We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Understanding HIV-1 protease autoprocessing for novel therapeutic development

    Liangqun Huang

    Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA

    &
    Chaoping Chen

    * Author for correspondence

    Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.

    Published Online:https://doi.org/10.4155/fmc.13.89

    In the infected cell, HIV-1 protease (PR) is initially synthesized as part of the GagPol polyprotein. PR autoprocessing is a virus-specific process by which the PR domain embedded in the precursor catalyzes proteolytic reactions responsible for liberation of free mature PRs, which then recognize and cleave at least ten different peptide sequences in the Gag and GagPol polyproteins. Despite extensive structure and function studies of the mature PRs as well as the successful development of ten US FDA-approved catalytic-site inhibitors, the precursor autoprocessing mechanism remains an intriguing yet-to-be-solved puzzle. This article discusses current understanding of the autoprocessing mechanism, in an effort to prompt the development of novel anti-HIV drugs that selectively target precursor autoprocessing.

    Papers of special note have been highlighted as: ▪ of interest

    References

    • Loeb DD, Swanstrom R, Everitt L et al. Complete mutagenesis of the HIV-1 protease. Nature340(6232),397–400 (1989).
    • Oroszlan S, Luftig RB. Retroviral proteinases. Curr. Top. Microbiol. Immunol.157,153–185 (1990).
    • Partin K, Zybarth G, Ehrlich L et al. Deletion of sequences upstream of the proteinase improves the proteolytic processing of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA88(11),4776–4780 (1991).
    • Huang M, Orenstein JM, Martin MA, Freed EO. p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol.69,6810–6818 (1995).
    • Eder J, Hommel U, Cumin F, Martoglio B, Gerhartz B. Aspartic proteases in drug discovery. Curr. Pharm. Des.13(3),271–285 (2007).
    • Barre-Sinoussi F, Chermann JC, Rey F et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science220(4599),868–871 (1983).
    • Swanstrom R, Wills JW. Synthesis, assembly, and processing of viral proteins. In: Retroviruses. Coffin JM, Hughes SH, Varmus HE (Eds). Cold Spring Harbor Laboratory Press, NY, USA (1997).
    • Parkin NT, Chamorro M, Varmus HE. Human immunodeficiency virus type 1 GagPol frameshifting is dependent on downstream mRNA secondary structure: demonstration by expression in vivo. J. Virol.66(8),5147–5151 (1992).
    • Hung M, Patel P, Davis S, Green SR. Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication. J. Virol.72(6),4819–4824 (1998).
    • 10  Chen C, Montelaro RC. Characterization of RNA elements that regulate GagPol ribosomal frameshifting in equine infectious anemia virus. J. Virol.77(19),10280–10287 (2003).
    • 11  Louis JM, Weber IT, Tozser J, Clore GM, Gronenborn AM. HIV-1 protease: maturation, enzyme specificity, and drug resistance. Adv. Pharmacol.49,111–146 (2000).
    • 12  Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun.27(2),157–162 (1967).
    • 13  Prejdova J, Soucek M, Konvalinka J. Determining and overcoming resistance to HIV protease inhibitors. Curr. Drug Targets Infect. Disord.4(2),137–152 (2004).
    • 14  Pettit SC, Clemente JC, Jeung JA, Dunn BM, Kaplan AH. Ordered processing of the human immunodeficiency virus type 1 GagPol precursor is influenced by the context of the embedded viral protease. J. Virol.79(16),10601–10607 (2005).
    • 15  Pettit SC, Lindquist JN, Kaplan AH, Swanstrom R. Processing sites in the human immunodeficiency virus type 1 (HIV-1) Gag-Pro-Pol precursor are cleaved by the viral protease at different rates. Retrovirology2,66 (2005).
    • 16  Paulus C, Ludwig C, Wagner R. Contribution of the Gag Pol transframe domain p6* and its coding sequence to morphogenesis and replication of human immunodeficiency virus type 1. Virology330(1),271 (2004).
    • 17  Feher A, Weber IT, Bagossi P et al. Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites. Eur. J. Biochem.269(16),4114–4120 (2002).
