We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Polyamine–oligonucleotide conjugates: a promising direction for nucleic acid tools and therapeutics

    Mirjam Menzi

    Department of Chemistry & Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland

    ,
    Helen L Lightfoot

    Department of Chemistry & Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland

    &
    Jonathan Hall

    *Author for correspondence:

    E-mail Address: jonathan.hall@pharma.ethz.ch

    Department of Chemistry & Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland

    Published Online:https://doi.org/10.4155/fmc.15.90

    Chemical modification and/or the conjugation of small functional molecules to oligonucleotides have significantly improved their biological and biophysical properties, addressing issues such as poor cell penetration, stability to nucleases and low affinity for their targets. Here, the authors review the literature reporting on the biophysical, biochemical and biological properties of one particular class of modification – polyamine–oligonucleotide conjugates. Naturally derived and synthetic polyamines have been grafted onto a variety of oligonucleotide formats, including antisense oligonucleotides and siRNAs. In many cases this has had beneficial effects on their properties such as target hybridization, nuclease resistance, cellular uptake and activity. Polyamine–oligonucleotide conjugation, therefore, represents a promising direction for the further development of oligonucleotide-based therapeutics and tools.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem. Biol. 19(1), 60–71 (2012).
    • 2 Lightfoot HL, Hall J. Target mRNA inhibition by oligonucleotide drugs in man. Nucleic Acids Res. 40(21), 10585–10595 (2012).
    • 3 Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50(1), 259–293 (2010).
    • 4 Deleavey GF, Damha MJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19(8), 937–954 (2012).
    • 5 Lennox KA, Behlke MA. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 18(12), 1111–1120 (2011).
    • 6 Janssen HLA, Reesink HW, Lawitz EJ et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368(18), 1685–1694 (2013).
    • 7 Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836), 494–498 (2001).
    • 8 Yu RZ, Geary RS, Levin AA. Pharmacokinetics and pharmacodynamics of antisense oligonucleotides. In: Pharmacokinetics and Pharmacodynamics of Biotech Drugs: Principles and Case Studies in Drug Development. Meibohm B (Ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2006).
    • 9 Patwa A, Gissot A, Bestel I, Barthelemy P. Hybrid lipid oligonucleotide conjugates: synthesis, self-assemblies and biomedical applications. Chem. Soc. Rev. 40(12), 5844–5854 (2011).
    • 10 Raouane M, Desmaële D, Urbinati G, Massaad-Massade L, Couvreur P. Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconj. Chem. 23(6), 1091–1104 (2012).
    • 11 Schade M, Berti D, Huster D, Herrmann A, Arbuzova A. Lipophilic nucleic acids – a flexible construction kit for organization and functionalization of surfaces. Adv. Colloid Interface Sci. 208(0), 235–251 (2014).
    • 12 Marlin F, Simon P, Saison-Behmoaras T, Giovannangeli C. Delivery of oligonucleotides and analogues: the oligonucleotide conjugate-based approach. ChemBioChem 11(11), 1493–1500 (2010).
    • 13 Juliano RL, Ming X, Nakagawa O. Cellular uptake and intracellular trafficking of antisense and siRNA oligonucleotides. Bioconj. Chem. 23(2), 147–157 (2012).
    • 14 Ikeda Y, Nagasaki Y. Impacts of pegylation on the gene and oligonucleotide delivery system. J. Appl. Polym. Sci. 131(9), 40293 (2014).
    • 15 De Piédoue G, Andrieu-Soler C, Concordet JP et al. Targeted gene correction with 5′ acridine-oligonucleotide conjugates. Oligonucleotides 17(2), 258–263 (2007).
    • 16 Goodchild J. Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconj. Chem. 1(3), 165–187 (1990).
    • 17 Manoharan M. Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucleic Acid Drug Dev. 12(2), 103–128 (2002).
    • 18 Lönnberg H. Solid-phase synthesis of oligonucleotide conjugates useful for delivery and targeting of potential nucleic acid therapeutics. Bioconj. Chem. 20(6), 1065–1094 (2009).•• Review on chemical synthesis of oligonucleotide conjugates.
    • 19 Peacock H, Kannan A, Beal PA, Burrows CJ. Chemical modification of siRNA bases to probe and enhance RNA interference. J. Org. Chem. 76(18), 7295–7300 (2011).
