We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/tde.10.84

Viral vectors have been developed as vaccine platforms for a number of pathogens and tumors. In particular, adenovirus (Ad)-based vectors expressing genes coding for pathogen or tumor antigens have proven efficacious to induce protective immunity. Major challenges in the use of Ad vectors are the high prevalence of anti-Ad immunity and the recent observation during an Ad-based HIV vaccine trial that led to increased HIV-1 acquisition in the presence of circulating anti-Ad5 neutralizing antibodies. In this review we summarize strategies to address these challenges and focus on modifications of the Ad capsid to enhance the adjuvant effect of anti-Ad immunogenicity and to circumvent pre-existing immunity. In addition, we summarize the current status and potential of other viral vector vaccines based on adeno-associated viruses, lentiviruses and poxviruses.

Papers of special note have been highlighted as: ▪ of interest

Bibliography

  • Bruder JT, Stefaniak ME, Patterson NB et al. Adenovectors induce functional antibodies capable of potent inhibition of blood stage malaria parasite growth. Vaccine28(18),3201–3210 (2010).
  • Chiuchiolo MJ, Boyer JL, Krause A, Senina S, Hackett NR, Crystal RG. Protective immunity against respiratory tract challenge with Yersinia pestis in mice immunized with an adenovirus-based vaccine vector expressing V antigen. J. Infect. Dis.194(9),1249–1257 (2006).
  • Gallo P, Dharmapuri S, Cipriani B, Monaci P. Adenovirus as vehicle for anticancer genetic immunotherapy. Gene Ther.12(Suppl.),S84–S91 (2005).
  • Kim S, Jang JE, Yu JR, Chang J. Single mucosal immunization of recombinant adenovirus-based vaccine expressing F1 protein fragment induces protective mucosal immunity against respiratory syncytial virus infection. Vaccine28(22),3801–3808 (2010).
  • Kobinger GP, Feldmann H, Zhi Y et al. Chimpanzee adenovirus vaccine protects against Zaire Ebola virus. Virology346(2),394–401 (2006).
  • Liniger M, Zuniga A, Naim HY. Use of viral vectors for the development of vaccines. Expert Rev. Vaccines6(2),255–266 (2007).
  • Richardson JS, Yao MK, Tran KN et al. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine. PLoS. One4(4),e5308 (2009).
  • Skaricic D, Traube C, De B et al. Genetic delivery of an antiRSV antibody to protect against pulmonary infection with RSV. Virology378(1),79–85 (2008).
  • Boyer JL, Crystal RG. Genetic medicine strategies to protect against bioterrorism. Trans. Am. Clin. Climatol. Assoc.117,297–310 (2006).
  • 10  Worgall S, Krause A, Qiu J, Joh J, Hackett NR, Crystal RG. Protective immunity to Pseudomonas aeruginosa induced with a capsid-modified adenovirus expressing P. aeruginosa OprF. J. Virol.81(24),13801–13808 (2007).
  • 11  Zhang S, Liu Y, Fooks AR, Zhang F, Hu R. Oral vaccination of dogs (Canis familiaris) with baits containing the recombinant rabies-canine adenovirus type-2 vaccine confers long-lasting immunity against rabies. Vaccine26(3),345–350 (2008).
  • 12  Vardas E, Kaleebu P, Bekker LG et al. A Phase II study to evaluate the safety and immunogenicity of a recombinant HIV type 1 vaccine based on adeno-associated virus. AIDS Res. Hum. Retroviruses26(8),933–942 (2010).
  • 13  Barouch DH. Rational design of gene-based vaccines. J. Pathol.208(2),283–289 (2006).
  • 14  Lasaro MO, Ertl HC. New insights on adenovirus as vaccine vectors. Mol. Ther.17(8),1333–1339 (2009).
  • 15  Seregin SS, Amalfitano A. Overcoming pre-existing adenovirus immunity by genetic engineering of adenovirus-based vectors. Expert Opin. Biol. Ther.9(12),1521–1531 (2009).
  • 16  Appledorn DM, Patial S, McBride A et al. Adenovirus vector-induced innate inflammatory mediators, MAPK signaling, as well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo. J. Immunol.181(3),2134–2144 (2008).
  • 17  Yamaguchi T, Kawabata K, Koizumi N et al. Role of MyD88 and TLR9 in the innate immune response elicited by serotype 5 adenoviral vectors. Hum. Gene Ther.18(8),753–762 (2007).
  • 18  Zhu J, Huang X, Yang Y. A critical role for type I IFN-dependent NK cell activation in innate immune elimination of adenoviral vectors in vivo. Mol. Ther.16(7),1300–1307 (2008).
  • 19  Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell138(3),576–591 (2009).
  • 20  Nociari M, Ocheretina O, Schoggins JW, Falck-Pedersen E. Sensing infection by adenovirus: Toll-like receptor-independent viral DNA recognition signals activation of the interferon regulatory factor 3 master regulator. J. Virol.81(8),4145–4157 (2007).
  • 21  Zhu J, Huang X, Yang Y. The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice. J. Clin. Invest.119(8),2388–2398 (2009).
