We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/fmc.14.155

Over the past two decades, solvent mapping has emerged as a useful tool for identifying hot spots within binding sites on proteins for drug-like molecules and suggesting properties of potential binders. While the experimental technique requires solving multiple crystal structures of a protein in different solvents, computational solvent mapping allows for fast analysis of a protein for potential binding sites and their druggability. Recent advances in genomics, systems biology and interactomics provide a multitude of potential targets for drug development and solvent mapping can provide useful information to help prioritize targets for drug discovery projects. Here, we review various approaches to computational solvent mapping, highlight some key advances and provide our opinion on future directions in the field.

Papers of special note have been highlighted as: • of interest; •• of considerable interest

References

  • 1 Ciulli A, Williams G, Smith AG, Blundell TL, Abell C. Probing hot spots at protein-ligand binding sites: a fragment-based approach using biophysical methods. J. Med. Chem. 49(16), 4992–5000 (2006).
  • 2 Shuker SB, Hajduk PJ, Meadows RP, Fesik SW. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292), 1531–1534 (1996).
  • 3 Hajduk PJ, Huth JR, Fesik SW. Druggability indices for protein targets derived from NMR-based screening data. J. Med. Chem. 48(7), 2518–2525 (2005).
  • 4 Hajduk PJ, Huth JR, Tse C. Predicting protein druggability. Drug Discov. Today 10(23–24), 1675–1682 (2005).
  • 5 Ngan CH, Hall DR, Zerbe B, Grove LE, Kozakov D, Vajda S. FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics 28(2), 286–287 (2012).
  • 6 Michelotti EL, Moffett KK, Nguyen D et al. Two classes of p38α MAP kinase inhibitors having a common diphenylether core but exhibiting divergent binding modes. Bioorg. Med. Chem. Lett. 15(23), 5274–5279 (2005).
  • 7 Moffett K, Konteatis Z, Nguyen D et al. Discovery of a novel class of non-ATP site DFG-out state p38 inhibitors utilizing computationally assisted virtual fragment-based drug design (vFBDD). Bioorg. Med. Chem. Lett. 21(23), 7155–7165 (2011).
  • 8 Itzstein von M, Wu W-Y, Kok GB et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363(6428), 418–423 (1993).
  • 9 Itzstein von M, Dyason JC, Oliver SW et al. A study of the active site of influenza virus sialidase: an approach to the rational design of novel anti-influenza drugs. J. Med. Chem. 39(2), 388–391 (1996).
  • 10 Schubert CR, Stultz CM. The multi-copy simultaneous search methodology: a fundamental tool for structure-based drug design. J. Comput. Aided Mol. Des. 23(8), 475–489 (2009).• Thorough review of multiple copy simultaneous search and its applications.
  • 11 Joseph-McCarthy D, Alvarez JC. Automated generation of MCSS‐derived pharmacophoric DOCK site points for searching multiconformation databases. Proteins 51(2), 189–202 (2003).
  • 12 Joseph-McCarthy D, Tsang SK, Filman DJ, Hogle JM, Karplus M. Use of MCSS to design small targeted libraries: application to picornavirus ligands. J. Am. Chem. Soc. 123(51), 12758–12769 (2001).
  • 13 Silberstein M, Landon MR, Wang YE, Perl A, Vajda S. Computational methods for functional site identification suggest a substrate access channel in transaldolase. Genome Inform. 17(1), 13–22 (2006).
  • 14 Landon MR, Amaro RE, Baron R et al. Novel druggable hot spots in avian influenza neuraminidase h5n1 revealed by computational solvent mapping of a reduced and representative receptor ensemble. Chem. Biol. Drug Des. 71(2), 106–116 (2008).
  • 15 Sheu S-H, Kaya T, Waxman DJ, Vajda S. Exploring the binding site structure of the PPAR gamma ligand-binding domain by computational solvent mapping. Biochemistry 44(4), 1193–1209 (2005).