    • 20 Juliano RL, Ming X, Nakagawa O. The chemistry and biology of oligonucleotide conjugates. Acc. Chem. Res. 45(7), 1067–1076 (2012).
    • 21 Singh Y, Murat P, Spinelli N, Defrancq E. Oligonucleotide conjugates: rationale, synthesis, and applications. In: From Nucleic Acids Sequences to Molecular Medicine. Erdmann VA, Barciszewski J (Eds). Springer Berlin, Heidelberg, Germany, 85–120 (2012).
    • 22 Winkler J. Oligonucleotide conjugates for therapeutic applications. Ther. Deliv. 4(7), 791–809 (2013).•• Describes conjugation reactions and conjugate pharmacokinetics.
    • 23 Lightfoot HL, Hall J. Endogenous polyamine function – the RNA perspective. Nucleic Acids Res. 42(18), 11275–11290 (2014).•• Summarizes manners in which polyamines directly alter the function/properties of endogenous RNA molecules. Discusses interactions between polyamines and a variety of cellular RNA species including tRNAs, mRNA, rRNA and ribozymes
    • 24 Iacomino G, Picariello G, D'Agostino L. DNA and nuclear aggregates of polyamines. Biochim. Biophys. Acta 1823(10), 1745–1755 (2012).
    • 25 Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 42(1), 39–51 (2010).
    • 26 Boussif O, Lezoualc'h F, Zanta MA et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92(16), 7297–7301 (1995).
    • 27 Pichon C, Billiet L, Midoux P. Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr. Opin. Biotechnol. 21(5), 640–645 (2010).
    • 28 Islam MA, Park TE, Singh B et al. Major degradable polycations as carriers for DNA and siRNA. J. Control. Release 193, 74–89 (2014).
    • 29 Noir R, Kotera M, Pons B, Remy JS, Behr JP. Oligonucleotide-oligospermine conjugates (zip nucleic acids): a convenient means of finely tuning hybridization temperatures. J. Am. Chem. Soc. 130, 13500–13505 (2008).
    • 30 Schmid N, Behr JP. Location of spermine and other polyamines on DNA as revealed by photoaffinity cleavage with poly(amino)benzenediazonium salts. Biochemistry 30(17), 4357–4361 (1991).
    • 31 Cooke LA, Frauendorf C, Gîlea MA, Holmes SC, Vyle JS. Solid-phase synthesis of terminal oligonucleotide–phosphoramidate conjugates. Tetrahedron Lett. 47(5), 719–722 (2006).
    • 32 Levina AS, Mikhaleva EA, Repkova MN, Zarytova VF. Synthesis of polyamine-containing oligonucleotides. Russ. J. Bioorg. Chem. 34(1), 80–86 (2008).
    • 33 Voirin E, Behr JP, Kotera M. Versatile synthesis of oligodeoxyribonucleotide–oligospermine conjugates. Nat. Protoc. 2(6), 1360–1367 (2007).
    • 34 Sund C, Puri N, Chattopadhyaya J. Synthesis of C-branched spermine tethered oligo-DNA and the thermal stability of the duplexes and triplexes. Tetrahedron 52(37), 12275–12290 (1996).
    • 35 Sund C, Puri N, Chattopadhyaya J. The chemistry of C-branched spermine tethered oligo-DNAs and their properties in forming duplexes and triplexes. Nucleos. Nucleot. 16(5–6), 755–760 (1997).
    • 36 Tung C-H, Breslauer KJ, Stein S. Polyamine-linked oligonucleotides for DNA triple helix formation. Nucleic Acids Res. 21(23), 5489–5494 (1993).
    • 37 Kubo T, Takamori K, Kanno K-I et al. Efficient cleavage of RNA, enhanced cellular uptake, and controlled intracellular localization of conjugate DNAzymes. Bioorg. Med. Chem. Lett. 15(1), 167–170 (2005).
    • 38 Pons B, Kotera M, Zuber G, Behr JP. Online synthesis of diblock cationic oligonucleotides for enhanced hybridization to their complementary sequence. ChemBioChem 7(8), 1173–1176 (2006).
    • 39 Moreau V, Voirin E, Paris C et al. Zip nucleic acids: New high affinity oligonucleotides as potent primers for PCR and reverse transcription. Nucleic Acids Res. 37(19), e130 (2009).