  • 22  Muruve DA, Petrilli V, Zaiss AK et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature452(7183),103–107 (2008).▪ Important observation that demonstrated adenovirus (Ad) vector DNA triggers responses through the inflammasome.
  • 23  Appledorn DM, McBride A, Seregin S et al. Complex interactions with several arms of the complement system dictate innate and humoral immunity to adenoviral vectors. Gene Ther.15(24),1606–1617 (2008).
  • 24  Othman M, Labelle A, Mazzetti I, Elbatarny HS, Lillicrap D. Adenovirus-induced thrombocytopenia: the role of von Willebrand factor and P-selectin in mediating accelerated platelet clearance. Blood109(7),2832–2839 (2007).
  • 25  Barouch DH, Pau MG, Custers JH et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-ad5 immunity. J. Immunol.172(10),6290–6297 (2004).
  • 26  Casimiro DR, Chen L, Fu TM et al. Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J. Virol.77(11),6305–6313 (2003).
  • 27  Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther.17(3),295–304 (2010).
  • 28  Yang TC, Millar JB, Grinshtein N, Bassett J, Finn J, Bramson JL. T-cell immunity generated by recombinant adenovirus vaccines. Expert Rev. Vaccines6(3),347–356 (2007).
  • 29  Yang ZY, Wyatt LS, Kong WP, Moodie Z, Moss B, Nabel GJ. Overcoming immunity to a viral vaccine by DNA priming before vector boosting. J. Virol.77(1),799–803 (2003).▪ DNA priming followed by boosting with Ad vectors has been one of the most effective prime–boost strategies for Ads based on this study.
  • 30  Dharmapuri S, Peruzzi D, Aurisicchio L. Engineered adenovirus serotypes for overcoming antivector immunity. Expert Opin. Biol. Ther.9(10),1279–1287 (2009).
  • 31  Sakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H. Innate immune response induced by gene delivery vectors. Int. J. Pharm.354(1–2),9–15 (2008).
  • 32  Seiler MP, Cerullo V, Lee B. Immune response to helper dependent adenoviral mediated liver gene therapy: challenges and prospects. Curr. Gene Ther.7(5),297–305 (2007).
  • 33  Buchbinder SP, Mehrotra DV, Duerr A et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet372(9653),1881–1893 (2008).
  • 34  McElrath MJ, De Rosa SC, Moodie Z et al. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet372(9653),1894–1905 (2008).
  • 35  Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J. Infect. Dis.199(3),381–390 (2009).▪ Comprehensive analysis on the prevalence of pre-existing humoral immunity in humans to adeno-associated viruses.
  • 36  Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther.14(3),316–327 (2006).
  • 37  Zaiss AK, Muruve DA. Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Ther.15(11),808–816 (2008).
  • 38  Romano G. Current development of adeno-associated viral vectors. Drug News Perspect.18(5),311–316 (2005).
  • 39  Clark KR. Recent advances in recombinant adeno-associated virus vector production. Kidney Int.61(1 Suppl.),S9–15 (2002).
  • 40  Girard MP, Bansal GP. HIV/AIDS vaccines: a need for new concepts? Int. Rev. Immunol.27(6),447–471 (2008).
  • 41  Johnson PR, Schnepp BC, Connell MJ et al. Novel adeno-associated virus vector vaccine restricts replication of simian immunodeficiency virus in macaques. J. Virol.79(2),955–965 (2005).
  • 42  Logan GJ, Wang L, Zheng M, Cunningham SC, Coppel RL, Alexander IE. AAV vectors encoding malarial antigens stimulate antigen-specific immunity but do not protect from parasite infection. Vaccine25(6),1014–1022 (2007).
  • 43  Zhou L, Zhu T, Ye X et al. Long-term protection against human papillomavirus e7-positive tumor by a single vaccination of adeno-associated virus vectors encoding a fusion protein of inactivated e7 of human papillomavirus 16/18 and heat shock protein 70. Hum. Gene Ther.21(1),109–119 (2010).
  • 44  McCaffrey AP, Fawcett P, Nakai H et al. The host response to adenovirus, helper-dependent adenovirus, and adeno-associated virus in mouse liver. Mol. Ther.16(5),931–941 (2008).
  • 45  Fisher KJ, Jooss K, Alston J et al. Recombinant adeno-associated virus for muscle directed gene therapy. Nat. Med.3(3),306–312 (1997).
  • 46  Yang Y, Haecker SE, Su Q, Wilson JM. Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum. Mol. Genet.5(11),1703–1712 (1996).
  • 47  Murphy SL, Li H, Mingozzi F et al. Diverse IgG subclass responses to adeno-associated virus infection and vector administration. J. Med. Virol.81(1),65–74 (2009).
  • 48  Lin J, Calcedo R, Vandenberghe LH, Bell P, Somanathan S, Wilson JM. A new genetic vaccine platform based on an adeno-associated virus isolated from a rhesus macaque. J. Virol.83(24),12738–12750 (2009).