  • 16 Hall DR, Ngan CH, Zerbe B, Kozakov D, Vajda S. Hot spot analysis for driving the development of hits into leads in fragment-based drug discovery. J. Chem. Inf. Model 52(1), 199–209 (2011).
  • 17 Villar EA, Beglov D, Chennamadhavuni S et al. How proteins bind macrocycles. Nat. Chem. Biol. 10(9), 723–731 (2014).
  • 18 FTMap ftmap.bu.edu.
  • 19 FTFlex ftflex.bu.edu.
  • 20 National Biomedical Computation Resource nbcr.ucsd.edu.
  • 21 Druggability Suite for VMD prody.csb.pitt.edu/drugui/.
  • 22 Yu W, Lakkaraju SK, Raman EP, MacKerell AD Jr. Site-identification by Ligand Competitive Saturation (SILCS) assisted pharmacophore modeling. J. Comput. Aided Mol. Des. 28(5), 491–507 (2014).
  • 23 Tan YS, Śledź P, Lang S et al. Using ligand‐mapping simulations to design a ligand selectively targeting a cryptic surface pocket of polo‐like kinase 1. Angew. Chem. 124(40), 10225–10228 (2012).
  • 24 Tan YS, Spring DR, Abell C, Verma C. The use of chlorobenzene as a probe molecule in molecular dynamics simulations. J. Chem. Inf. Model 54(7), 1821–1827 (2014).
  • 25 Yang C-Y, Wang S. Hydrophobic binding hot spots of bcl-xl protein–protein interfaces by cosolvent molecular dynamics simulation. ACS Med. Chem. Lett. 2(4), 280–284 (2011).
  • 26 Allen KN, Bellamacina CR, Ding X et al. An experimental approach to mapping the binding surfaces of crystalline proteins. J. Phys. Chem. 100(7), 2605–2611 (1996).
  • 27 Mattos C, Ringe D. Locating and characterizing binding sites on proteins. Nat. Biotechnol. 14(5), 595–599 (1996).•• Description of multiple solvent crystal structures and important ideas and observations behind the method.
  • 28 Mattos C, Ringe D. Proteins in organic solvents. Curr. Opin. Struct. Biol. 11(6), 761–764 (2001).
  • 29 Ringe D, Mattos C. Analysis of the binding surfaces of proteins. Med. Res. Rev. 19(4), 321–331 (1999).
  • 30 English AC, Done SH, Caves LSD, Groom CR, Hubbard RE. Locating interaction sites on proteins: the crystal structure of thermolysin soaked in 2% to 100% isopropanol. Proteins 37(4), 628–640 (1999).
  • 31 Erlanson DA, McDowell RS, O'Brien T. Fragment-based drug discovery. J. Med. Chem. 47(14), 3463–3482 (2004).
  • 32 Nienaber VL, Richardson PL, Klighofer V, Bouska JJ, Giranda VL, Greer J. Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat. Biotechnol. 18(10), 1105–1108 (2000).
  • 33 Mattos C, Bellamacina CR, Peisach E et al. Multiple solvent crystal structures: probing binding sites, plasticity and hydration. J. Mol. Bio. 357(5), 1471–1482 (2006).
  • 34 Schwede T. Protein modeling: what happened to the "protein structure gap"? Structure 21(9), 1531–1540 (2013).
  • 35 Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 28(7), 849–857 (1985).• Initial description of GRID.
  • 36 Miranker A, Karplus M. Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11(1), 29–34 (1991).
  • 37 English AC, Groom CR, Hubbard RE. Experimental and computational mapping of the binding surface of a crystalline protein. Protein Eng. 14(1), 47–59 (2001).•• Key comparison of experimental solvent mapping methods to computational solvent mapping using GRID and multiple copy simultaneous search.
  • 38 Eisen MB, Wiley DC, Karplus M, Hubbard RE. HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19(3), 199–221 (1994).
  • 39 Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat. Rev. Drug Discov. 6(3), 211–219 (2007).
