We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Bioproduction of gold nanoparticles for photothermal therapy

    Catarina Oliveira Silva

    CBiOS, Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749–024 Lisboa, Portugal

    ,
    Patrícia Rijo

    CBiOS, Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749–024 Lisboa, Portugal

    iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Portugal

    ,
    Jesús Molpeceres

    Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Campus Universitario, Spain

    ,
    Lia Ascensão

    CESAM, Universidade de Lisboa, Faculdade de Ciências, Portugal

    ,
    Amílcar Roberto

    CBiOS, Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749–024 Lisboa, Portugal

    ,
    Ana Sofia Fernandes

    CBiOS, Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749–024 Lisboa, Portugal

    iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Portugal

    ,
    Ricardo Gomes

    Laboratório de Óptica, Lasers e Sistemas, Faculdade de Ciências, Universidade de Lisboa, Portugal

    ,
    João M Pinto Coelho

    Laboratório de Óptica, Lasers e Sistemas, Faculdade de Ciências, Universidade de Lisboa, Portugal

    Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749–016, Lisboa, Portugal

    ,
    Ana Gabriel

    LIBPhys-UNL, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

    ,
    Pedro Vieira

    LIBPhys-UNL, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

    &
    Catarina Pinto Reis

    *Author for correspondence:

    E-mail Address: catarina.reis@ulusofona.pt

    CBiOS, Research Center for Biosciences & Health Technologies, Universidade Lusófona, Campo Grande 376, 1749–024 Lisboa, Portugal

    Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749–016, Lisboa, Portugal

    Published Online:https://doi.org/10.4155/tde-2015-0011

    Background: Photothermal response of plasmonic nanomaterials can be utilized for a number of therapeutic applications such as the ablation of solid tumors. Methods & results: Gold nanoparticles were prepared using different methods. After optimization, we applied an aqueous plant extract as the reducing and capping agent of gold and maximized the near-infrared absorption (650–900 nm). Resultant nanoparticles showed good biocompatibility when tested in vitro in human keratinocytes and yeast Saccharomyces cerevisiae. Gold nanoparticles were easily activated by controlled temperature with an ultrasonic water bath and application of a pulsed laser. Conclusion: These gold nanoparticles can be synthesized with reproducibility, modified with seemingly limitless chemical functional groups, with adequate controlled optical properties for laser phototherapy of tumors and targeted drug delivery.