  • 49  Mingozzi F, High KA. Immune responses to AAV in clinical trials. Curr. Gene Ther.7(5),316–324 (2007).
  • 50  Pien GC, Basner-Tschakarjan E, Hui DJ et al. Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors. J. Clin. Invest.119(6),1688–1695 (2009).
  • 51  Stieger K, Schroeder J, Provost N et al. Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates. Mol. Ther.17(3),516–523 (2009).
  • 52  Follenzi A, Santambrogio L, Annoni A. Immune responses to lentiviral vectors. Curr. Gene Ther.7(5),306–315 (2007).
  • 53  Naldini L, Blomer U, Gallay P et al.In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science272(5259),263–267 (1996).
  • 54  Pincha M, Sundarasetty BS, Stripecke R. Lentiviral vectors for immunization: an inflammatory field. Expert Rev. Vaccines9(3),309–321 (2010).
  • 55  Xiang ZQ, Gao GP, Reyes-Sandoval A, Li Y, Wilson JM, Ertl HC. Oral vaccination of mice with adenoviral vectors is not impaired by pre-existing immunity to the vaccine carrier. J. Virol.77(20),10780–10789 (2003).▪ Interesting study demonstrating that mucosal immunization can circumvent pre-existing anti-Ad immunity.
  • 56  Metharom P, Ellem KA, Wei MQ. Gene transfer to dendritic cells induced a protective immunity against melanoma. Cell Mol. Immunol.2(4),281–288 (2005).
  • 57  Buffa V, Negri DR, Leone P et al. Evaluation of a self-inactivating lentiviral vector expressing simian immunodeficiency virus gag for induction of specific immune responses in vitro and in vivo. Viral Immunol.19(4),690–701 (2006).
  • 58  Buffa V, Negri DR, Leone P et al. A single administration of lentiviral vectors expressing either full-length human immunodeficiency virus 1 (HIV-1)(HXB2) Rev/Env or codon-optimized HIV-1(JR-FL) gp120 generates durable immune responses in mice. J. Gen. Virol.87(Pt 6),1625–1634 (2006).
  • 59  Dyall J, Latouche JB, Schnell S, Sadelain M. Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood97(1),114–121 (2001).
  • 60  Gruber A, Kan-Mitchell J, Kuhen KL, Mukai T, Wong-Staal F. Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood96(4),1327–1333 (2000).
  • 61  Jirmo AC, Koya RC, Sundarasetty BS et al. Monocytes transduced with lentiviral vectors expressing hepatitis C virus nonstructural proteins and differentiated into dendritic cells stimulate multiantigenic CD8+ T cell responses. Vaccine28(4),922–933 (2010).
  • 62  Zarei S, Leuba F, Arrighi JF, Hauser C, Piguet V. Transduction of dendritic cells by antigen-encoding lentiviral vectors permits antigen processing and MHC class I-dependent presentation. J. Allergy Clin. Immunol.109(6),988–994 (2002).
  • 63  Zarei S, Abraham S, Arrighi JF et al. Lentiviral transduction of dendritic cells confers protective antiviral immunity in vivo. J. Virol.78(14),7843–7845 (2004).
  • 64  Breckpot K, Emeagi PU, Thielemans K. Lentiviral vectors for anti-tumor immunotherapy. Curr. Gene Ther.8(6),438–448 (2008).
  • 65  Dullaers M, Van MS, Heirman C et al. Induction of effective therapeutic anti-tumor immunity by direct In vivo administration of lentiviral vectors. Gene Ther.13(7),630–640 (2006).
  • 66  Rowe HM, Lopes L, Ikeda Y et al. Immunization with a lentiviral vector stimulates both CD4 and CD8 T cell responses to an ovalbumin transgene. Mol. Ther.13(2),310–319 (2006).
  • 67  Arce F, Rowe HM, Chain B, Lopes L, Collins MK. Lentiviral vectors transduce proliferating dendritic cell precursors leading to persistent antigen presentation and immunization. Mol. Ther.17(9),1643–1650 (2009).
  • 68  He Y, Falo LD. Induction of T cell immunity by cutaneous genetic immunization with recombinant lentivector. Immunol. Res.36(1–3),101–117 (2006).
  • 69  Brown BD, Cantore A, Annoni A et al. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood110(13),4144–4152 (2007).
  • 70  Markusic DM, van Til NP, Hiralall JK, Elferink RP, Seppen J. Reduction of liver macrophage transduction by pseudotyping lentiviral vectors with a fusion envelope from Autographa californica GP64 and Sendai virus F2 domain. BMC. Biotechnol.9(85) (2009).
  • 71  Pichlmair A, Reis e Sousa C. Innate recognition of viruses. Immunity.27(3),370–383 (2007).
  • 72  Tillman BW, de Gruijl TD, Luykx-de Bakker SA et al. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J. Immunol.162(11),6378–6383 (1999).
  • 73  Cheng C, Gall JG, Kong WP et al. Mechanism of ad5 vaccine immunity and toxicity: fiber shaft targeting of dendritic cells. PLoS. Pathog.3(2),e25 (2007).