  • 40 Boobbyer DNA, Goodford PJ, McWhinnie PM, Wade RC. New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure. J. Med. Chem. 32(5), 1083–1094 (1989).
  • 41 Wade RC, Clark KJ, Goodford PJ. Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. 1. Ligand probe groups with the ability to form two hydrogen bonds. J. Med. Chem. 36(1), 140–147 (1993).
  • 42 Cruciani G, Carosati E, Wade RC, Baroni M. Characterization of protein-binding sites and ligands using molecular interaction fields. In: Comprehensive Medicinal Chemistry II. Taylor JB, Triggle DJ (Eds). London, Elsevier, 237–253 (2007).
  • 43 Carosati E, Sciabola S, Cruciani G. Hydrogen bonding interactions of covalently bonded fluorine atoms: from crystallographic data to a new angular function in the GRID force field. J. Med. Chem. 47(21), 5114–5125 (2004).
  • 44 Cruciani G, Goodford PJ. A search for specificity in DNA-drug interactions. J. Mol. Graph. 12, 116–129 (1994).
  • 45 Elber R, Karplus M. Enhanced sampling in molecular dynamics: use of the time-dependent Hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J. Am. Chem. Soc. 112(25), 9161–9175 (1990).
  • 46 Stultz CM, Karplus M. MCSS functionality maps for a flexible protein. Proteins 37(4), 512–529 (1999).
  • 47 Schechner M, Sirockin F, Stote RH, Dejaegere AP. Functionality maps of the ATP binding site of DNA gyrase B: generation of a consensus model of ligand binding. J. Med. Chem. 47(18), 4373–4390 (2004).
  • 48 Caflisch A. Computational combinatorial ligand design: application to human alpha-thrombin. J. Comput. Aided Mol. Des. 10(5), 372–396 (1996).
  • 49 Haider MK, Bertrand H-O, Hubbard RE. Predicting fragment binding poses using a combined MCSS MM-GBSA approach. J. Chem. Inf. Model 51(5), 1092–1105 (2011).
  • 50 Haider K, Huggins DJ. Combining solvent thermodynamic profiles with functionality maps of the Hsp90 binding site to predict the displacement of water molecules. J. Chem. Inf. Model 53(10), 2571–2586 (2013).
  • 51 Guarnieri F, Mezei M. Simulated annealing of chemical potential: a general procedure for locating bound waters. Application to the study of the differential hydration propensities of the major and minor grooves of DNA. J. Am. Chem. Soc. 118(35), 8493–8494 (1996).
  • 52 Guarnieri F, Sarnoff Corporation. Computational protein probing to identify binding sites. US6735530 (2004).
  • 53 Clark M, Guarnieri F, Shkurko I, Wiseman J. Grand canonical monte carlo simulation of ligand−protein binding. J. Chem. Inf. Model 46(1), 231–242 (2006).
  • 54 Kulp JL III, Kulp JL Jr, Pompliano DL, Guarnieri F. Diverse fragment clustering and water exclusion identify protein hot spots. J. Am. Chem. Soc. 133(28), 10740–10743 (2011).
  • 55 Dennis S, Camacho CJ, Vajda S. Exploring potential solvation sites of proteins by multistart local minimization. In: Optimization in Computational Chemistry and Molecular Biology. Springer, Boston, MA, USA, 243–261 (2000).
  • 56 Brenke R, Kozakov D, Chuang G-Y et al. Fragment-based identification of druggable “hot spots” of proteins using Fourier domain correlation techniques. Bioinformatics 25(5), 621–627 (2009).• Initial description of the FTMap/Atlas method and comparison to experimental solvent mapping and known ligands.
  • 57 Zhang C, Vasmatzis G, Cornette JL, DeLisi C. Determination of atomic desolvation energies from the structures of crystallized proteins. J. Mol. Bio. 267(3), 707–726 (1997).
  • 58 Kortvelyesi T, Dennis S, Silberstein M, Brown L III, Vajda S. Algorithms for computational solvent mapping of proteins. Proteins 51(3), 340–351 (2003).
