We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/tde.10.22

Locoregional therapies, such as surgery and intratumoral chemotherapy, do not effectively treat infiltrative primary CNS solid tumors and multifocal metastatic solid tumor disease of the CNS. It also remains a challenge to treat such CNS malignant solid tumor disease with systemic chemotherapies, although these lipid-soluble small-molecule drugs demonstrate potent cytotoxicity in vitro. Even in the setting of a ‘normalized’ tumor microenvironment, small-molecule drugs do not accumulate to effective concentrations in the vast majority of tumor cells, which is due to the fact that small-molecule drugs have short blood half-lives. It has been recently shown that drug-conjugated spherical lipid-insoluble nanoparticles within the 7–10 nm size range can deliver therapeutic concentrations of drug fraction directly into individual tumor cells following systemic administration, since these functionalized particles maintain peak blood concentrations for several hours and are smaller than the physiologic upper limit of pore size in the VEGF-derived blood capillaries of solid tumors, which is approximately 12 nm. In this article, the physiologic and ultrastructural basis of this novel translational approach for the treatment of CNS, as well as non-CNS, solid cancers is reviewed.

Papers of special note have been highlighted as: ▪ of interest ▪ of considerable interest

Bibliography

  • Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol.114(2),97 (2007).
  • Patchell RA, Tibbs PA, Walsh JW et al. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med.322(8),494–500 (1990).
  • Weil RJ, Lonser RR, DeVroom HL, Wanebo JE, Oldfield EH. Surgical management of brainstem hemangioblastomas in patients with von Hippel-Lindau disease. J. Neurosurg.98(1 Suppl.),95–105 (2003).
  • Moss JM, Choi CY, Adler JR Jr, Soltys SG, Gibbs IC, Chang SD. Stereotactic radiosurgical treatment of cranial and spinal hemangioblastomas. Neurosurgery65(1),79–85 (2009).
  • Wohrer A, Waldhor T, Heinzl H et al. The Austrian brain tumour registry: a cooperative way to establish a population-based brain tumour registry. J. Neurooncol.95(3),401–411 (2009).
  • Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol.22(14),2865–2872 (2004).
  • Eichler AF, Plotkin SR. Brain metastases. Curr. Treat. Options Neurol. 10(4),308–314 (2008).
  • Brown M, Schrot R, Bauer K, LeTendre D. Incidence of first primary central nervous system tumors in California, 2001–2005. J. Neurooncol.94(2),263–273 (2009).
  • Melisko ME, Glantz M, Rugo HS. New challenges and opportunities in the management of brain metastases in patients with ErbB2-positive metastatic breast cancer. Nat. Clin. Pract. Oncol.6(1),25 (2009).
  • 10  Ranjan T, Abrey LE. Current management of metastatic brain disease. Neurotherapeutics6(3),598 (2009).
  • 11  Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J. Neurooncol.70(2),217–228 (2004).▪ Provides insight into the molecular pathways involved in glioma cell migration, which could be potential future therapeutic targets.
  • 12  Laws ER, Parney IF, Huang W et al. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the glioma outcomes project. J. Neurosurg.99(3),467–473 (2003).
  • 13  Bidros DS, Liu JK, Vogelbaum MA. Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol.6(1),117–125 (2010).
  • 14  Hart MG, Grant R, Garside R, Rogers G, Somerville M, Stein K. Chemotherapeutic wafers for high grade glioma. In: Cochrane Database of Systematic Reviews. John Wiley and Sons, Ltd, NY, USA (2010).
  • 15  Debinski W, Tatter SB. Convection-enhanced delivery for the treatment of brain tumors. Expert Rev. Neurother.9(10),1519–1527 (2009).
  • 16  Brem SS, Bierman PJ, Black P et al. Central nervous system cancers: clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw.6(5),456–504 (2008).
  • 17  Anderson E, Grant R, Lewis SC, Whittle IR. Randomized Phase III controlled trials of therapy in malignant glioma: where are we after 40 years? British J. Neurosurg.22(3),339–349 (2008).▪ A meta-analysis of malignant glioma patient outcome data from 44 clinical trials between 1966 and 2004, which draws attention to the fact that there has been relatively little improvement in patient outcomes over the years.