  • 74  Okada N, Saito T, Masunaga Y et al. Efficient antigen gene transduction using Arg-Gly-Asp fiber-mutant adenovirus vectors can potentiate anti-tumor vaccine efficacy and maturation of murine dendritic cells. Cancer Res.61(21),7913–7919 (2001).
  • 75  Wickham TJ, Tzeng E, Shears LL et al. Increased in vitro and In vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J. Virol.71(11),8221–8229 (1997).
  • 76  Worgall S, Busch A, Rivara M et al. Modification to the capsid of the adenovirus vector that enhances dendritic cell infection and transgene-specific cellular immune responses. J. Virol.78,2572–2580 (2004).
  • 77  Ding ZY, Wu Y, Luo Y et al. Mannan-modified adenovirus as a vaccine to induce anti-tumor immunity. Gene Ther.14(8),657–663 (2007).
  • 78  Thacker EE, Nakayama M, Smith BF et al. A genetically engineered adenovirus vector targeted to CD40 mediates transduction of canine dendritic cells and promotes antigen-specific immune responses in vivo. Vaccine27(50),7116–7124 (2009).
  • 79  Reyes-Sandoval A, Fitzgerald JC, Grant R et al. Human immunodeficiency virus type 1-specific immune responses in primates upon sequential immunization with adenoviral vaccine carriers of human and simian serotypes. J. Virol.78(14),7392–7399 (2004).
  • 80  Lemckert AA, Sumida SM, Holterman L et al. Immunogenicity of heterologous prime-boost regimens involving recombinant adenovirus serotype 11 (Ad11) and Ad35 vaccine vectors in the presence of anti-ad5 immunity. J. Virol.79(15),9694–9701 (2005).
  • 81  Santra S, Sun Y, Korioth-Schmitz B et al. Heterologous prime/boost immunizations of rhesus monkeys using chimpanzee adenovirus vectors. Vaccine27(42),5837–5845 (2009).
  • 82  Thorner AR, Lemckert AA, Goudsmit J et al. Immunogenicity of heterologous recombinant adenovirus prime-boost vaccine regimens is enhanced by circumventing vector cross-reactivity. J. Virol.80(24),12009–12016 (2006).
  • 83  Tatsis N, Lasaro MO, Lin SW et al. Adenovirus vector-induced immune responses in non-human primates: responses to prime boost regimens. J. Immunol.182(10),6587–6599 (2009).
  • 84  Boyer JL, Sofer-Podesta C, Ang J et al. Protective immunity against a lethal respiratory Yersinia pestis challenge induced by V antigen or the F1 capsular antigen incorporated into adenovirus capsid. Hum. Gene Ther.21(7),891–901 (2010).
  • 85  Ophorst OJ, Radosevic K, Klap JM et al. Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation with aluminium phosphate adjuvant. Vaccine25(35),6501–6510 (2007).
  • 86  Aurisicchio L, Ciliberto G. Patented cancer vaccines: the promising leads. Expert Opin. Ther. Pat.20(5),647–660 (2010).
  • 87  Conforti A, Cipriani B, Peruzzi D et al. A TLR9 agonist enhances therapeutic effects of telomerase genetic vaccine. Vaccine28(20),3522–3530 (2010).
  • 88  Dharmapuri S, Peruzzi D, Mennuni C et al. Coadministration of telomerase genetic vaccine and a novel TLR9 agonist in non-human primates. Mol. Ther.17(10),1804–1813 (2009).
  • 89  Lubaroff DM, Karan D. CpG oligonucleotide as an adjuvant for the treatment of prostate cancer. Adv. Drug Deliv. Rev.61(3),268–274 (2009).
  • 90  Tosch C, Geist M, Ledoux C et al. Adenovirus-mediated gene transfer of pathogen-associated molecular patterns for cancer immunotherapy. Cancer Gene Ther.16(4),310–319 (2009).
  • 91  Sedlik C, Saron M, Sarraseca J, Casal I, Leclerc C. Recombinant parvovirus-like particles as an antigen carrier: a novel nonreplicative exogenous antigen to elicit protective antiviral cytotoxic T cells. Proc. Natl Acad. Sci. USA94(14),7503–7508 (1997).
  • 92  Boisgerault F, Rueda P, Sun CM, Hervas-Stubbs S, Rojas M, Leclerc C. Cross-priming of T cell responses by synthetic microspheres carrying a CD8+ T cell epitope requires an adjuvant signal. J. Immunol.174(6),3432–3439 (2005).
  • 93  Pattenden LK, Middelberg AP, Niebert M, Lipin DI. Towards the preparative and large-scale precision manufacture of virus-like particles. Trends Biotechnol.23(10),523–529 (2005).
  • 94  Dupuy C, Buzoni-Gatel D, Touze A, Bout D, Coursaget P. Nasal immunization of mice with human papillomavirus type 16 (HPV-16) virus-like particles or with the HPV-16 L1 gene elicits specific cytotoxic T lymphocytes in vaginal draining lymph nodes. J. Virol.73(11),9063–9071 (1999).