    • 18  Zhou J, Chen CH, Aiken C. Human immunodeficiency virus type 1 resistance to the small molecule maturation inhibitor 3-O-(3´,3´-dimethylsuccinyl)-betulinic acid is conferred by a variety of single amino acid substitutions at the CA-SP1 cleavage site in Gag. J. Virol.80(24),12095–12101 (2006).
    • 19  Nijhuis M, van Maarseveen NM, Lastere S et al. A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism. PLoS Med.4(1),e36 (2007).
    • 20  Adamson CS, Sakalian M, Salzwedel K, Freed EO. Polymorphisms in Gag spacer peptide 1 confer varying levels of resistance to the HIV-1 maturation inhibitor bevirimat. Retrovirology7,36 (2010).
    • 21  Kohl NE, Emini EA, Schleif WA et al. Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl Acad. Sci. USA85(13),4686–4690 (1988).
    • 22  Karacostas V, Wolffe EJ, Nagashima K, Gonda MA, Moss B. Overexpression of the HIV-1 Gag Pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology193(2),661–671 (1993).
    • 23  Krausslich HG. Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc. Natl Acad. Sci. USA88(8),3213–3217 (1991).
    • 24  Kaplan AH, Zack JA, Knigge M et al. Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J. Virol.67(7),4050–4055 (1993).
    • 25  Wiegers K, Rutter G, Kottler H et al. Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J. Virol.72(4),2846–2854 (1998).
    • 26  Li F, Goila-Gaur R, Salzwedel K et al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc. Natl Acad. Sci. USA100(23),13555–13560 (2003).
    • 27  Dulude D, Berchiche YA, Gendron K, Brakier-Gingras L, Heveker N. Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology345(1),127–136 (2006).
    • 28  Skalka AM. Retroviral proteases: first glimpses at the anatomy of a processing machine. Cell56(6),911–913 (1989).
    • 29  Darke PL, Huff JR. HIV protease as an inhibitor target for the treatment of AIDS. Adv. Pharmacol.25,399–454 (1994).
    • 30  Wlodawer A, Vondrasek J. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu. Rev. Biophys. Biomol. Struct.27,249–284 (1998).
    • 31  Wlodawer A, Gustchina A. Structural and biochemical studies of retroviral proteases. Biochim. Biophys. Acta1477,16–34 (2000).
    • 32  Dunn BM, Goodenow MM, Gustchina A, Wlodawer A. Retroviral proteases. Genome Biol.3(4),reviews3006–reviews3006.7 (2002).
    • 33  Vondrasek J, Wlodawer A. HIVdb: a database of the structures of human immunodeficiency virus protease. Proteins49(4),429–431 (2002).
    • 34  King JR, Acosta EP. Tipranavir: a novel nonpeptidic protease inhibitor of HIV. Clin. Pharmacokinet.45(7),665–682 (2006).
    • 35  Wensing AM, Van Maarseveen NM, Nijhuis M. Fifteen years of HIV protease inhibitors: raising the barrier to resistance. Antiviral Res.85(1),59–74 (2010).
    • 36  Turk B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov.5(9),785–799 (2006).
    • 37  Sielecki AR, Fedorov AA, Boodhoo A, Andreeva NS, James MN. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. J. Mol. Biol.214(1),143–170 (1990).
    • 38  Baldwin ET, Bhat TN, Gulnik S et al. Crystal structures of native and inhibited forms of human cathepsin D: implications for lysosomal targeting and drug design. Proc. Natl Acad. Sci. USA90(14),6796–6800 (1993).
    • 39  Pearl LH, Taylor WR. A structural model for the retroviral proteases. Nature329(6137),351–354 (1987).
    • 40  Bannwarth L, Reboud-Ravaux M. An alternative strategy for inhibiting multidrug-resistant mutants of the dimeric HIV-1 protease by targeting the subunit interface. Biochem. Soc. Trans.35(Pt 3),551–554 (2007).
    • 41  Heaslet H, Rosenfeld R, Giffin M et al. Conformational flexibility in the flap domains of ligand-free HIV protease. Acta Crystallogr. D Biol. Crystallogr.63(Pt 8),866–875 (2007).
    • 42  Ishima R, Ghirlando R, Tozser J et al. Folded monomer of HIV-1 protease. J. Biol. Chem.276(52),49110–49116 (2001).