  • 18  Muldoon LL, Soussain C, Jahnke K et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J. Clin. Oncol.25(16),2295–2305 (2007).▪▪ Highlights the historical challenge of effective drug delivery into the CNS across blood–brain, blood–tumor, and blood–cerebrospinal fluid barriers, and highlights the need for the development of innovative treatment and drug delivery approaches into CNS solid malignancies.
  • 19  Hildebrand J, Gorlia T, Kros JM et al. Adjuvant dibromodulcitol and BCNU chemotherapy in anaplastic astrocytoma: results of a randomised European organisation for research and treatment of cancer Phase III study (EORTC study 26882). Eur. J. Cancer44(9),1210–1216 (2008).
  • 20  Grundy RG, Wilne SH, Robinson KJ et al. Primary postoperative chemotherapy without radiotherapy for treatment of brain tumours other than ependymoma in children under 3 years: results of the first UKCCSG/SIOP CNS 9204 trial. Eur. J. Cancer46(1),120–133 (2010).
  • 21  Nicolaides T, Tihan T, Horn B, Biegel J, Prados M, Banerjee A. High-dose chemotherapy and autologous stem cell rescue for atypical teratoid/rhabdoid tumor of the central nervous system. J. Neurooncol.98(1),117–123 (2009).
  • 22  Van Genugten JAB, Leffers P, Baumert BG, Tjon-A-Fat H, Twijnstra A. Effectiveness of temozolomide for primary glioblastoma multiforme in routine clinical practice. J. Neurooncol.96(2),249–257 (2010).
  • 23  De Witt Hamer PC. Small molecule kinase inhibitors in glioblastoma: a systematic review of clinical studies. Neuro. Oncol.12(3),304–316 (2010).
  • 24  Fangusaro J. Pediatric high-grade gliomas and diffuse intrinsic pontine gliomas. J. Child Neurol.24(11),1409–1417 (2009).
  • 25  Von Holst H, Knochenhauer E, Blomgren H et al. Uptake of adriamycin in tumour and surrounding brain tissue in patients with malignant gliomas. Acta Neurochir.104(1–2),13–16 (1990).
  • 26  Stupp R, Hegi ME, Mason WP et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol.10(5),459 (2009).
  • 27  Levin VA, Landahl HD, Freeman Dove MA. The application of brain capillary permeability coefficient measurements to pathological conditions and the selection of agents which cross the blood brain barrier. J. Pharmacokinet. Biopharm.4(6),499 (1976).
  • 28  Sarin H, Kanevsky A, Wu H et al. Effective transvascular delivery of nanoparticles across the blood–brain tumor barrier into malignant glioma cells. J. Transl. Med.6(80) (2008).▪▪ First study to report that the physiologic upper limit of pore size of the VEGF-derived blood capillaries of CNS solid tumors is approximately 12 nm, based on the findings of a large body of experimental data on presented and discussed in context of the importance of particle blood half-life for effective transcapillary drug delivery into individual solid tumor cells.
  • 29  Sarin H. Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. J. Transl. Med.7,77 (2009).▪▪ Preliminary therapeutic efficacy of a prototypical drug-conjugated imageable dendrimer (Gd–G5 doxorubicin dendrimer) in the RG-2 rodent malignant glioma model in vivo, which is a macromolecular therapy in the 7–10 nm size range.
  • 30  Vick NA, Khandekar JD, Bigner DD. Chemotherapy of brain tumors. The ‘blood–brain barrier’ is not a factor. Arch. Neurol.34(9),523 (1977).
  • 31  Maeda H, Matsumoto T, Konno T, Iwai K, Ueda M. Tailor-making of protein drugs by polymer conjugation for tumor targeting: a brief review on SMANCS. J. Protein Chem.3(2),181–193 (1984).
  • 32  Tredan O, Galmarini CM, Patel K, Tannock IF. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst.99(19),1441–1454 (2007).
  • 33  Jain RK. Transport of molecules across tumor vasculature. Cancer Metastasis Rev.6,559–593 (1987).▪ Initial discussions on the existence of elevated hydrostatic and oncotic pressures of the solid tumor interstitium and relevance to the ineffectiveness of small molecule chemotherapy drug accumulation in solid tumor cells.