  • 95  Koutsky LA, Ault KA, Wheeler CM et al. A controlled trial of a human papillomavirus type 16 vaccine. N. Engl. J. Med.347(21),1645–1651 (2002).
  • 96  Zhang LF, Zhou J, Chen S et al. HPV6b virus like particles are potent immunogens without adjuvant in man. Vaccine18(11–12),1051–1058 (2000).
  • 97  Guo L, Zhou H, Wang M et al. A recombinant adenovirus prime-virus-like particle boost regimen elicits effective and specific immunities against norovirus in mice. Vaccine27(38),5233–5238 (2009).
  • 98  Villegas-Mendez A, Garin MI, Pineda-Molina E et al.In vivo delivery of antigens by adenovirus dodecahedron induces cellular and humoral immune responses to elicit anti-tumor immunity. Mol. Ther.18(5),1046–1053 (2010).
  • 99  Huang X, Yang Y. Innate immune recognition of viruses and viral vectors. Hum. Gene Ther.20(4),293–301 (2009).
  • 100  Logan GJ, Wang L, Zheng M, Ginn SL, Coppel RL, Alexander IE. Antigen-specific humoral tolerance or immune augmentation induced by intramuscular delivery of adeno-associated viruses encoding CTLA4–Ig–antigen fusion molecules. Gene Ther.16(2),200–210 (2009).
  • 101  Du L, Zhao G, Lin Y et al. Priming with rAAV encoding RBD of SARS-CoV S protein and boosting with RBD-specific peptides for T cell epitopes elevated humoral and cellular immune responses against SARS-CoV infection. Vaccine26(13),1644–1651 (2008).
  • 102  Cesco-Gaspere M, Zentilin L, Giacca M, Burrone OR. Boosting anti-idiotype immune response with recombinant AAV enhances tumour protection induced by gene gun vaccination. Scand. J. Immunol.68(1),58–66 (2008).
  • 103  Hauck B, Chen L, Xiao W. Generation and characterization of chimeric recombinant AAV vectors. Mol. Ther.7(3),419–425 (2003).
  • 104  Rabinowitz JE, Rolling F, Li C et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J. Virol.76(2),791–801 (2002).
  • 105  Brockstedt DG, Podsakoff GM, Fong L, Kurtzman G, Mueller-Ruchholtz W, Engleman EG. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin. Immunol.92(1),67–75 (1999).
  • 106  Shiratsuchi T, Rai U, Krause A, Worgall S, Tsuji M. Replacing adenoviral vector HVR1 with a malaria B cell epitope improves immunogenicity and circumvents pre-existing immunity to adenovirus in mice. J. Clin. Invest.120(10),3688–701 (2010).
  • 107  Ageichik A, Collins MK, Dewannieux M. Lentivector targeting to dendritic cells. Mol. Ther.16(6),1008–1009 (2008).
  • 108  Koya RC, Kasahara N, Favaro PM et al. Potent maturation of monocyte-derived dendritic cells after CD40L lentiviral gene delivery. J. Immunother.26(5),451–460 (2003).
  • 109  Kobayashi M, Takaori-Kondo A, Fukunaga K, Miyoshi H, Uchiyama T. Lentiviral gp34/OX40L gene transfer into dendritic cells facilitates alloreactive CD4+ T-cell response in vitro. Int. J. Hematol.79(4),377–383 (2004).
  • 110  Koya RC, Kimura T, Ribas A et al. Lentiviral vector-mediated autonomous differentiation of mouse bone marrow cells into immunologically potent dendritic cell vaccines. Mol. Ther.15(5),971–980 (2007).
  • 111  Koya RC, Weber JS, Kasahara N et al. Making dendritic cells from the inside out: lentiviral vector-mediated gene delivery of granulocyte–macrophage colony-stimulating factor and interleukin 4 into CD14+ monocytes generates dendritic cells in vitro. Hum. Gene Ther.15(8),733–748 (2004).
  • 112  Kimura T, Koya RC, Anselmi L et al. Lentiviral vectors with CMV or MHCII promoters administered in vivo: immune reactivity versus persistence of expression. Mol. Ther.15(7),1390–1399 (2007).
  • 113  Yang L, Yang H, Rideout K et al. Engineered lentivector targeting of dendritic cells for In vivo immunization. Nat. Biotechnol.26(3),326–334 (2008).
  • 114  Gennari F, Lopes L, Verhoeyen E, Marasco W, Collins MK. Single-chain antibodies that target lentiviral vectors to MHC class II on antigen-presenting cells. Hum. Gene Ther.20(6),554–562 (2009).
  • 115  D’Ambrosio E, Del Grosso N, Chicca A, Midulla M. Neutralizing antibodies against 33 human adenoviruses in normal children in Rome. J. Hyg. Lond.89(1),155–161 (1982).
  • 116  Hofmann C, Loser P, Cichon G, Arnold W, Both GW, Strauss M. Ovine adenovirus vectors overcome pre-existing humoral immunity against human adenoviruses in vivo. J. Virol.3(8),6930–6936 (1999).