    • 43  Ishima R, Torchia DA, Lynch SM, Gronenborn AM, Louis JM. Solution structure of the mature HIV-1 protease monomer: insight into the tertiary fold and stability of a precursor. J. Biol. Chem.278(44),43311–43319 (2003).
    • 44  Tie Y, Boross PI, Wang YF et al. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains. J. Mol. Biol.338(2),341–352 (2004).
    • 45  Tie Y, Boross PI, Wang YF et al. Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1 protease mutants with substrate analogs. FEBS J.272(20),5265–5277 (2005).
    • 46  Prabu-Jeyabalan M, Nalivaika EA, Romano K, Schiffer CA. Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate. J. Virol.80(7),3607–3616 (2006).
    • 47  Sayer JM, Liu F, Ishima R, Weber IT, Louis JM. Effect of the active site D25N mutation on the structure, stability, and ligand binding of the mature HIV-1 protease. J. Biol. Chem.283(19),13459–13470 (2008).
    • 48  Ishima R, Gong Q, Tie Y, Weber IT, Louis JM. Highly conserved glycine 86 and arginine 87 residues contribute differently to the structure and activity of the mature HIV-1 protease. Proteins78(4),1015–1025 (2009).
    • 49  Mittl PR, Grutter MG. Opportunities for structure-based design of protease-directed drugs. Curr. Opin. Struct. Biol.16(6),769–775 (2006).
    • 50  Louis JM, Clore GM, Gronenborn AM. Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Nat. Struct. Biol.6,868–875 (1999).
    • 51  Toth MV, Marshall GR. A simple, continuous fluorometric assay for HIV protease. Int. J. Pept. Protein Res.36(6),544–550 (1990).
    • 52  Tozser J, Blaha I, Copeland TD, Wondrak EM, Oroszlan S. Comparison of the HIV-1 and HIV-2 proteinases using oligopeptide substrates representing cleavage sites in Gag and GagPol polyproteins. FEBS Lett.281(1–2),77–80 (1991).
    • 53  Pettit SC, Moody MD, Wehbie RS et al. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J. Virol.68(12),8017–8027 (1994).
    • 54  Pettit SC, Henderson GJ, Schiffer CA, Swanstrom R. Replacement of the P1 amino acid of human immunodeficiency virus type 1 Gag processing sites can inhibit or enhance the rate of cleavage by the viral protease. J. Virol.76(20),10226–10233 (2002).
    • 55  Lee SK, Potempa M, Kolli M et al. Context surrounding processing sites is crucial in determining cleavage rate of a subset of processing sites in HIV-1 Gag and Gag-Pro-Pol polyprotein precursors by viral protease. J. Biol. Chem.287(16),13279–13290 (2012).▪ Demonstrates that HIV-1 protease activity is modulated by complex interactions beyond the catalytic site and the substrate peptide.
    • 56  Breuer S, Sepulveda H, Chen Y, Trotter J, Torbett BE. A cleavage enzyme-cytometric bead array provides biochemical profiling of resistance mutations in HIV-1 Gag and protease. Biochemistry50(20),4371–4381 (2011).
    • 57  Louis JM, Aniana A, Weber IT, Sayer JM. Inhibition of autoprocessing of natural variants and multidrug resistant mutant precursors of HIV-1 protease by clinical inhibitors. Proc. Natl Acad. Sci. USA108(22),9072–9077 (2011).▪ Reveals that precursor proteases are less responsive than the mature proteases to clinical inhibtors.
    • 58  Shehu-Xhilaga M, Kraeusslich HG, Pettit S et al. Proteolytic processing of the P2/nucleocapsid cleavage site is critical for human immunodeficiency virus type 1 RNA dimer maturation. J. Virol.75(19),9156–9164 (2001).
    • 59  Pettit SC, Gulnik S, Everitt L, Kaplan AH. The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage. J. Virol.77(1),366–374 (2003).
    • 60  Pettit SC, Everitt LE, Choudhury S, Dunn BM, Kaplan AH. Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by its activated protease occurs by an intramolecular mechanism. J. Virol.78(16),8477–8485 (2004).