  • 34  Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res.37(1),77 (1989).
  • 35  Casley-Smith JR. The role of the endothelial intercellular junctions in the functioning of the initial lymphatics. Angiologica9(2),106 (1972).
  • 36  Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res.60(16),4324–4327 (2000).
  • 37  Jain RK, Baxter LT. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res.48(24 Part 1),7022–7032 (1988).
  • 38  Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res.64(11),3731–3736 (2004).
  • 39  Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res.67(6),2729–2735 (2007).
  • 40  Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science307(5706),58–62 (2005).
  • 41  Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an antivascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl Acad. Sci. USA93(25),14765–14770 (1996).
  • 42  Jain RK, Duda DG, Clark JW, Loeffler JS. Lessons from Phase III clinical trials on anti-VEGF therapy for cancer. Nat. Clin. Prac. Oncol.3(1),24–40 (2006).▪ Patient outcome data from several anti-VEGF therapy clinical trials is collated and discussed.
  • 43  Cohen MH, Shen YL, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin®) as treatment of recurrent glioblastoma multiforme. Oncologist14(11),1131–1138 (2009).
  • 44  Friedman HS, Prados MD, Wen PY et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol.27(28),4733–4740 (2009).
  • 45  Verhoeff JJC, Lavini C, van Linde ME et al. Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma. Ann. Oncol. doi: 10.1093/annonc/mdp591(2010) (Epub ahead of print).
  • 46  Greig NH, Soncrant TT, Shetty HU, Momma S, Smith QR, Rapoport SI. Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother. Pharmacol.26(4),263 (1990).
  • 47  Toth K, Vaughan M, Peress N, Slocum H, Rustum Y. MDR1 P-glycoprotein is expressed by endothelial cells of newly formed capillaries in human gliomas but is not expressed in the neovasculature of other primary tumors. Am. J. Pathol.149(3),853–858 (1996).
  • 48  Schaich M, Kestel L, Pfirrmann M et al. A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann. Oncol.20(1),175–181 (2009).
  • 49  Sarkaria JN, Kitange GJ, James CD et al. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin. Cancer Res.14(10),2900–2908 (2008).
  • 50  Toth K, Vaughan MM, Schwartz G et al. Expression of the MRP and MDRI multidrug resistance gene products in 160 untreated human carcinomas studied by immunohistochemical methods in formalin-paraffin sections. Int. J. Surg. Pathol.6(3),145–154 (1998).
  • 51  Szakacs G, Annereau JP, Lababidi S et al. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell6(2),129–137 (2004).
  • 52  Sarin H, Kanevsky AS, Fung SH et al. Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life. J. Transl. Med.7,33 (2009).▪ Evidence in support of drug blood half-life being the driving force for drug fraction accumulation to therapeutic concentrations in the solid tumor interstitium is presented.
  • 53  Hurria A, Lichtman SM. Clinical pharmacology of cancer therapies in older adults. Br. J. Cancer98(3),517–522 (2008).
  • 54  Jen JF, Cutler DL, Pai SM et al. Population pharmacokinetics of temozolomide in cancer patients. Pharm. Res.17(10),1284–1289 (2000).
  • 55  Levin VA, Kabra PA, Freeman-Dove MA. Relationship of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) pharmacokinetics of uptake, distribution, and tissue/plasma partitioning in rat organs and intracerebral tumors. Cancer Chemother. Pharmacol.1(4),233 (1978).
  • 56  Levin VA, Kabra P. Effectiveness of the nitrosoureas as a function of their lipid solubility in the chemotherapy of experimental rat brain tumors. Cancer Chemother. Rep.58(6),787 (1974).
  • 57  Sarin H. Effective transvascular delivery of chemotherapy into cancer cells with imageable nanoparticles in the 7–10 nanometer size range. In: Current Advances in the Medical Application of Nanotechnology. Slevin M (Ed), eBentham Books (2010) (In Press).
  • 58  Sarin H, Kanevsky A, Wu H et al. Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. J. Transl. Med.7(51) doi: 10.1186/1479-5876-7-51 (2009).▪▪ First study to report that the physiologic upper limit of pore size in the VEGF-derived blood capillaries of both CNS solid tumors and non-CNS peripheral solid tumors is approximately 12 nm, as an extension of previous findings on the upper limit of pore size of CNS solid tumors.