  • 117  Molnar-Kimber KL, Sterman DH, Chang M et al. Impact of pre-existing and induced humoral and cellular immune responses in an adenovirus-based gene therapy Phase I clinical trial for localized mesothelioma. Hum. Gene Ther.9(14),2121–2133 (1998).
  • 118  Piedra PA, Poveda GA, Ramsey B, McCoy K, Hiatt PW. Incidence and prevalence of neutralizing antibodies to the common adenoviruses in children with cystic fibrosis: implication for gene therapy with adenovirus vectors. Pediatrics101(6),1013–1019 (1998).
  • 119  Vogels R, Zuijdgeest D, van Rijnsoever R et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of pre-existing adenovirus immunity. J. Virol.77(15),8263–8271 (2003).
  • 120  Abbink P, Lemckert AAC, Ewald BA et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J. Virol.81(9),4654–4663 (2007).
  • 121  Harvey BG, Worgall S, Ely S, Leopold PL, Crystal RG. Cellular immune responses of healthy individuals to intradermal administration of an E1–E3-adenovirus gene transfer vector. Hum. Gene Ther.10(17),2823–2837 (1999).
  • 122  Flomenberg P, Piaskowski V, Truitt RL, Casper JT. Characterization of human proliferative T cell responses to adenovirus. J. Infect. Dis.171(5),1090–1096 (1995).
  • 123  Molinier-Frenkel V, Lengagne R, Gaden F et al. Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response. J. Virol.76(1),127–135 (2002).▪ An important study demonstrating that the Ad hexon protein is the dominant protein for the Ad adjuvant effect.
  • 124  Tan Y, Hackett NR, Boyer JL, Crystal RG. Protective immunity evoked against anthrax lethal toxin after a single intramuscular administration of an adenovirus-based vaccine encoding humanized protective antigen. Hum. Gene Ther.14,1673–1682 (2003).
  • 125  Tang J, Olive M, Cahmpagne K et al. Adenovirus hexon T-cell epitope is recognized by most adults and is restricted by HLA DP4, the most common class II allele. Gene Ther.11,1408–1415 (2004).
  • 126  Mittal SK, Prevec L, Graham FL, Babiuk LA. Development of a bovine adenovirus type 3-based expression vector. J. Gen. Virol.76(Pt 1),93–102 (1995).
  • 127  Bangari DS, Shukla S, Mittal SK. Comparative transduction efficiencies of human and non-human adenoviral vectors in human, murine, bovine, and porcine cells in culture. Biochem. Biophys. Res. Commun.327(3),960–966 (2005).
  • 128  Fitzgerald JC, Gao GP, Reyes-Sandoval A et al. A simian replication-defective adenoviral recombinant vaccine to HIV-1 gag. J. Immunol.170(3),1416–1422 (2003).
  • 129  Moffatt S, Hays J, Hogen EH, Mittal SK. Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: implications in gene therapy. Virology272(1),159–167 (2000).
  • 130  Pinto AR, Fitzgerald JC, Giles-Davis W, Gao GP, Wilson JM, Ertl HC. Induction of CD8+ T cells to an HIV-1 antigen through a prime boost regimen with heterologous E1-deleted adenoviral vaccine carriers. J. Immunol.171,6774–6779 (2003).
  • 131  Reddy PS, Idamakanti N, Hyun BH, Tikoo SK, Babiuk LA. Development of porcine adenovirus-3 as an expression vector. J. Gen. Virol.80(Pt 3),563–570 (1999).
  • 132  Roy S, Gao G, Lu Y et al. Characterization of a family of chimpanzee adenoviruses and development of molecular clones for gene transfer vectors. Hum. Gene Ther.15(5),519–530 (2004).
  • 133  Basnight M, Rogers NG, Gibbs CJ, Gajdusek DC. Characterization of four new adenovirus serotypes isolated from chimpanzee tissue explants. Am. J. Epidemiol.94(2),166–171 (1971).
  • 134  Farina SF, Gao GP, Xiang ZQ, et al. Replication-defective vector based on a chimpanzee adenovirus. J Virol.75(23),11603–11613 (2001).
  • 135  Kahl CA, Bonnell J, Hiriyanna S et al. Potent immune responses and in vitro pro-inflammatory cytokine suppression by a novel adenovirus vaccine vector based on rare human serotype 28. Vaccine28(35),5691–702 (2010).
  • 136  Lemiale F, Haddada H, Nabel GJ, Brough DE, King CR, Gall JG. Novel adenovirus vaccine vectors based on the enteric-tropic serotype 41. Vaccine25(11),2074–2084 (2007).
  • 137  Logunov DY, Zubkova OV, Karyagina-Zhulina AS et al. Identification of HI-like loop in CELO adenovirus fiber for incorporation of receptor binding motifs. J. Virol.81(18),9641–9652 (2007).
  • 138  Magalhaes I, Sizemore DR, Ahmed RK et al. rBCG induces strong antigen-specific T cell responses in rhesus macaques in a prime-boost setting with an adenovirus 35 tuberculosis vaccine vector. PLoS. One.3(11),e3790 (2008).