    • 40 Lin C-N, Lin W-H, Hung L-N, Wang S-Y, Chiou M-T. Comparison of viremia of type II porcine reproductive and respiratory syndrome virus in naturally infected pigs by zip nucleic acid probe-based real-time PCR. BMC Vet. Res. 9(1), 181 (2013).
    • 41 Begheldo M, Ditengou FA, Cimoli G et al. Whole-mount in situ detection of microRNAs on Arabidopsis tissues using zip nucleic acid probes. Anal. Biochem. 434(1), 60–66 (2013).
    • 42 Paris C, Moreau V, Deglane G, Voirin E, Erbacher P, Lenne-Samuel N. Zip nucleic acids are potent hydrolysis probes for quantitative PCR. Nucleic Acids Res. 38(7), e95 (2010).
    • 43 Gagnon KT, Watts JK, Pendergraff HM et al. Antisense and antigene inhibition of gene expression by cell-permeable oligonucleotide-oligospermine conjugates. J. Am. Chem. Soc. 133(22), 8404–8407 (2011).• Zip nucleic acids as antisense and antigene agents in cellular assays.
    • 44 Nothisen M, Kotera M, Voirin E, Remy J-S, Behr J-P. Cationic siRNAs provide carrier-free gene silencing in animal cells. J. Am. Chem. Soc. 131(49), 17730–17731 (2009).
    • 45 Paris C, Moreau V, Deglane G et al. Conjugating phosphospermines to siRNAs for improved stability in serum, intracellular delivery and RNAi-mediated gene silencing. Mol. Pharm. 9(12), 3464–3475 (2012).
    • 46 Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94(9), 4262–4266 (1997).
    • 47 Perche P, Nothisen M, Bagilet J, Behr J-P, Kotera M, Remy J-S. Cell-penetrating cationic siRNA and lipophilic derivatives efficient at nanomolar concentrations in the presence of serum and albumin. J. Controlled Release 170(1), 92–98 (2013).
    • 48 Haas J, Engels JW. A novel entry to 2′-O-aminopropyl modified nucleosides amenable for further modifications. Tetrahedron Lett. 48(50), 8891–8894 (2007).
    • 49 Bramsen JB, Laursen MB, Nielsen AF et al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res. 37(9), 2867–2881 (2009).
    • 50 Prakash TP, Manoharan M, Fraser AS, Kawasaki AM, Lesnik EA, Owens SR. Zwitterionic oligonucleotides with 2′-O-[3-(N,N-dimethylamino)propyl]-RNA modification: synthesis and properties. Tetrahedron Lett. 41(25), 4855–4859 (2000).
    • 51 Griffey RH, Monia BP, Cummins LL et al. 2′-O-aminopropyl ribonucleotides: a zwitterionic modification that enhances the exonuclease resistance and biological activity of antisense oligonucleotides. J. Med. Chem. 39(26), 5100–5109 (1996).
    • 52 Seio K, Tokugawa M, Kanamori T, Tsunoda H, Ohkubo A, Sekine M. Synthesis and properties of cationic 2′-O-[N-(4-aminobutyl)carbamoyl] modified oligonucleotides. Bioorg. Med. Chem. Lett. 22(7), 2470–2473 (2012).
    • 53 Noe CR, Winkler J, Urban E, Gilbert M, Haberhauer G, Brunar H. Zwitterionic oligonucleotides: a study on binding properties of 2′-O-aminohexyl modifications. Nucleos. Nucleot. Nucl. 24(8), 1167–1185 (2005).
    • 54 Teplova M, Wallace ST, Tereshko V et al. Structural origins of the exonuclease resistance of a zwitterionic RNA. Proc. Natl Adac. Sci. USA 96(25), 14240–14245 (1999).
    • 55 Prhavc M, Prakash TP, Minasov G, Cook PD, Egli M, Manoharan M. 2′-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] modified oligonucleotides: symbiosis of charge interaction factors and stereoelectronic effects. Org. Lett. 5(12), 2017–2020 (2003).
    • 56 Azéma L, Bathany K, Rayner B. 2′-O-appended polyamines that increase triple-helix-forming oligonucleotide affinity are selected by dynamic combinatorial chemistry. ChemBioChem 11(18), 2513–2516 (2010).
    • 57 Winkler J, Noe CR. Oligonucleotide charge reversal: 2′-O-lysylaminohexyl modified oligonucleotides. Nucleos. Nucleot. Nucl. 26(8–9), 939–942 (2007).
