KD, Knode MC et al. 3-deazaneplanocin: a new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia-cell line Hl-60. Biochem. Biophys. Res. Commun.135(2),688–694 (1986).
    • 154  Chiang PK, Cantoni GL. Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo. Biochem. Pharmacol.28(12),1897–1902 (1979).
    • 155  Chiang PK. Biological effects of inhibitors of S-adenosylhomocysteine hydrolase. Pharmacol. Ther.77(2),115–134 (1998).
    • 156  Miranda TB, Cortez CC, Yoo CB et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther.8,1579–1588 (2009).
    • 157  Zee BM, Levin RS, Xu B, Leroy G, Wingreen NS, Garcia BA. In vivo residue-specific histone methylation dynamics. J. Biol. Chem.285(5),3341–3350 (2010).
    • 158  Fiskus W, Pranpat M, Balasis M et al. Histone deacetylase inhibitors deplete enhancer of zeste 2 and associated polycomb repressive complex 2 proteins in human acute leukemia cells. Mol. Cancer Ther.5(12),3096–3104 (2006).
    • 159  Fiskus W, Buckley K, Rao R et al. Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biol. Ther.8(10),939–950 (2009).
    • 160  Fiskus W, Wang YC, Jillella A et al. Combined epigenetic therapy with the novel histone methyl transferase EZH2 inhibitor 3-deazaneplanocin and -histone deacetylase inhibitor panobinostat exerts synergistic activity against human mantle cell lymphoma cells. Blood112(11),1239–1239 (2008).
    • 161  Jiang X, Tan J, Li J et al. DACT3 Is an Epigenetic regulator of Wnt/≤-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell13(6),529–541 (2008).
    • 162  Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3–9. Nat. Chem. Biol.1(3),143–145 (2005).
    • 163  Hauser D, Weber HP, Sigg HP. Isolation and configuration of Chaetocin. Helv. Chim. Acta53(5),1061–1073 (1970).
    • 164  Gardiner DM, Waring P, Howlett BJ. The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology151,1021–1032 (2005).
    • 165  Isham CR, Tibodeau JD, Jin W, Xu RF, Timm MM, Bible KC. Chaetocin: a promising new antimyeloma agent with in vitro and in vivo activity mediated via imposition of oxidative stress. Blood109(6),2579–2588 (2007).
    • 166  Cook KM, Hilton ST, Mecinovic J, Motherwell WB, Figg WD, Schofield CJ. epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-1α (hif-1α) and p300 by a zinc ejection mechanism. J. Biol. Chem.284(39),26831–26838 (2009).
    • 167  Saito T, Suzuki Y, Koyama K, Natori S, Iitaka Y, Kinoshita T. chetracin-A and chaetocin-B and chaetocin-C, 3 new epipolythiodioxopiperazines from Chaetomium Spp. Chem. Pharm. Bull.36(6),1942–1956 (1988).
    • 168  Iwasa E, Hamashima Y, Fujishiro S et al. Total synthesis of (+)-chaetocin and its analogues: their histone methyltransferase G9a inhibitory activity. J. Am. Chem. Soc.132,4078–4079 (2010).
    • 169  Cherblanc F, Lo Y-P, De Gussem E et al. On the determination of the stereochemistry of semisynthetic natural product analogues using chiroptical spectroscopy: desulfurization of epidithiodioxopiperazine fungal metabolites. Chem. Eur. J.17(42),11868–11875 (2011).
    • 170  Kubicek S, O’Sullivan RJ, August EM et al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell25,473–481 (2007).▪▪ Discovery of the original BIX-01294 G9a histone methyltransferase inhibitors.
    • 171  Chang Y, Zhang X, Horton Jr et al. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat. Struct. Mol. Biol.16(3),312–317 (2009).
    • 172  Liu F, Chen X, Allali-Hassani A et al. Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. J. Med. Chem.52(24),7950–7953 (2009).
    • 173  Liu F, Chen X, Allali-Hassani A et al. Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J. Med. Chem.53(15),5844–5857 (2010).
    • 174  Liu F, Barsyte-Lovejoy D, Allali-Hassani A et al. Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines. J. Med. Chem.54(17),6139–6150 (2011).
    • 175  Vedadi M, Barsyte-Lovejoy D, Liu F et al. A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat. Chem. Biol.7(8),566–574 (2011).
    • 176  Chang YQ, Ganesh T, Horton JR et al. Adding a lysine mimic in the design of potent inhibitors of histone lysine methyltransferases. J. Mol. Biol.400(1),1–7 (2010).
    • 177  Osborne T, Weller Roska RL, Rajski SR, Thompson PR. In situ generation of a bisubstrate analogue for protein arginine methyltransferase 1. J. Am. Chem. Soc.130(14),4574–4575 (2008).
    • 178  Dowden J, Hong W, Parry RV, Pike RA, Ward SG. Toward the development of potent and selective bisubstrate inhibitors of protein arginine methyltransferases. Bioorg. Med. Chem. Lett.20(7),2103–2105 (2010).
    • 179  Mori S, Iwase K, Iwanami N, Tanaka Y, Kagechika H, Hirano T. Development of novel bisubstrate-type inhibitors of histone methyltransferase SET7/9. Bioorg. Med. Chem.18(23),8158–8166 (2010).
    • 180  Howitz KT, Bitterman KJ, Cohen HY et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature425(6954),191–196 (2003).
    • 181  Choi SH, Kim YW, Kim SG. AMPK-mediated GSK3[β] inhibition by isoliquiritigenin contributes to protecting mitochondria against iron-catalyzed oxidative stress. Biochem. Pharmacol.79(9),1352–1362 (2010).
    • 201  The Regents of The University of Michigan: US2009/0012031 (2009).
    • 202  GlaxoSmithKline LLC:US2011/035336 (2011).
    • 301  Cancer Sleuths Uncovering DNA Mysteries for Novartis, Glaxo www.bloomberg.com/news/2011-05-12/cancer-sleuths-uncovering-dna-mysteries-for-novartis-glaxo.html
    • 302  World Epigenetics Summit 2011 www.epigenie.com/Highlighted-Conferences/World-Epigenetics-Summit-2011-Conference-Coverage.html
    • 303  EZH2 www.epizyme.com/programs/ezh2.asp