  • 139  Perreau M, Kremer EJ. The conundrum between immunological memory to adenovirus and their use as vectors in clinical gene therapy. Mol. Biotechnol.34(2),247–256 (2006).
  • 140  Peruzzi D, Dharmapuri S, Cirillo A et al. A novel chimpanzee serotype-based adenoviral vector as delivery tool for cancer vaccines. Vaccine27(9),1293–1300 (2009).
  • 141  Pinto AR, Fitzgerald JC, Gao GP, Wilson JM, Ertl HC. Induction of CD8+ T cells to an HIV-1 antigen upon oral immunization of mice with a simian E1-deleted adenoviral vector. Vaccine22(5–6),697–703 (2004).
  • 142  Shott JP, McGrath SM, Pau MG et al. Adenovirus 5 and 35 vectors expressing Plasmodium falciparum circumsporozoite surface protein elicit potent antigen-specific cellular IFN-γ and antibody responses in mice. Vaccine26(23),2818–2823 (2008).
  • 143  Xiang Z, Gao G, Reyes-Sandoval A et al. Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J. Virol.76(6),2667–2675 (2002).
  • 144  Xiang Z, Li Y, Cun A et al. Chimpanzee adenovirus antibodies in humans, sub-Saharan Africa. Emerg. Infect. Dis.12(10),1596–1599 (2006).
  • 145  Sharma A, Bangari DS, Tandon M, Pandey A, HogenEsch H, Mittal SK. Comparative analysis of vector biodistribution, persistence and gene expression following intravenous delivery of bovine, porcine and human adenoviral vectors in a mouse model. Virology386(1),44–54 (2009).
  • 146  Sharma A, Tandon M, Ahi YS, Bangari DS, Vemulapalli R, Mittal SK. Evaluation of cross-reactive cell-mediated immune responses among human, bovine and porcine adenoviruses. Gene Ther.17(5),634–642 (2010).
  • 147  Singh N, Pandey A, Jayashankar L, Mittal SK. Bovine adenoviral vector-based H5N1 influenza vaccine overcomes exceptionally high levels of pre-existing immunity against human adenovirus. Mol. Ther.16(5),965–971 (2008).
  • 148  Gaydos CA, Gaydos JC. Adenovirus vaccines in the U.S. military. Mil. Med.160(6),300–304 (1995).
  • 149  Lyons A, Longfield J, Kuschner R et al. A double-blind, placebo-controlled study of the safety and immunogenicity of live, oral type 4 and type 7 adenovirus vaccines in adults. Vaccine26(23),2890–2898 (2008).
  • 150  Top FH Jr. Control of adenovirus acute respiratory disease in U.S. Army trainees. Yale J. Biol. Med.48(3),185–195 (1975).
  • 151  Stone D, Liu Y, Li ZY, Tuve S, Strauss R, Lieber A. Comparison of adenoviruses from species B, C, E, and F after intravenous delivery. Mol. Ther.15(12),2146–2153 (2007).
  • 152  Shayakhmetov DM, Li ZY, Ni S, Lieber A. Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J. Virol.78(10),5368–5381 (2004).
  • 153  Liu J, Ewald BA, Lynch DM et al. Magnitude and phenotype of cellular immune responses elicited by recombinant adenovirus vectors and heterologous prime-boost regimens in Rhesus monkeys. J. Virol.82(10),4844–4852 (2008).
  • 154  Liu J, O’Brien KL, Lynch DM et al. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature457(7225),87–91 (2009).
  • 155  Shiver JW, Fu TM, Chen L et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature415(6869),331–335 (2002).
  • 156  Liu J, Ewald BA, Lynch DM et al. Magnitude and phenotype of cellular immune responses elicited by recombinant adenovirus vectors and heterologous prime-boost regimens in rhesus monkeys. J. Virol.82(10),4844–4852 (2008).
  • 157  Tatsis N, Ertl HCJ. Adenoviruses as vaccine vectors. Mol. Ther.10(4),616–629 (2004).
  • 158  Tatsis N, Tesema L, Robinson ER et al. Chimpanzee-origin adenovirus vectors as vaccine carriers. Gene Ther.13(5),421–429 (2006).
  • 159  Dudareva M, Andrews L, Gilbert SC et al. Prevalence of serum neutralizing antibodies against chimpanzee adenovirus 63 and human adenovirus 5 in Kenyan children, in the context of vaccine vector efficacy. Vaccine27(27),3501–3504 (2009).
  • 160  Cohen CJ, Xiang ZQ, Gao GP, Ertl HC, Wilson JM, Bergelson JM. Chimpanzee adenovirus CV-68 adapted as a gene delivery vector interacts with the coxsackievirus and adenovirus receptor. J. Gen. Virol.83(Pt 1),151–155 (2002).
  • 161  Varnavski AN, Schlienger K, Bergelson JM, Gao GP, Wilson JM. Efficient transduction of human monocyte-derived dendritic cells by chimpanzee-derived adenoviral vector. Hum. Gene Ther.14(6),533–544 (2003).
