We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Intelligent drug-delivery devices based on micro- and nano-technologies

    AH Chi

    Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, NE47–525, Cambridge, MA 02139, USA

    ,
    K Clayton

    Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, NE47–525, Cambridge, MA 02139, USA

    ,
    TJ Burrow

    Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, NE47–525, Cambridge, MA 02139, USA

    ,
    R Lewis

    Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, NE47–525, Cambridge, MA 02139, USA

    ,
    D Luciano

    Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, NE47–525, Cambridge, MA 02139, USA

    ,
    F Alexis

    Rhodes Research Center, Clemson University, 301 Rhodes Research Center, Clemson, SC 29634-0905

    ,
    S D’hers

    Instituto Tecnológico de Buenos Aires, 399 E. Madero Ave., CP 1106, Buenos Aires, Argentina

    &
    NM Elman

    * Author for correspondence

    Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, NE47–525, Cambridge, MA 02139, USA.

    Published Online:https://doi.org/10.4155/tde.12.139

    This review focuses on the current drug-delivery modalities in R&D, as well as commercially available. Intelligent drug-delivery systems are described as novel technological innovations and clinical approaches to improve conventional treatments. These systems differ in methodology of therapeutic administration, intricacy, materials and patient compliance to address numerous clinical conditions that require various pharmacological therapies. These systems have been primarily described as active and passive microelectrical mechanical system devices, injectors and nanoparticle-based therapies, optimized to tailor specific pharmacokinetic profiles. The most critical considerations for the design of these intelligent delivery systems include the controlled release, target specificity, on-demand dosage adjustment, mass transfer and stability of the pharmacological agents. Drug-delivery systems continue to be developed and enhanced to provide better and more sophisticated treatments, promising an improvement in quality of life and extension of life expectancy.