  • 59  Folkman J, Klagsbrun M. Angiogenic factors. Science235(4787),442–447 (1987).▪▪ Important review article as follow-up to Folkman’s initial observations that VEGF drives the process of solid tumor neo-angiogenic blood capillary microvasculature, which is important for solid tumor growth beyond 1–2 mm3.
  • 60  Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res.57(4),765–772 (1997).▪ Important study demonstrating that VEGF induces the formation of diaphragmed fenestrae in the endothelial cells of nonfenestrated blood capillaries such as those of skeletal muscle.
  • 61  Roberts WG, Delaat J, Nagane M, Huang S, Cavenee WK, Palade GE. Host microvasculature influence on tumor vascular morphology and endothelial gene expression. Am. J. Pathol.153(4),1239–1248 (1998).▪▪ Detailed morphometric data on the frequency of endothelial cell fenestration in the blood capillaries of intracranial solid tumors and subcutaneous solid tumors is presented.
  • 62  Bayliss LE, Kerridge PMT, Russell DS. The excretion of protein by the mammalian kidney. J. Physiol.77(4),386–398 (1933).
  • 63  Vorbrodt AW. Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J. Neurocytol.18(3),359–368 (1989).
  • 64  Schmidley JW, Wissig SL. Anionic sites on the luminal surface of fenestrated and continuous capillaries of the CNS. Brain Res.363(2),265–271 (1986).
  • 65  Brightman MW. Morphology of blood-brain interfaces. Exp. Eye Res.25(Suppl),1–25 (1977).
  • 66  Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol.40(3),648–677 (1969).
  • 67  Vick NA, Bigner DD. Microvascular abnormalities in virally-induced canine brain tumors. Structural bases for altered blood–brain barrier function. J. Neurol. Sci.17,29–39 (1972).
  • 68  Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J. Angiogenes. Res. (2010) (In Press).
  • 69  Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch.440(5),653–666 (2000).
  • 70  Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res.79(3),581–589 (1996).
  • 71  Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel C. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol.136(3),239–255 (2001).▪ Arrangement and spacing of the fibers of endothelial glycocalyx layer is modeled on the basis of high-resolution atomic force microscopic visualization of the layer.
  • 72  Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res.60(16),4440–4445 (2000).
  • 73  Gabizon A, Chisin R, Amselem S et al. Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin. Br. J. Cancer64(6),1125–1132 (1991).
  • 74  Triguero D, Buciak JB, Yang J, Pardridge WM. Blood–brain barrier transport of cationized immunoglobulin G: enhanced delivery compared with native protein. Proc. Natl Acad. Sci. USA86(12),4761–4765 (1989).
  • 75  Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl Acad. Sci. USA100,7988–7995 (2003).▪ Comprehensive review on the structure and biology of the endothelial glycocalyx layer of blood capillary walls.
  • 76  Fenstermacher JD, Johnson JA. Filtration and reflection coefficients of the rabbit blood–brain barrier. Am. J. Physiol.211(2),341–346 (1966).
  • 77  Sorensen SC. The permeability to small ions of tight junctions between cerebral endothelial cells. Brain Res.70(1),174–178 (1974).
  • 78  Jain R, Ellika SK, Scarpace L et al. Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. Am. J. Neuroradiol.29(4),694–700 (2008).
  • 79  Ludemann L, Grieger W, Wurm R, Wust P, Zimmer C. Quantitative measurement of leakage volume and permeability in gliomas, meningiomas and brain metastases with dynamic contrast-enhanced MRI. Magn. Reson. Imaging23(8),833 (2005).
  • 80  Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG. Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. Am. J. Roentgenol.178(3),711 (2002).
  • 81  Leblond CP, Inoue S. Structure, composition, and assembly of basement membrane. Am. J. Anat.185(4),367–390 (1989).
  • 82  Charonis AS, Wissig SL. Anionic sites in basement membranes. Differences in their electrostatic properties in continuous and fenestrated capillaries. Microvasc. Res.25(3),265–285 (1983).