  • 162  Nanda A, Lynch DM, Goudsmit J et al. Immunogenicity of recombinant fiber-chimeric adenovirus serotype 35 vector-based vaccines in mice and Rhesus monkeys. J. Virol.79(22),14161–14168 (2005).
  • 163  Ophorst OJ, Kostense S, Goudsmit J et al. An adenoviral type 5 vector carrying a type 35 fiber as a vaccine vehicle: DC targeting, cross neutralization, and immunogenicity. Vaccine22(23–24),3035–3044 (2004).
  • 164  Sumida SM, Truitt DM, Lemckert AA et al. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J. Immunol.174(11),7179–7185 (2005).
  • 165  Roberts DM, Nanda A, Havenga MJ et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing antivector immunity. Nature441(7090),239–243 (2006).▪ Elegant study demonstrating that genetic modification of an Ad vector to replace hexon loops with those from another serotype can be used to circumvent pre-existing immunity.
  • 166  Krause A, Joh JH, Hackett NR et al. Epitopes expressed in different adenovirus capsid proteins induce different levels of epitope-specific immunity. J. Virol.80(11),5523–5530 (2006).
  • 167  McConnell MJ, Danthinne X, Imperiale MJ. Characterization of a permissive epitope insertion site in adenovirus hexon. J. Virol.80(11),5361–5370 (2006).
  • 168  Worgall S, Krause A, Rivara M et al. Protection against P. aeruginosa with an adenovirus vector containing an OprF epitope in the capsid. J. Clin. Invest.115(5),1281–1289 (2005).
  • 169  Matthews C, Jenkins G, Hilfinger J, Davidson B. Poly-L-lysine improves gene transfer with adenovirus formulated in PLGA microspheres. Gene Ther.6(9),1558–1564 (1999).
  • 170  Campos SK, Parrott MB, Barry MA. Avidin-based targeting and purification of a protein IX-modified, metabolically biotinylated adenoviral vector. Mol. Ther.9(6),942–954 (2004).
  • 171  Dmitriev IP, Kashentseva EA, Curiel DT. Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J. Virol.76(14),6893–6899 (2002).
  • 172  Le LP, Li J, Ternovoi VV, Siegal GP, Curiel DT. Fluorescently tagged canine adenovirus via modification with protein IX-enhanced green fluorescent protein. J. Gen. Virol.86(Pt 12),3201–3208 (2005).
  • 173  Matthews QL, Yang P, Wu Q et al. Optimization of capsid-incorporated antigens for a novel adenovirus vaccine approach. Virol. J.5(98) (2008).
  • 174  Meulenbroek RA, Sargent KL, Lunde J, Jasmin BJ, Parks RJ. Use of adenovirus protein IX (pIX) to display large polypeptides on the virion – generation of fluorescent virus through the incorporation of pIX-GFP. Mol. Ther.9(4),617–624 (2004).
  • 175  Vellinga J, de VJ, Myhre S et al. Efficient incorporation of a functional hyper-stable single-chain antibody fragment protein-IX fusion in the adenovirus capsid. Gene Ther.14(8),664–670 (2007).
  • 176  Zaiss AK, Vilaysane A, Cotter MJ et al. Antiviral antibodies target adenovirus to phagolysosomes and amplify the innate immune response. J. Immunol.182(11),7058–7068 (2009).
  • 177  Croyle MA, Chirmule N, Zhang Y, Wilson JM. PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum. Gene Ther.13(15),1887–1900 (2002).
  • 178  Lee SG, Yoon SJ, Kim CD et al. Enhancement of adenoviral transduction with polycationic liposomes in vivo. Cancer Gene Ther.7(10),1329–1335 (2000).
  • 179  Wortmann A, Vohringer S, Engler T et al. Fully detargeted polyethylene glycol-coated adenovirus vectors are potent genetic vaccines and escape from pre-existing anti-adenovirus antibodies. Mol. Ther.16(1),154–162 (2007).
  • 180  Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther.8(5),341–348 (2001).
  • 181  Fisher KD, Seymour LW. HPMA copolymers for masking and retargeting of therapeutic viruses. Adv. Drug Deliv. Rev.62(2),240–245 (2010).
  • 182  Huang D, Pereboev AV, Korokhov N et al. Significant alterations of biodistribution and immune responses in Balb/c mice administered with adenovirus targeted to CD40+ cells. Gene Ther.15(4),298–308 (2007).
  • 183  Pereboev AV, Nagle JM, Shakhmatov MA et al. Enhanced gene transfer to mouse dendritic cells using adenoviral vectors coated with a novel adapter molecule. Mol. Ther.9(5),712–720 (2004).
  • 184  Perreau M, Guérin MC, Drouet C, Kremer EJ. Interactions between human plasma components and a xenogenic adenovirus vector: reduced immunogenicity during gene transfer. Mol. Ther.15(11),1998–2007 (2007).
  • 185  Croyle MA, Patel A, Tran KN et al. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice. PLoS One3(10),e3548 (2008).
  • 201  Gene therapy trials worldwide. www.wiley.com/legacy/wileychi/genmed/clinical