    • 61  Daniels SI, Davis DA, Soule EE et al. The initial step in human immunodeficiency virus type 1 GagProPol processing can be regulated by reversible oxidation. PLoS ONE5(10),e13595 (2010).
    • 62  Debouck C, Gorniak JG, Strickler JE et al. Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc. Natl Acad. Sci. USA84(24),8903–8906 (1987).
    • 63  Huang L, Sayer JM, Swinford M, Louis JM, Chen C. Modulation of human immunodeficiency virus type 1 protease autoprocessing by charge properties of surface residue 69. J. Virol.83(15),7789–7793 (2009).▪ Reports on the role of H69 in regulating precursor processing.
    • 64  Huang L, Chen C. Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells. AIDS Res. Ther.7(1),27 (2010).
    • 65  Huang L, Hall A, Chen C. Cysteine 95 and other residues influence the regulatory effects of histidine 69 mutations on human immunodeficiency virus type 1 protease autoprocessing. Retrovirology7,24 (2010).▪ Describes a novel cell-based precursor autoprocessing assay that recaptulates many previously observed phenomena.
    • 66  Huang L, Li Y, Chen C. Flexible catalytic site conformations implicated in modulation of HIV-1 protease autoprocessing reactions. Retrovirology8(1),79 (2011).
    • 67  Davis DA, Brown CA, Singer KE et al. Inhibition of HIV-1 replication by a peptide dimerization inhibitor of HIV-1 protease. Antiviral Res.72(2),89–99 (2006).
    • 68  Louis JM, Ishima R, Torchia DA, Weber IT. HIV-1 protease: structure, dynamics, and inhibition. Adv. Pharmacol.55,261–298 (2007).
    • 69  Cherry E, Liang C, Rong L et al. Characterization of human immunodeficiency virus type-1 (HIV-1) particles that express protease-reverse transcriptase fusion proteins. J. Mol. Biol.284(1),43–56 (1998).
    • 70  Wondrak EM, Nashed NT, Haber MT, Jerina DM, Louis JM. A transient precursor of the HIV-1 protease. Isolation, characterization, and kinetics of maturation. J. Biol. Chem.271(8),4477–4481 (1996).
    • 71  Koh Y, Matsumi S, Das D et al. Potent inhibition of HIV-1 replication by novel non-peptidyl small molecule inhibitors of protease dimerization. J. Biol. Chem.282(39),28709–28720 (2007).
    • 72  Pan YY, Wang SM, Huang KJ, Chiang CC, Wang CT. Placement of leucine zipper motifs at the carboxyl terminus of HIV-1 protease significantly reduces virion production. PLoS ONE7(3),e32845 (2012).▪ Reports a fluorescence resonance energy transfer-based method for quantification of precursor dimerization in co-transfected mammalian cells.
    • 73  Tessmer U, Krausslich HG. Cleavage of human immunodeficiency virus type 1 proteinase from the N-terminally adjacent p6* protein is essential for efficient Gag polyprotein processing and viral infectivity. J. Virol.72(4),3459–3463 (1998).
    • 74  Ludwig C, Leiherer A, Wagner R. Importance of protease cleavage sites within and flanking human immunodeficiency virus type 1 transframe protein p6* for spatiotemporal regulation of protease activation. J. Virol.82(9),4573–4584 (2008).
    • 75  Tang C, Louis JM, Aniana A, Suh JY, Clore GM. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease. Nature455(7213),693–696 (2008).
    • 76  Agniswamy J, Sayer JM, Weber IT, Louis JM. Terminal interface conformations modulate dimer stability prior to amino terminal autoprocessing of HIV-1 protease. Biochemistry51(5),1041–1050 (2012).▪ Structural analysis of complexes formed between a model precursor HIV-protease and darunavir illustrating the terminal interface conformations that destablize precursor dimers.
    • 77  Chatterjee A, Mridula P, Mishra RK, Mittal R, Hosur RV. Folding regulates autoprocessing of HIV-1 protease precursor. J. Biol. Chem.280(12),11369–11378 (2005).
    • 78  Burnley BT, Afonine PV, Adams PD, Gros P. Modelling dynamics in protein crystal structures by ensemble refinement. eLife1,e00311 (2012).