    • 58 Winkler J, Gilbert M, Kocourková A, Stessl M, Noe CR. 2′-O-lysylaminohexyl oligonucleotides: modifications for antisense and siRNA. ChemMedChem 3(1), 102–110 (2008).
    • 59 Winkler J, Saadat K, Diaz-Gavilan M, Urban E, Noe CR. Oligonucleotide-polyamine conjugates: influence of length and position of 2′-attached polyamines on duplex stability and antisense effect. Eur. J. Med. Chem. 44(2), 670–677 (2009).• Oligonucleotides with 2′-attached polyamines of different length in cellular assays
    • 60 Kanazaki M, Ueno Y, Shuto S, Matsuda A. Highly nuclease-resistant phosphodiester-type oligodeoxynucleotides containing 4′α-C-aminoalkylthymidines form thermally stable duplexes with DNA and RNA. A candidate for potent antisense molecules. J. Am. Chem. Soc. 122(11), 2422–2432 (2000).
    • 61 Winkler J, Giessrigl B, Novak C, Urban E, Noe C. 2′-O-lysylaminohexyladenosine modified oligonucleotides. Monatsh. Chem. 141(7), 809–815 (2010).
    • 62 Egli M. Structural aspects of nucleic acid analogs and antisense oligonucleotides. Angew. Chem. Int. Ed. Engl. 35(17), 1894–1909 (1996).
    • 63 Martin P. Ein neuer Zugang zu 2′-O-Alkylribonucleosiden und eigenschaften deren oligonucleotide. Helv. Chim. Acta 78(2), 486–504 (1995).
    • 64 Herdewijn P. Heterocyclic modifications of oligonucleotides and antisense technology. Antisense Nucleic Acid Drug Dev. 10(4), 297–310 (2000).
    • 65 Kohgo S, Shinozuka K, Ozaki H, Sawai H. Synthesis of a novel 2′-deoxyuridine derivative bearing a cyanomethoxycarbonylmethyl group at C-5 position and its use for versatile post-synthetic functionalization of oligodeoxyribonucleotides. Tetrahedron Lett. 39(23), 4067–4070 (1998).
    • 66 Sawai H, Nakamura A, Sekiguchi S, Yumoto K, Endoh M, Ozaki H. Efficient synthesis of new 5-substituted uracil nucleosides useful for linker arm incorporation. J. Chem. Soc., Chem. Commun. (17), 1997–1998 (1994).
    • 67 Shinozuka K, Umeda A, Aoki T, Sawai H. Facile post-synthetic derivatization of oligodeoxynucleotide containing 5-methoxycarbonylmethyl-2′-deoxyuridine. Nucleos. Nucleot. 17(1–3), 291–300 (1998).
    • 68 Heystek LE, Hui-Qiang Z, Dande P, Gold B. Control over the localization of positive charge in DNA: the effect on duplex DNA and RNA stability. J. Am. Chem. Soc. 120, 12165–12166 (1998).
    • 69 Takeda T, Ikeda K, Mizuno Y, Ueda T. Synthesis and properties of deoxyoligonucleotides containing putrescinylthymine: nucleosides and nucleotides. Chem. Pharm. Bull. 35(9), 3558–3567 (1987).
    • 70 Haginoya N, Ono A, Nomura Y, Ueno Y, Matsuda A. Nucleosides and nucleotides. 160. Synthesis of oligodeoxyribonucleotides containing 5-(N-aminoalkyl)carbamoyl-2′-deoxyuridines by a new postsynthetic modification method and their thermal stability and nuclease-resistance properties. Bioconj. Chem. 8(3), 271–280 (1997).
    • 71 Ono A, Haginoya N, Kiyokawa M, Minakawa N, Matsuda A. Nucleosides and nucleotides. 127. A novel and convenient post-synthetic modification method for the synthesis of oligodeoxyribonucleotides carrying amino linkers at the 5-position of 2′-deoxyuridine. Bioorg. Med. Chem. Lett. 4(2), 361–366 (1994).
    • 72 Ueno Y, Kumagai I, Haginoya N, Matsuda A. Effects of 5-(N-aminohexyl)carbamoyl-2′-deoxyuridine on endonuclease stability and the ability of oligodeoxynucleotide to activate RNase H. Nucleic Acids Res. 25(19), 3777–3782 (1997).
    • 73 Hashimoto H, Nelson MG, Switzer C. Zwitterionic DNA. J. Am. Chem. Soc. 115(16), 7128–7134 (1993).