    References

    • Donev A, Garcia AL, Alder BJ. Stochastic event-driven molecular dynamics. J. Comput. Phys.227,2644–2665 (2008).
    • Kim D, Darve E. High-ionic-strength electroosmotic flows in uncharged hydrophobic nanochannels. J. Col. Int. Sci.330,194–200 (2009).
    • Shaqfeh ESG. The dynamics of single-molecule DNA in flow. J. Non-Newt. Fl Mech.130,1–28 (2005).
    • Somasi M, Khomami B, Woo NJ, Hur JS, Shaqfeh ESG. Brownian dynamics simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-graining issues. J. Non-Newt. Fl. Mech.108,227–255 (2002).
    • Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass. Trans.43,3701–3707 (2000).
    • Arifin DY, Lee LY, Wang CH. Mathematical modeling and simulation of drug release from microspheres: implications to drug-delivery systems. Adv. Drug Del. Rev.58,1274–1325 (2006).
    • Garcia E, Kirkham JR, Hatch AV, Hawkins KR, Yager P. Controlled microfluidic reconstitution of functional protein from an anhydrous storage depot. Lab. Chip.4,78–82 (2004).
    • Gray V, Kelly G, Xia M, Butler C, Thomas S, Mayock S. The science of USP1 and 2 dissolution: present challenges and future relevance. Pharma. Res.26(6),1289–302 (2009).
    • Gross JF, Popel AS. Mathematical models of transport phenomena in normal and neoplastic tissue. In: Tumor Blood Circulation. Peterson HI (Ed.). CRC Press, Boca Raton, FL, USA 169–183 (1979).
    • 10  Siepmann J, SiepmannF. Mathematical modeling of drug delivery. Int. J. Pharm.364,328–343 (2008).
    • 11  Lee MH, Huntington MD, Zhou W, Yang JC, Odom TW. Programmable soft lithography: solvent-assisted nanoscale embossing. Nano Lett.11(2),311–315 (2011).
    • 12  Zhang N, Byrne CJ, Browne DJ, Gilchris MD. Towards nano injection molding. Mat. Today.15(5),216–221 (2012).
    • 13  Lin HY, Chang CH, Young WB. Experimental and analytical study on filling of nano structures in micro injection molding. Int. Commun. Heat Mass. Trans.37,1477–1485 (2010).
    • 14  Fu J, Schoch RB, Stevens AL, Tannenbaum SR, Han J. A patterened isoptropic nanofluidic sieving structure for continuous-flow separation of DNA and protein. Nat. Nanotechnol.2,121–128 (2007).
    • 15  Surace R, Trotta G, Bellantone V, Fassi I. The micro injection moulding process for polymeric components manufacturing. New Technologies-Trends, Innovations and Research. Volosencu C (Ed.). In Tech, NY, USA, 77 (2012).
    • 16  Lee KH, Su YD, Chen SJ, Tseng FG, Lee GB. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for micro array immunoassay. Biosens. Bioelectron.23,466–472 (2007).
    • 17  KovacJR, Taff BM, Voldman J. Enabling technologies for image-based cell sorting. Analyt. Chem.79(24), (2007).
    • 18  Dou YH, Bao N, Xu JJ, Meng F, Chen HY. Separation of proteins on surface-modified poly(dimethylsiloxane) microfluidic devices. Electrophoresis25(17),3024–3031 (2004).
    • 19  Paegel BM, Blazej RG, Mathies RA. Microfluidic devices for DNA sequencing: sample preparation and electrophoretic analysis. Curr. Opi. Biotech.14(1),42–50 (2003).
    • 20  Lu Y, Chen SC. Micro and nano-fabrication of degradable microdevices for drug delivery. Adv. Drug Del. Revs.56(11),1621–1633 (2004).
    • 21  Ikuta K, Yamada A, Niikura F. Real three-dimensional microfabrication for biodegradable polymers: demonstration of high-resolution and biocompatibility for implantable microdevices. Presented at: 26thAnnual International Conference of the IEEE. CA, USA, 1–5 July 2004.
    • 22  Frew AJ. What are the ‘ideal’ features of an adrenaline (epinephrine) auto-injector in the treatment of anaphylaxis? Allergy66,15–24 (2011).
    • 23  Polat BE, Hart D, Blankschtein D, Langer R. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J. Control. Release152,330–348 (2011).
    • 24  Maiq Filho AL, Villaverde AB, Munin E, Aimbire F, Albertini R. Comparative study of the topical application of aloe veragel, therapeutic ultrasound and phonophoresis on the tissue repair in collagenase-induced rat tendinitis. Ultrasound Med. Biol.36(10),1682–1690 (2010).
    • 25  Tezel A, Paliwal S, Shen Z, Mitragotri S. Low-frequency ultrasound as a transcutaneous immunization adjuvant. Vaccine23(29),3800–3807 (2005).
    • 26  Dahlan A, Alpar H, Stickings P, Sesardic D, Murdan S. Transcutaneous immunization assisted by low-frequency ultrasound. Int. J. Pharm.368(1–2),123–128, (2009).
    • 27  Paliwal S, Menon G, Mitragotri S. Low-frequency sonophoresis: ultra structuralbasis for stratum corneum permeability assessed using quantum dots. J. Invest. Dermatol.126(5),1095–1101 (2006).
    • 28  Seto J, Polat B, Lopez R, Blankschtein D, Langer R. Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: comparative in vitro studies with full-thickness and split-thickness pig and human skin. J. Control. Release145(1),26–32 (2010).
    • 29  Lee S, Choi K, Menon G et al. Penetration pathways induced by low-frequency sonophoresiswith physical and chemical enhancers: iron oxide nanoparticles versus lanthanum nitrates. J. Invest. Dermatol.130(4),1063–1072 (2010).
    • 30  Lopez R, Seto J, Blankschtein D, Langer R. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials32(3),933–941 (2011).
    • 31  Roxhed N, Griss P, Stemme G. Membrane-sealed hollow microneedlesand related administration schemes for transdermal drug delivery. Biomed. Microdevices10,271–279 (2008).
    • 32  Mukerjee EV, Collins SD, Isseroff RR, Smith RL. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens. Acts A: Physical.114(2–3),267–275 (2006).