    References

    • 1 Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA. Cancer J. Clin. 64(1), 9–29 (2014).
    • 2 Huang X, El-Sayed MA. Plasmonic photo-thermal therapy (PPTT). Alexandria J. Med. 47(1), 1–9 (2011).
    • 3 Jabeen F, Najam-ul-Haq M, Javeed R, Huck CW, Bonn GK. Au-nanomaterials as a superior choice for near-infrared photothermal therapy. Molecules 19(12), 20580–20593 (2014).
    • 4 Shao J, Griffin RJ, Galanzha EI et al. Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics. Sci. Rep. 3 (2013).
    • 5 Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Phys. Chem. B. 105, 4065–4067 (2001).
    • 6 Faramarzi MA, Sadighi A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv. Colloid Interface Sci. 189, 1–20 (2013).
    • 7 Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ. The greener synthesis of nanoparticles. Trends Biotechnol. 31(4), 240–248 (2013).
    • 8 Fazaludeen MF, Manickam C, Ashankyty IMA, Ahmed MQ, Beg QZ. Synthesis and characterizations of gold nanoparticles by Justicia gendarussa Burm F leaf extract. J. Microbiol. Biotechnol. Res. 2(1), 23 (2012).
    • 9 Ajitha B, Ashok Kumar Reddy Y, Sreedhara Reddy P. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 128, 257–262 (2014).
    • 10 Rijo P, Batista M, Matos M, Rocha H, Jesus S, Simões MF. Screening of antioxidant and antimicrobial activities on Plectranthus spp. extracts. Biomed. Biopharm. Res. 9(2), 225–235 (2013).
    • 11 Noruzi M, Zare D, Davoodi D. A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 94, 84–88 (2012).
    • 12 Sudip M, Sushma V, Sujata P et al. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology 23(45), 455103 (2012).
    • 13 Sun I-C, Na JH, Jeong SY et al. Biocompatible glycol chitosan- coated gold nanoparticles for tumor-targeting CT imaging. Pharm Res. 31(6), 1418–1425 (2013).
    • 14 Zhang G, Sun X, Jasinski J, Patel D, Gobin AM. Gold/chitosan nanocomposites with specific near infrared absorption for photothermal therapy applications. J. Nanomater. Article ID: 853416 (2012).
    • 15 Boca SC, Potara M, Gabudean A-M, Juhem A, Baldeck PL, Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett. 311, 131–140 (2011).
    • 16 Azzazy Hassan ME, Mansour Mai MH, Samir Tamer M, Franco R. Gold nanoparticles in the clinical laboratory: principles of preparation and applications. Clin. Chem. Lab. Med. 50(2), 193 (2012).
    • 17 Hirsch LR, Stafford RJ, Bankson JA et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. 100(23), 13549–13554 (2003).
    • 18 Miwa M, Shikayama T. ICG fluorescence imaging and its medical applications. In: International Conference of Optical Instrument and Technology. 7160(Session 4). International Society for Optics and Photonics, 71600K–71600K–9 (2008).
    • 19 Jacques SL. Optical properties of biological tissues: a review. Phys. Med. Biol. 58(11), R37 (2013).
    • 20 Kennedy LC, Bickford LR, Lewinski NA et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2), 169–183 (2011).
    • 21 Fazal S, Jayasree A, Sasidharan S, Koyakutty M, Nair SV, Menon D. Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl. Mater. Interfaces 6(11), 8080–8089 (2014).
    • 22 Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett. 463(1–3), 145–149 (2008).
    • 23 Lu S, Xia D, Huang G, Jing H, Wang Y, Gu H. Concentration effect of gold nanoparticles on proliferation of keratinocytes. Colloids Surf. B Biointerfaces 81(2), 406–411 (2010).
    • 24 Kwolek-Mirek M, Zadrąg-Tęcza R, Bednarska S, Bartosz G. Yeast Saccharomyces cerevisiae devoid of Cu, Zn-superoxide dismutase as a cellular model to study acrylamide toxicity. Toxicol. In Vitro 25(2), 573–579 (2011).
    • 25 Roberto A, Caetano PP. A high-troughput screening method for general cytotoxicity part I Chemical toxcity. Rev Lusófona Ciências e Tecnol. da Saúde. 2(2), 95–100 (2005).
    • 26 Grabar KC, Freeman RG, Hommer MB, Natan MJ. Preparation and characterization of Au colloid monolayers. Anal. Chem. 67(4), 735–743 (1995).
    • 27 Bouvrette P, Liu Y, Luong J, Male K. Process for producing gold nanoparticles. US Patent 20050153071 (2005).
    • 28 Khan Z, Singh T, Hussain JI, Hashmi AA. Au(III)–CTAB reduction by ascorbic acid: Preparation and characterization of gold nanoparticles. Colloids Surfaces B Biointerfaces 104(0), 11–17 (2013).
    • 29 Huang H-C, Yang Y, Nanda A, Koria P, Rege K. Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices. Nanomedicine 6(3), 459–473 (2011).
    • 30 Rijo P, Falé PL, Serralheiro ML, Simões MF, Gomes A, Reis C. Optimization of medicinal plant extraction methods and their encapsulation through extrusion technology. Measurement 58(0), 249–255 (2014).
    • 31 Murphy CJ, Sau TK, Gole AM et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B. 109(29), 13857–13870 (2005).
    • 32 Pustovalov VK, Pustovalov VK, Astafyeva LG, Zharov VP. Dependences of optical properties of spherical two-layered nanoparticles on parameters of gold core and material shell. J. Quant. Spectrosc. Radiat. Transf. (2013).