  • 59 Kortvelyesi T, Silberstein M, Dennis S, Vajda S. Improved mapping of protein binding sites. J. Comput. Aided Mol. Des. 17(2–4), 173–186 (2003).
  • 60 Dennis S, Kortvelyesi T, Vajda S. Computational mapping identifies the binding sites of organic solvents on proteins. Proc. Natl Acad. Sci. USA 99(7), 4290–4295 (2002).
  • 61 Vakser IA, Matar OG, Lam CF. A systematic study of low-resolution recognition in protein–protein complexes. Proc. Natl Acad. Sci. USA 96(15), 8477–8482 (1999).
  • 62 Silberstein M, Dennis S, Brown L III, Kortvelyesi T, Clodfelter K, Vajda S. Identification of substrate binding sites in enzymes by computational solvent mapping. J. Mol. Bio. 332(5), 1095–1113 (2003).
  • 63 Silberstein M, Damborsky J, Vajda S. Exploring the binding sites of the haloalkane dehalogenase DhlA from Xanthobacter autotrophicus GJ10. Biochemistry 46(32), 9239–9249 (2007).
  • 64 Clodfelter KH, Waxman DJ, Vajda S. Computational solvent mapping reveals the importance of local conformational changes for broad substrate specificity in mammalian cytochromes P450. Biochemistry 45(31), 9393–9407 (2006).
  • 65 Kozakov D, Brenke R, Comeau SR, Vajda S. PIPER: an FFT‐based protein docking program with pairwise potentials. Proteins 65(2), 392–406 (2006).
  • 66 Chuang G-Y, Kozakov D, Brenke R, Comeau SR, Vajda S. DARS (Decoys As the Reference State) potentials for protein–protein docking. Biophys. J. 95(9), 4217–4227 (2008).
  • 67 Kozakov D, Hall DR, Chuang G-Y et al. Structural conservation of druggable hot spots in protein–protein interfaces. Proc. Natl Acad. Sci. USA 108(33), 13528–13533 (2011).
  • 68 Cencic R, Hall DR, Robert F et al. Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F. Proc. Natl Acad. Sci. USA 108(3), 1046–1051 (2011).
  • 69 Zerbe B, Hall DR, Vajda S, Whitty A, Kozakov D. Relationship between hot spot residues and ligand binding hot spots in protein–protein interfaces. J. Chem. Inf. Model 52(8), 2236–2244 (2012).
  • 70 Beglov D, Hall DR, Brenke R et al. Minimal ensembles of side chain conformers for modeling protein–protein interactions. Proteins 80(2), 591–601 (2012).
  • 71 Grove LE, Hall DR, Beglov D, Vajda S, Kozakov D. FTFlex: accounting for binding site flexibility to improve fragment-based identification of druggable hot spots. Bioinformatics 29(9), 1218–1219 (2013).
  • 72 Bohnuud T, Beglov D, Ngan CH et al. Computational mapping reveals dramatic effect of Hoogsteen breathing on duplex DNA reactivity with formaldehyde. Nucl. Acids Res. 40(16), 7644–7652 (2012).
  • 73 Beglov D, Roux B. An integral equation to describe the solvation of polar molecules in liquid water. J. Phys. Chem. B. 101(39), 7821–7826 (1997).
  • 74 Kovalenko A, Hirata F. Three-dimensional density profiles of water in contact with a solute of arbitrary shape: a RISM approach. Chem. Phys. Lett. 290(1–3), 237–244 (1998).
  • 75 Imai T, Oda K, Kovalenko A, Hirata F, Kidera A. Ligand mapping on protein surfaces by the 3D-RISM theory: toward computational fragment-based drug design. J. Am. Chem. Soc. 131(34), 12430–12440 (2009).
  • 76 Seco J, Luque FJ, Barril X. Binding site detection and druggability index from first principles. J. Med. Chem. 52(8), 2363–2371 (2009).