    • 79  Sadiq SK, Noe F, De Fabritiis G. Kinetic characterization of the critical step in HIV-1 protease maturation. Proc. Natl Acad. Sci. USA109(50),20449–20454 (2012).
    • 80  Rose JR, Salto R, Craik CS. Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. J. Biol. Chem.268(16),11939–11945 (1993).
    • 81  Mildner AM, Rothrock DJ, Leone JW et al. The HIV-1 protease as enzyme and substrate: mutagenesis of autolysis sites and generation of a stable mutant with retained kinetic properties. Biochemistry33(32),9405–9413 (1994).
    • 82  Louis JM, Nashed NT, Parris KD, Kimmel AR, Jerina DM. Kinetics and mechanism of autoprocessing of human immunodeficiency virus type 1 protease from an analog of the GagPol polyprotein. Proc. Natl Acad. Sci. USA91(17),7970–7974 (1994).
    • 83  Agniswamy J, Shen CH, Aniana A et al. HIV-1 protease with 20 mutations exhibits extreme resistance to clinical inhibitors through coordinated structural rearrangements. Biochemistry51(13),2819–2828 (2012).
    • 84  Erickson-Viitanen S, Manfredi J, Viitanen P et al. Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Res. Hum. Retroviruses5(6),577–591 (1989).
    • 85  Krausslich HG, Schneider H, Zybarth G, Carter CA, Wimmer E. Processing of in vitro-synthesized gag precursor proteins of human immunodeficiency virus (HIV) type 1 by HIV proteinase generated in Escherichia coli.J. Virol.62(11),4393–4397 (1988).
    • 86  Krausslich HG, Ingraham RH, Skoog MT et al. Activity of purified biosynthetic proteinase of human immunodeficiency virus on natural substrates and synthetic peptides. Proc. Natl Acad. Sci. USA86(3),807–811 (1989).
    • 87  Koh Y, Aoki M, Danish ML et al. Loss of protease dimerization inhibition activity of darunavir is associated with the acquisition of resistance to darunavir by HIV-1. J. Virol.85(19),10079–10089 (2011).
    • 88  Aoki M, Danish ML, Aoki-Ogata H et al. Loss of the protease dimerization inhibition activity of tipranavir (TPV) and its association with the acquisition of resistance to TPV by HIV-1. J. Virol.86(24),13384–13396 (2012).
    • 89  Huang YC, Misquitta S, Blond SY, Adams E, Colman RF. Catalytically active monomer of glutathione S-transferase pi and key residues involved in the electrostatic interaction between subunits. J. Biol. Chem.283(47),32880–32888 (2008).
    • 90  Fabrini R, De Luca A, Stella L et al. Monomer–dimer equilibrium in glutathione transferases: a critical re-examination. Biochemistry48(43),10473–10482 (2009).
    • 91  Kaplan W, Husler P, Klump H et al. Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag. Protein Sci.6(2),399–406 (1997).
    • 92  Wan M, Takagi M, Loh BN, Xu XZ, Imanaka T. Autoprocessing: an essential step for the activation of HIV-1 protease. Biochem. J.316(Pt 2),569–573 (1996).
    • 93  Louis JM, McDonald RA, Nashed NT et al. Autoprocessing of the HIV-1 protease using purified wild-type and mutated fusion proteins expressed at high levels in Escherichia coli.Eur. J. Biochem.199(2),361–369 (1991).
    • 94  Ullman EF, Kirakossian H, Singh S et al. Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proc. Natl Acad. Sci. USA91(12),5426–5430 (1994).
    • 95  Ullman EF, Kirakossian H, Switchenko AC et al. Luminescent oxygen channeling assay (LOCI): sensitive, broadly applicable homogeneous immunoassay method. Clin. Chem.42(9),1518–1526 (1996).
    • 96  Mcgiven JA, Sawyer J, Perrett LL et al. A new homogeneous assay for high throughput serological diagnosis of brucellosis in ruminants. J. Immunol. Methods337(1),7–15 (2008).
    • 97  Eglen RM, Reisine T, Roby P et al. The use of AlphaScreen technology in HTS: current status. Curr. Chem. Genomics1,2–10 (2008).
    • 98  Ishima R, Torchia DA, Louis JM. Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor. J. Biol. Chem.282(23),17190–17199 (2007).