  • 83  Terayama N, Terada T, Nakanuma Y. An immunohistochemical study of tumour vessels in metastatic liver cancers and the surrounding liver tissue. Histopathology29(1),37–43 (1996).
  • 84  Carlson EC, Audette JL, Veitenheimer NJ, Risan JA, Laturnus DI, Epstein PN. Ultrastructural morphometry of capillary basement membrane thickness in normal and transgenic diabetic mice. Anat. Rec. A Discov. Mol. Cell Evol. Biol.271A(2),332–341 (2003).
  • 85  Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol.163(5),1801–1815 (2003).
  • 86  Ludatscher RM, Gellei B, Barzilai D. Ultrastructural observations on the capillaries of human thyroid tumours. J.Pathol.128(2),57–62 (1979).
  • 87  Muldoon LL, Pagel MA, Kroll RA, Roman-Goldstein S, Jones RS, Neuwelt EA. A physiological barrier distal to the anatomic blood-brain barrier in a model of transvascular delivery. Am. J. Neuroradiol.20(2),217–222 (1999).
  • 88  Shibata S. Ultrastructure of capillary walls in human brain tumors. Acta Neuropathol.78(6),561–571 (1989).
  • 89  Wilson CB, Gutin P, Boldrey EB. Single agent chemotherapy of brain tumors. A five year review. Arch. Neurol.33(1),739–744 (1976).
  • 90  Young CW, Burchenal JH. Cancer chemotherapy. Annu. Rev. Pharmacol.11,369–386 (1971).
  • 91  Fewer D, Wilson CB, Boldrey EB, Enot KJ, Powell MR. The chemotherapy of brain tumors. Clinical experience with carmustine (BCNU) and vincristine. JAMA222(5),549–552 (1972).
  • 92  Tentori L, Graziani G. Recent approaches to improve the anti-tumor efficacy of temozolomide. Curr. Med. Chem.16(2),245–257 (2009).
  • 93  Knudsen BS, Vande Woude G. Showering c-MET-dependent cancers with drugs. Curr. Opin. Genet. Dev.18(1),87–96 (2008).▪ Pros and cons of solid cancer treatment with small molecule inhibitors of the c-MET tyrosine kinase pathway are discussed.
  • 94  Schor NF. Pharmacotherapy for adults with tumors of the central nervous system. Pharmacol. Ther.121,253–264 (2009).
  • 95  Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem.23(6),682–684 (1980).
  • 96  Panassaya S, Guocheng W, Barbara RC, Weidong W, Yongfeng W. Skin delivery potency and anti-tumor activities of temozolomide ester prodrugs. Cancer Lett.244(1),42–52 (2006).
  • 97  Pappenheimer JR. Passage of molecules through capillary walls. Physiol. Rev.33(3),387–423 (1953).▪ Initial experimental and theoretical work that led to the formulation of the classic pore theory of microvascular permeability is presented.
  • 98  Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C. Temozolomide: a review of its discovery, chemical properties, preclinical development and clinical trials. Cancer Treat. Rev.23(1),35–61 (1997).
  • 99  Speth PAJ, Van Hoesel QGCM, Haanen C. Clinical pharmacokinetics of doxorubicin. Clin. Pharmacokinet.15(1),15–31 (1988).
  • 100  Karnovsky MJ. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J. Cell Biol.35(1),213–236 (1967).
  • 101  Gill P, Litzow M, Buckner J et al. High-dose chemotherapy with autologous stem cell transplantation in adults with recurrent embryonal tumors of the central nervous system. Cancer112(8),1805–1811 (2008).
  • 102  Dunkel IJ, Finlay JL. High-dose chemotherapy with autologous stem cell rescue for brain tumors. Crit. Rev. Oncol. Hematol.41(2),197–204 (2002).
  • 103  Dunkel IJ, Gardner SL, Garvin JH Jr, Goldman S, Shibata S. High-dose carboplatin, thiotepa, and etoposide with autologous stem cell rescue for patients with previously irradiated recurrent medulloblastoma. J. Clin. Oncol.12(3),297–303 (2010).
  • 104  Clarke JL, Iwamoto FM, Sul J et al. Randomized Phase II trial of chemoradiotherapy followed by either dose-dense or metronomic temozolomide for newly diagnosed glioblastoma. J. Clin. Oncol.27(23),3861–3867 (2009).