  • 77 Lexa KW, Carlson HA. Full protein flexibility is essential for proper hot-spot mapping. J. Am. Chem. Soc. 133(2), 200–202 (2010).
  • 78 Bakan A, Nevins N, Lakdawala AS, Bahar I. Druggability assessment of allosteric proteins by dynamics simulations in the presence of probe molecules. J. Chem. Theory Comput. 8(7), 2435–2447 (2012).
  • 79 Guvench O, MacKerell AD Jr. Computational fragment-based binding site identification by ligand competitive saturation. PLoS Comput. Biol. 5(7), e1000435 (2009).
  • 80 Raman EP, Yu W, Guvench O, MacKerell AD Jr. Reproducing crystal binding modes of ligand functional groups using site-identification by Ligand Competitive Saturation (SILCS) simulations. J. Chem. Inf. Model 51(4), 877–896 (2011).
  • 81 Raman EP, Yu W, Lakkaraju SK, MacKerell AD Jr. Inclusion of multiple fragment types in the site-identification by Ligand Competitive Saturation (SILCS) approach. J. Chem. Inf. Model 53(12), 3384–3398 (2013).
  • 82 Lakkaraju SK, Raman EP, Yu W, MacKerell AD Jr. Sampling of organic solutes in aqueous and heterogeneous environments using oscillating excess chemical potentials in grand canonical-like monte carlo-molecular dynamics simulations. J. Chem. Theory Comput. 10(6), 2281–2290 (2014).
  • 83 Lexa KW, Carlson HA. Improving protocols for protein mapping through proper comparison to crystallography data. J. Chem. Inf. Model 53(2), 391–402 (2013).
  • 84 Lexa KW, Goh GB, Carlson HA. Parameter choice matters: validating probe parameters for use in mixed-solvent simulations. J. Chem. Inf. Model 54(8), 2190–2199 (2014).
  • 85 Zhou H-X. From induced fit to conformational selection: a continuum of binding mechanism controlled by the timescale of conformational transitions. Biophys. J. 98(6), L15–L17 (2010).
  • 86 Csermely P, Palotai R, Nussinov R. Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem. Sci. 35(10), 539–546 (2010).
  • 87 McKay DB. Response. Science 257(5068), 412–413 (1992).
  • 88 Arkin MR, Randal M, DeLano WL et al. Binding of small molecules to an adaptive protein–protein interface. Proc. Natl Acad. Sci. USA 100(4), 1603–1608 (2003).
  • 89 Thanos CD, Randal M, Wells JA. Potent small-molecule binding to a dynamic hot spot on IL-2. J. Am. Chem. Soc. 125(50), 15280–15281 (2003).
  • 90 Hall DR, Grove LE, Yueh C, Ngan CH, Kozakov D, Vajda S. Robust identification of binding hot spots using continuum electrostatics: application to hen egg-white lysozyme. J. Am. Chem. Soc. 133(51), 20668–20671 (2011).• Comparison of MixMD, grand canonical monte carlo and ftmap for finding hot spots on hen egg-white lysozyme.
  • 91 Lee EF, Czabotar PE, Smith BJ et al. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ. 14(9), 1711–1713 (2007).
  • 92 Ortiz-Sanchez JM, Nichols SE, Sayyah J, Brown JH, McCammon JA, Grant BJ. Identification of potential small molecule binding pockets on Rho family GTPases. PLoS ONE 7(7), e40809 (2012).
  • 93 Labute P. LowModeMD–implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J. Chem. Inf. Model 50(5), 792–800 (2010).
  • 94 Damm KL, Carlson HA. Exploring experimental sources of multiple protein conformations in structure-based drug design. J. Am. Chem. Soc. 129(26), 8225–8235 (2007).
  • 95 Bohnuud T, Kozakov D, Vajda S. Evidence of conformational selection driving the formation of ligand binding sites in protein–protein interfaces. PLoS Comput. Biol. 10(10), e1003872 (2014).