    • 99  Bleiber G, Peters S, Martinez R et al. The central region of human immunodeficiency virus type 1 p6 protein (Gag residues S14-I31) is dispensable for the virus in vitro. J. Gen. Virol.85(Pt 4),921–927 (2004).
    • 100  Leiherer A, Ludwig C, Wagner R. Uncoupling human immunodeficiency virus type 1 Gag and Pol reading frames: role of the transframe protein p6* in viral replication. J. Virol.83(14),7210–7220 (2009).
    • 101  Lee SK, Potempa M, Swanstrom R. The choreography of HIV-1 proteolytic processing and virion assembly. J. Biol. Chem.287(49),40867–40874 (2012).
    • 102  Todd MJ, Semo N, Freire E. The structural stability of the HIV-1 protease. J. Mol. Biol.283(2),475–488 (1998).
    • 103  Hamacher K. Relating sequence evolution of HIV1-protease to its underlying molecular mechanics. Gene422(1–2),30–36 (2008).
    • 104  Rozzelle JE, Dauber DS, Todd S, Kelley R, Craik CS. Macromolecular inhibitors of HIV-1 protease. Characterization of designed heterodimers. J. Biol. Chem.275(10),7080–7086 (2000).
    • 105  Miklossy G, Tozser J, Kadas J et al. Novel macromolecular inhibitors of human immunodeficiency virus-1 protease. Protein Eng. Des. Sel.21(7),453–461 (2008).
    • 106  Camarasa MJ, Velazquez S, San-Felix A, Perez-Perez MJ, Gago F. Dimerization inhibitors of HIV-1 reverse transcriptase, protease and integrase: a single mode of inhibition for the three HIV enzymes? Antiviral Res.71(2–3),260–267 (2006).
    • 107  Davis DA, Tebbs IR, Daniels SI et al. Analysis and characterization of dimerization inhibition of a multi-drug-resistant human immunodeficiency virus type 1 protease using a novel size-exclusion chromatographic approach. Biochem. J.419(2),497–506 (2009).
    • 108  Karlstrom AR, Levine RL. Copper inhibits the protease from human immunodeficiency virus 1 by both cysteine-dependent and cysteine-independent mechanisms. Proc. Natl Acad. Sci. USA88(13),5552–5556 (1991).
    • 109  Karlstrom AR, Shames BD, Levine RL. Reactivity of cysteine residues in the protease from human immunodeficiency virus: identification of a surface-exposed region which affects enzyme function. Arch. Biochem. Biophys.304(1),163–169 (1993).
    • 110  Danielson H, Lindgren MT, Markgren PO, Nillroth U. Investigation of an allosteric site of HIV-1 proteinase involved in inhibition by Cu2+. Adv. Exp. Med. Biol.436,99–103 (1998).
    • 111  Davis DA, Dorsey K, Wingfield PT et al. Regulation of HIV-1 protease activity through cysteine modification. Biochemistry35(7),2482–2488 (1996).
    • 112  Davis DA, Newcomb FM, Starke DW et al. Thioltransferase (glutaredoxin) is detected within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro. J. Biol. Chem.272(41),25935–25940 (1997).
    • 113  Davis DA, Brown CA, Newcomb FM et al. Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation. J. Virol.77(5),3319–3325 (2003).
    • 114  Chang MW, Giffin MJ, Muller R et al. Identification of broad-based HIV-1 protease inhibitors from combinatorial libraries. Biochem. J.429(3),527–532 (2010).
    • 115  Freed EO. Viral late domains. J. Virol.76(10),4679–4687 (2002).
    • 116  Freed EO. HIV-1 and the host cell: an intimate association. Trends Microbiol.12(4),170–177 (2004).
    • 117  Morita E, Sundquist WI. Retrovirus budding. Annu. Rev. Cell Dev. Biol.20,395–425 (2004).
    • 118  Goff SP. Host factors exploited by retroviruses. Nat. Rev. Microbiol.5(4),253–263 (2007).
    • 119  Anderson J, Schiffer C, Lee SK, Swanstrom R. Viral protease inhibitors. Handbook Exp. Pharmacol.189(189),85–110 (2009).