    • 33 El-Brolossy TA, Abdallah T, Mohamed MB et al. Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by Photoacoustic technique. Eur. Phys. J. 153(1), 361–364 (2008).
    • 34 Murphy CJ, Thompson LB, Chernak DJ et al. Gold nanorod crystal growth: From seed-mediated synthesis to nanoscale sculpting. Curr. Opin. Colloid Interface Sci. 16(2), 128–134 (2011).
    • 35 Iqbal M, Chung Y-I, Tae G. An enhanced synthesis of gold nanorods by the addition of Pluronic (F-127) via a seed mediated growth process. J. Mater. Chem. 17(4), 335–342 (2007).
    • 36 Khlebtsov NG. Determination of size and concentration of gold nanoparticles from extinction spectra. Anal. Chem. 80(17), 6620–6625 (2008).
    • 37 Khan S, Alam F, Azam A, Khan AU. Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int. J. Nano. 7(0), 3245–3257 (2012).
    • 38 Roosta M, Ghaedi M, Daneshfar A, Sahraei R, Asghari A. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. Ultrason. Sonochemistry 21(1), 242–252 (2014).
    • 39 Rijo P, Matias D, Fernandes A, Simões M, Nicolai M, Reis C. Antimicrobial plant extracts encapsulated into polymeric beads for potential application on the skin. Polymers (Basel) 6(2), 479–490 (2014).
    • 40 de Oliveira CA, Peres DD, Graziola F et al. Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters. Eur. J. Pharm. Sci. 81, 1–9 (2015).
    • 41 Reis CP, Martinho N, Rosado C, Fernandes AS, Roberto A. Design of polymeric nanoparticles and its applications as drug delivery systems for acne treatment. Drug Dev. Ind. Pharm. 40(3), 409–417 (2014).
    • 42 Sabnis RW. Handbook of Biological Dyes and Stains: Synthesis and Industrial Applications. John Wiley & Sons, Inc., Hoboken, NJ, USA.
    • 43 Murphy CJ, Gole AM, Stone JW et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41(12), 1721–1730 (2008).
    • 44 Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 64(2), 190–199 (2012).
    • 45 Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T. Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev. 2 (2011).
    • 46 Philip D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E. 42, 1417–1424 (2010).
    • 47 Khalil MMH, Ismail EH, El-Magdoub F. Biosynthesis of Au nanoparticles using olive leaf extract. Arab. J. Chem. 5, 431–437 (2012).
    • 48 Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 64, 200–216 (2012).
    • 49 Carbó-Argibay E, Rodríguez-González B, Pacifico J, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. Chemical sharpening of gold nanorods: the rod-to-octahedron transition. Angew. Chemie Int. Ed. 46(47), 8983–8987 (2007).
    • 50 Park Y-S, Hong YN, Weyers A, Kim YS, Linhardt RJ. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol. 5(3), 69–78 (2011).
    • 51 Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31(2), 346–356 (2013).
    • 52 Matthews JR, Payne CM, Hafner JH. Analysis of phospholipid bilayers on gold nanorods by plasmon resonance sensing and surface-enhanced raman scattering. Langmuir 31(36), 9893–9900 (2015).
    • 53 Singh M, Harris-Birtill DCC, Markar SR, Hanna GB, Elson DS. Application of gold nanoparticles for gastrointestinal cancer theranostics: a systematic review. Nanomed. Nanotechnol. Biol. Med. 11(8), 2083–2098 (2015).
    • 54 Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23(3), 217–228 (2008).
    • 55 Huang J, Jackson KS, Murphy CJ. Polyelectrolyte wrapping layers control rates of photothermal molecular release from gold nanorods. Nano Lett. 12(6), 2982–2987 (2012).
    • 56 Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanoparticle Res. 12(7), 2313–2333 (2010).
    • 57 Ong KJ, MacCormack TJ, Clark RJ et al. Widespread nanoparticle-assay interference: implications for nanotoxicity testing. PLoS One 9(3), e90650 (2014).
    • 58 Wohlrab J, Wohlrab D, Neubert RHH. Comparison of noncross-linked and cross-linked hyaluronic acid with regard to efficacy of the proliferative activity of cutaneous fibroblasts and keratinocytes in vitro. J. Cosmet. Dermatol. 12(1), 36–40 (2013).
    • 59 Zhang Y, Xu D, Li W, Yu J, Chen Y. Effect of size, shape, and surface modification on cytotoxicity of gold nanoparticles to human HEp-2 and canine MDCK cells. J. Nanomater. 2012, 7 (2012).
    • 60 Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of gold nanorods:molecular origin of cytotoxicity and surface effects. Small 5(6), 701–708 (2009).
    • 61 Correia M, Thiagarajan V, Coutinho I, Gajula GP, Petersen SB, Neves-Petersen MT. Modulating the structure of EGFR with UV light: new possibilities in cancer therapy. PLoS One 9(11), e111617 (2014).
    • 62 Boone B, Jacobs K, Ferdinande L et al. EGFR in melanoma: clinical significance and potential therapeutic target. J. Cutan. Pathol. 38(6), 492–502 (2011).
    • 63 Bracher A, Cardona AS, Tauber S et al. Epidermal growth factor facilitates melanoma lymph node metastasis by influencing tumor lymphangiogenesis. J. Invest. Dermatol. 133(1), 230–238 (2013).