  • 105  Newton HB. Intra-arterial chemotherapy of primary brain tumors. Curr. Treat. Options Oncol.6(6),519–530 (2005).
  • 106  Warren K, Gervais A, Aikin A, Egorin M, Balis FM. Pharmacokinetics of carboplatin administered with lobradimil to pediatric patients with brain tumors. Cancer Chemother. Pharmacol.54(3),206–212 (2004).
  • 107  Thomas HD, Lind MJ, Ford J, Bleehen N, Calvert AH, Boddy AV. Pharmacokinetics of carboplatin administered in combination with the bradykinin agonist Cereport (RMP-7) for the treatment of brain tumours. Cancer Chemother. Pharmacol.45(4),284 (2000).
  • 108  Decleves X, Amiel A, Delattre JY, Scherrmann JM. Role of ABC transporters in the chemoresistance of human gliomas. Curr. Cancer Drug Targets6(5),433 (2006).
  • 109  Moore A, Marecos E, Bogdanov A, Weissleder R. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology214,568–574 (2000).
  • 110  Rapoport SI. Osmotic opening of the blood–brain barrier: principles, mechanism, and therapeutic applications. Cell. Mol. Neurobiol.20(2),217 (2000).
  • 111  Kong G, Braun RD, Dewhirst MW. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res.61(7),3027–3032 (2001).
  • 112  Kobayashi H, Reijnders K, English S et al. Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin. Cancer Res.10(22),7712–7720 (2004).
  • 113  Yordanov AT, Kobayashi H, English SJ et al. Gadolinium-labeled dendrimers as biometric nanoprobes to detect vascular permeability. J. Mater. Chem.13(7),1523–1525 (2003).
  • 114  Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J. Neurosurg.83(6),1029–1037 (1995).
  • 115  Sharma US, Sharma A, Chau RI, Straubinger RM. Liposome-mediated therapy of intracranial brain tumors in a rat model. Pharm. Res.14(8),992–998 (1997).
  • 116  Hau P, Fabel K, Baumgart U et al. Pegylated liposomal doxorubicin – efficacy in patients with recurrent high-grade glioma. Cancer100(6),1199–1207 (2004).
  • 117  Fabel K, Dietrich J, Hau P et al. Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer92(7),1936–1942 (2001).
  • 118  Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res.42(6),463–478 (2003).
  • 119  Ishida T, Kiwada H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm.354(1–2),56–62 (2008).
  • 120  Erickson BJ, Campeau NG, Schreiner SA, Buckner JC, O’Neill BP, O’Fallon JR. Triple-dose contrast/magnetization transfer suppressed imaging of ‘non-enhancing’ brain gliomas. J. Neurooncol.60(1),25–29 (2002).▪ Clinical evidence that the short blood half-life of small-molecule MRI contrast agents such as Magnevist® is the primary reason that small CNS solid tumor foci often do not contrast enhance and are not visible on high-resolution scans.
  • 121  Pluen A, Boucher Y, Ramanujan S et al. Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs subcutaneous tumors. Proc. Natl Acad. Sci. USA98(8),4628–4633 (2001).
  • 122  Koyama Y, Hama Y, Urano Y, Nguyen DM, Choyke PL, Kobayashi H. Spectral fluorescence molecular imaging of lung metastases targeting HER2/neu. Clin. Cancer Res.13(10),2936–2945 (2007).
  • 123  Adams GP, Schier R, McCall AM et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res.61(12),4750–4755 (2001).
  • 124  Lee CC, Gillies ER, Fox ME et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl Acad. Sci. USA103(45),16649 (2006).▪ Utility of acid-labile covalent linkages for the conjugation of small molecule drugs to nanoparticles to facilitate timely drug release in the acidic environment of tumor cell endolysosomal compartments is demonstrated.
  • 125  Felgner PL, Gadek TR, Holm M et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA84(21),7413–7417 (1987).
  • 126  Herce HD, Garcia AE. Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes. Proc. Natl Acad. Sci. USA104(52),20805–20810 (2007).
  • 127  Herve F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J.10(3),455 (2008).
  • 128  Sugahara KN, Teesalu T, Karmali PP et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science328(5981),1031–1035 (2010).