    • 74 Ozaki H, Nakamura A, Arai M, Endo M, Sawai H. Novel C5-substituted 2′-deoxyuridine derivatives bearing amino-linker arms: synthesis, incorporation into oligodeoxyribonucleotides, and their hybridization properties. Bull. Chem. Soc. Jpn. 68(7), 1981–1987 (1995).
    • 75 Li Z, Huang L, Dande P, Gold B, Stone MP. Structure of a tethered cationic 3-aminopropyl chain incorporated into an oligodeoxynucleotide: evidence for 3′-orientation in the major groove accompanied by DNA bending. J. Am. Chem. Soc. 124(29), 8553–8560 (2002).
    • 76 Nara H, Ono A, Matsuda A. Nucleosides and nucleotides. 135. DNA duplex and triplex formation and resistance to nucleolytic degradation of oligodeoxynucleotides containing syn-norspermidine at the 5-position of 2′-deoxyuridine. Bioconj. Chem. 6(1), 54–61 (1995).
    • 77 Ueno Y, Mikawa M, Matsuda A. Nucleosides and nucleotides. 170. Synthesis and properties of oligodeoxynucleotides containing 5-[N-[2-[N,N-bis(2-aminoethyl)-amino]ethyl]carbamoyl]-2′-deoxyuridine and 5-[N-[3-[N,N-bis(3-aminopropyl)amino]propyl]carbamoyl]-2′-deoxyuridine. Bioconj. Chem. 9(1), 33–39 (1998).
    • 78 Ito T, Ueno Y, Komatsu Y, Matsuda A. Synthesis, thermal stability and resistance to enzymatic hydrolysis of the oligonucleotides containing 5‐(N‐aminohexyl)carbamoyl‐2′‐O‐methyluridines. Nucleic Acids Res. 31(10), 2514–2523 (2003).
    • 79 Juan ECM, Kondo J, Kurihara T et al. Crystal structures of DNA:DNA and DNA:RNA duplexes containing 5-(N-aminohexyl)carbamoyl-modified uracils reveal the basis for properties as antigene and antisense molecules. Nucleic Acids Res. 35(6), 1969–1977 (2007).
    • 80 Ozaki H, Mine M, Shinozuka K, Sawai H. Effect of imino group of a linker arm at the C5 position of a pyrimidine nucleoside on the thermal stabilities of DNA/DNA and DNA/RNA duplexes. Nucleos. Nucleot. Nucl. 23(1–2), 339–346 (2004).
    • 81 Matsukura M, Okamoto T, Miike T, Sawai H, Shinozuka K. Selective binding of trisamine-modified phosphorothioate antisense DNA to target mRNA improves antisense activity and reduces toxicity. Biochem. Biophys. Res. Commun. 293(5), 1341–1347 (2002).
    • 82 Shinozuka K, Matsukura M, Okamoto T, Sawai H. Synthesis and anti-HIV property of novel oligo-DNA phosphorothioate analogs bearing an intercalative moiety and/or polyamine residues. Nucleos. Nucleot. 17(9–11), 2081–2084 (1998).
    • 83 Masud MM, Masuda T, Inoue Y, Kuwahara M, Sawai H, Ozaki H. Synthesis of modified siRNA bearing C-5 polyamine-substituted pyrimidine nucleoside in their 3′-overhang regions and its RNAi activity. Bioorg. Med. Chem. Lett. 21(2), 715–717 (2011).
    • 84 Moriguchi T, Sakai H, Suzuki H, Shinozuka K. Spermine moiety attached to the C-5 position of deoxyuridine enhances the duplex stability of the phosphorothioate DNA/complementary DNA and shows the susceptibility of the substrate to RNase H. Chem. Pharm. Bull. (Tokyo) 56(9), 1259–1263 (2008).
    • 85 Sakai H, Moriguchi T, Suzuki H, Matsukura M, Shinozuka K. Investigation of antisense DNA having C-5 polyamine substituted 2′-deoxyuridine derivative. Nucleic Acids Symp. Ser. 1(1), 127–128 (2001).
    • 86 Marsh AJ, Williams DM, Grasby JA. The synthesis and properties of oligoribonucleotide-spermine conjugates. Org. Biomol. Chem. 2(14), 2103–2112 (2004).