  • 96 Ivetac A, McCammon JA. A molecular dynamics ensemble-based approach for the mapping of druggable binding sites. In: Computational Drug Discovery and Design. Baron R (Ed.). Springer New York, USA, 3–12 (2012).
  • 97 Durrant JD, Hall L, Swift RV, Landon MR, Schnaufer A, Amaro RE. Novel naphthalene-based inhibitors of trypanosoma brucei rna editing ligase 1. PLoS Negl. Trop. Dis. 4(8), doi:10.1371/journal.pntd.0000803 (2010) (Epub ahead of print).
  • 98 Wassman CD, Baronio R, Demir Ö et al. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat. Comms. 4(1407), doi:10.1038/ncomms2361 (2013) (Epub ahead of print).
  • 99 Park J, Czapla L, Amaro RE. Molecular simulations of aromatase reveal new insights into the mechanism of ligand binding. J. Chem. Inf. Model 53(8), 2047–2056 (2013).
  • 100 Ivetac A, McCammon JA. Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach. Chem. Biol. Drug Des. 76(3), 201–217 (2010).
  • 101 Grant BJ, Lukman S, Hocker HJ et al. Novel allosteric sites on Ras for lead generation. PLoS ONE 6(10), e25711 (2011).
  • 102 Votapka L, Amaro RE. Multistructural hot spot characterization with FTProd. Bioinformatics 29(3), 393–394 (2013).
  • 103 Carlson HA, Masukawa KM, McCammon JA. Method for including the dynamic fluctuations of a protein in computer-aided drug design. J. Phys. Chem. A. 103(49), 10213–10219 (1999).
  • 104 Johnson DK, Karanicolas J. Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Comput. Biol. 9(3), e1002951 (2013).
  • 105 Foster TJ, MacKerell AD Jr, Guvench O. Balancing target flexibility and target denaturation in computational fragment‐based inhibitor discovery. J. Comput. Chem. 33(23), 1880–1891 (2012).
  • 106 Chuang G-Y, Kozakov D, Brenke R, Beglov D, Guarnieri F, Vajda S. Binding hot spots and amantadine orientation in the influenza a virus M2 proton channel. Biophys. J. 97(10), 2846–2853 (2009).
  • 107 Stultz CM, Karplus M. Dynamic ligand design and combinatorial optimization: designing inhibitors to endothiapepsin. Proteins 40(2), 258–289 (2000).
  • 108 Miranker A, Karplus M. An automated method for dynamic ligand design. Proteins 23(4), 472–490 (1995).
  • 109 Lawrence MC, Davis PC. CLIX: a search algorithm for finding novel ligands capable of binding proteins of known three‐dimensional structure. Proteins 12(1), 31–41 (1992).
  • 110 Joseph-McCarthy D, Thomas BE, Belmarsh M, Moustakas D, Alvarez JC. Pharmacophore‐based molecular docking to account for ligand flexibility. Proteins 51(2), 172–188 (2003).
  • 111 Carlson HA, Masukawa KM, Rubins K et al. Developing a dynamic pharmacophore model for HIV-1 integrase. J. Med. Chem. 43(11), 2100–2114 (2000).
  • 112 Hawkins PCD, Skillman AG, Nicholls A. Comparison of shape-matching and docking as virtual screening tools. J. Med. Chem. 50(1), 74–82 (2007).
  • 113 McGann M. FRED pose prediction and virtual screening accuracy. J. Chem. Inf. Model 51(3), 578–596 (2011).
  • 114 Brooks BR, Brooks CL, MacKerell AD et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009).
  • 115 Ngan CH, Bohnuud T, Mottarella SE et al. FTMAP: extended protein mapping with user-selected probe molecules. Nucl. Acids Res. 40 w271–w275 (2012).
  • 116 Schaefer M, Karplus M. A comprehensive analytical treatment of continuum electrostatics. J. Phys. Chem. 100(5), 1578–1599 (1996).
  • 117 Yang C-Y, Wang S. Computational analysis of protein hot spots. ACS Med. Chem. Lett. 1(3), 125–129 (2010).