  • 129  Harrison PM. The structure of apoferritin: molecular size, shape and symmetry from x-ray data. J. Mol. Biol.6(5),404–422 (1963).
  • 130  Brightman MW. The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J. Cell Biol.26(1),99–123 (1965).
  • 131  Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys. J.87(6),4259–4270 (2004).
  • 132  Dellian M, Yuan F, Trubetskoy VS, Torchilin VP, Jain RK. Vascular permeability in a human tumour xenograft: molecular charge dependence. Br. J. Cancer82(9),1513–1518 (2000).
  • 133  Yuan F, Dellian M, Fukumura D et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res.55(17),3752 (1995).
  • 134  Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res.54(13),3352–3356 (1994).
  • 135  Campbell RB, Fukumura D, Brown EB et al. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res.62,6831–6836 (2002).
  • 136  Hobbs SK, Monsky WL, Yuan F et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA95,4607–4612 (1998).
  • 137  Thurston G, McLean JW, Rizen M et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J. Clin. Inv.101(7),1401–1413 (1998).
  • 138  MacKay JA, Deen DF, Szoka FC Jr. Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Res.1035(2),139–153 (2005).
  • 139  Kamba T, Tam BYY, Hashizume H et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol.290(2),H560–576 (2006).
  • 140  Lutty GA, Hasegawa T, Baba T, Grebe R, Bhutto I, McLeod DS. Development of the human choriocapillaris. Eye1–8 (2010).
  • 141  Bearer EL, Orci L, Sors P. Endothelial fenestral diaphragms: a quick-freeze, deep-etch study. J. Cell Biol.100(2),418–428 (1985).
  • 142  Melamed S, Ben-Sira I, Ben-Shaul Y. Ultrastructure of fenestrations in endothelial choriocapillaries of the rabbit – a freeze-fracturing study. Br. J. Ophthalmol.64(7),537–543 (1980).
  • 143  Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46(12 I),6387–6392 (1986).
  • 144  Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm.71(3),409 (2009).
  • 145  Kobayashi A, Oda T, Maeda H. Protein binding of macromolecular anticancer agent SMANCS: characterization of poly(styrene-co-maleic acid) derivatives as an albumin binding ligand. J. Bioact. Compat. Polym.3(4),319–333 (1988).
  • 146  Oda T, Maeda H. Binding to and internalization by cultured cells of neocarzinostatin and enhancement of its actions by conjugation with lipophilic styrene–maleic acid copolymer. Cancer Res.47(12),3206–3211 (1987).
  • 147  Oda T, Sato F, Maeda H. Facilitated internalization of neocarzinostatin and its lipophilic polymer conjugate, SMANCS, into cytosol in acidic pH. J. Natl Cancer. Inst.79(6),1205–1211 (1987).
  • 148  Wu G, Barth RF, Yang W et al. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconj. Chem.15(1),185–194 (2003).
  • 149  Mross K, Niemann B, Massing U et al. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet®) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother. Pharmacol.54(6),514–524 (2004).
  • 150  Hersh EM, O’Day SJ, Ribas A et al. A Phase II clinical trial of nab-Paclitaxel in previously treated and chemotherapy-naive patients with metastatic melanoma. Cancer116(1),155–163 (2010).
  • 151  Kukowska-Latallo JF, Candido KA, Cao Z et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res.65(12),5317–5324 (2005).
  • 152  Padilla De Jesus OL, Ihre HR, Gagne L, Frechet JMJ, Szoka FC. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconj. Chem.13(3),453–461 (2002).
  • 153  Tomalia DA, Reyna LA, Svenson S. Dendrimers as multipurpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem. Soc. Trans.35(Pt 1),61–67 (2007).
  • 154  Konda SD, Wang S, Brechbiel M, Weiner EC. Biodistribution of a 153Gd-folate dendrimer, generation = 4, in mice with folate-receptor positive and negative ovarian tumor xenografts. Invest. Radiol.37(4),199–204 (2002).
  • 155  Fukushima T, Takeshima H, Kataoka H. Antiglioma therapy with temozolomide and status of the DNA-repair gene MGMT. Anticancer Res.29(11),4845–4854 (2009).