    • 87 Markiewicz WT, Godzina P, Markiewicz M. Synthesis of polyaminooligonucleotides and their combinatorial libraries. Nucleos. Nucleot. 18(6–7), 1449–1454 (1999).
    • 88 Brzezinska J, Gdaniec Z, Popenda L, Markiewicz WT. Polyaminooligonucleotide: NMR structure of duplex DNA containing a nucleoside with spermine residue, N-[4,9,13-triazatridecan-1-yl]-2′-deoxycytidine. Biochim. Biophys. Acta 1840(3), 1163–1170 (2014).• Nuclear magnetic resonance (NMR) structure of a C-4 spermine modification lying in the major groove.
    • 89 Prakash TP, Barawkar DA, Vaijayanti K, Ganesh KN. Synthesis of site-specific oligonucleotide–polyamine conjugates. Bioorg. Med. Chem. Lett. 4(14), 1733–1738 (1994).
    • 90 Godzina P, Adrych-Rozek K, Markiewicz WT. Synthetic oligonucleotide combinatorial libraries. 3. Synthesis of polyamevonucleosides. Nucleos. Nucleot. 18(11–12), 2397–2414 (1999).
    • 91 Potier P, Adib A, Kochkine A, Huc I, Behr J-P. Synthesis of oligonucleotides bearing polyamine groups for recognition of DNA sequences. Nucleos. Nucleot. 18(6–7), 1467–1468 (1999).
    • 92 Schmid N, Behr J-P. Recognition of DNA sequences by strand replacement with polyamino-oligonucleotides. Tetrahedron Lett. 36(9), 1447–1450 (1995).
    • 93 Potier P, Abdenaji A, Behr JP. Synthesis and hybridization properties of oligonucleotides containing polyamines at the C-2 position of purines: a presynthetic approach for the incorporation of spermine into oligodeoxynucleotides containing 2-(4,9,13-triazatridecyl)-2′-deoxyguanosine. Chem. Eur. J. 6(22), 4188–4194 (2000).
    • 94 Diaz AR, Eritja R, Garcia RG. Synthesis of oligodeoxynucleotides containing 2-substituted guanine derivatives using 2-fluoro-2′-deoxyinosine as common nucleoside precursor. Nucleos. Nucleot. 16(10–11), 2035–2051 (1997).
    • 95 Markiewicz WT, Astriab A, Godzina P, Markiewicz M. Synthetic oligonucleotide combinatorial libraries and their applications. Farmaco 55(3), 174–177 (2000).
    • 96 Strauss JK, Roberts C, Nelson MG, Switzer C, Maher LJ. DNA bending by hexamethylene-tethered ammonium ions. Proc. Natl Acad. Sci. USA 93(18), 9515–9520 (1996).
    • 97 Hardwidge PR, Lee D-K, Prakash TP et al. DNA bending by asymmetrically tethered cations: influence of tether flexibility. Chem. Biol. 8(10), 967–980 (2001).
    • 98 Soto AM, Kankia BI, Dande P, Gold B, Marky LA. Incorporation of a cationic aminopropyl chain in DNA hairpins: thermodynamics and hydration. Nucleic Acids Res. 29(17), 3638–3645 (2001).
    • 99 Markiewicz WT, Godzina P, Markiewicz M, Astriab A. Synthesis of a polyaminooligonucleotide combinatorial library. Nucleos. Nucleot. 17(9–11), 1871–1880 (1998).
    • 100 Strauss JK, Prakash TP, Roberts C, Switzer C, Maher LJ. DNA bending by a phantom protein. Chem. Biol. 3(8), 671–678 (1996).
    • 101 Cohen SS, McCormick FP. Polyamines and virus multiplication. In: Advances in Virus Research. Lauffer MA, Bang FB, Maramorosch K, Smith KM (Eds). Academic Press, 331–387 (1979).
    • 102 Kropinski AMB, Bose RJ, Warren RaJ. 5-(4-aminobutylaminomethyl)uracil, an unusual pyrimidine from the dioxyribonucleic acid of bacteriophage phiW-14. Biochemistry 12(1), 151–157 (1973).
    • 103 Neuhard J, Maltman KL, Warren RA. Bacteriophage phiW-14-infected pseudomonas acidovorans synthesizes hydroxymethyldeoxyuridine triphosphate. J. Virol. 34(2), 347–353 (1980).
    • 104 Suck D. DNA recognition by DNase I. J. Mol. Recognit. 7(2), 65–70 (1994).