    • 33  Hafeli UO, Mikhtari A, Liepmann D. In vivo evaluation of a micro needle-based miniature syringe for intradermal drug delivery. Biomed. Micro. Devices11,943–950 (2009).
    • 34  Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang D, Daddona P. Transdermal delivery of desmopress in using a coated micro needle array patch system. J. Control. Release97(3),503–511 (2004).
    • 35  Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int. J. Pharm.364(2),227–236 (2008).
    • 36  Bratlie KM, York RL, Invernale MA, Langer R, Anderson DG. Materials for diabetes therapeutics. Adv. Healthcare Mater.1,267–284 (2012).
    • 37  Buchwald H, Varco RL, Rupp WM et al. Treatment of a Type II diabetic by a totally implantable insulin infusion device. Lancet317(8232),1233–1235 (1981).
    • 38  Swan EE, Mescher MJ, Sewell WF, Tao SL, Borenstein JT. Inner ear drug delivery for auditory applications. Adv. Drug Del. Revs.60,1583–1599 (2008).
    • 39  Salt AN, Plontke SK. Local inner-ear drug delivery and pharmacokinetics. Drug Discov. Today10(19),1299–1306 (2005).
    • 40  Pararas EEL, Borkholderb DA, Borenstein JT. Micro systems technologies for drug delivery to the inner ear. Adv. Drug Del. Revs.64(14),1650–1660 (2012).
    • 41  Sewell WF, Borenstein JT, Chen Z et al. Development of a microfluidics-based intracochleardrug delivery device Audiol. Neurootol.14,411–422 (2009).
    • 42  Li PY, Shih J, Lo R et al. An electrochemical intraocular drug delivery device. Sensor. Actuat. A-Phys.143,41–48 (2008).
    • 43  Stevenson CL, Santini JT Jr, Langer R. Reservoir-based drug-delivery systems utilizing micro technology. Adv. Drug Deliv. Rev.64(14),1590–602 (2012).
    • 44  Lo R, Kuwahar K, Li PY et al. A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed. Microdevices11,959–970 (2009).
    • 45  Pirmoradi FN, Jackson JK, Burt HM, Chaio M. On-demand controlled release of docetaxel from a battery-less MEMS drug delivery device. Lab. Chip.11,2744–2752 (2011).
    • 46  Rahimi S, Takahata K. A wireless implantable drug delivery device with hydrogel micro valves controlled by field-frequency tuning. Micro electro mechanical systems (MEMS). Presented at: 2011 IEEE 24th International Conference. Cancun, Mexico, 23–27 January 2011.
    • 47  Farra R, Sheppard NF Jr, McCabe L et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med.4(122),122ra21 (2012).
    • 48  Elman NM, Patta Y, Scott AW, Masi B, Ho Duc HL, Cima MJ. The next generation of drug-delivery micro devices. Clin. Pharmacol. Therap.85,544–547 (2009).
    • 49  Elman NM, HoDuc HL, Cima MJ. An implantable MEMS drug delivery device for rapid delivery in ambulatory emergency care. Biomed. Microdevices11(3),625–631 (2009).
    • 50  Dang W, Davau T, Ying P et al. Effects of GLIADEL® wafer initial molecular weight on the erosion of wafer and release of BCNU. J. Control. Release42,83–92 (1996).
    • 51  Grayson R, Choi IS, Tyler BM et al. Multi-pulse drug delivery from aresorbablepolymeric microchip device. Nat. Mater.2,767–772 (2003).
    • 52  Sharma HS, Ali SF, Hussain SM, Schlager JJ, Sharma A. Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J. Nanosci. Nanotechnol.9(3),5055–5072 (2009).
    • 53  Voskerician G, Shive MS, Shawgo RS et al. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials24,1959–1967 (2003).
    • 54  Malam Y, Loizidou M, Seifalian A. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends. PharmaSci.30(11),592–599 (2009).
    • 55  Olson F, Hunt C, Szoka F, Vail W. Papahadjopoulos D. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochimicaet. Biophysica Acta.557(1),9–23 (1979).
    • 56  Frederiksen L, Anton K, van Hoogevest P, Keller H, Leuenberger H. Preparation of liposomes encapsulating water-soluble compounds using super critical carbon dioxide. J. Pharma Sci.86(8),921–928 (1997).
    • 57  Szoka F Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous pace and high capture by reverse-phase evaporation. Proc. Natl Acad. Sci. USA75(9),4194–4198 (1978).
    • 58  Perez-Juste G, Mulvaney J, Liz-Marzan L. Shape controll in gold nanoparticle synthesis. Chem. Soc. Revs.37(9),1783–1791 (2008).
    • 59  Pissuwan D, Valenzuela S, Cortie M. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotech.24(2),62–67 (2006).
    • 60  Lasagna-Reeves C, Gonzalez-Romero D, Barria MA et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem. Biophys. Research Com.393(4),649–655 (2010).
    • 61  Barichello J. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nano precipitation method. Drug. Develops. Indus. Pharm.25(4),471–476 (1999).
    • 62  Damge C, Reis C, Maincent P. Nanoparticle strategies for the oral delivery of insulin. Expert. Opin. Drug Deliv.5(1),45–68 (2008).
    • 63  Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC. Surface charge-switch nanoparticles for bacterial cell wall-targeted delivery of antibiotics ASC Nano6(5),4279–4287 (2012).
    • 64  Moore T, Graham E, Mattix B, Alexis F. Nanoparticles to cross biological barriers. In: Biomaterials Science: An Integrated Clinical and Engineering Approach. Rosen Y, Elman N (Eds). 85–121. CRC Press, Boca Raton, FL, USA (2012).
    • 65  Booth C, Potten CS. Keratinocyte growth factor increases hair follicle survival following cytotoxic insult. J. Invest. Dermatol.114(4),667–673 (2000).
    • 66  Köseoglu V, Kürekçi AE, Sorici Ü, Atay AA, Özcan O. Comparison of the efficacy and side-effects of ondansetronand metoclopramide-diphenhydramine administered to control nausea and vomiting in children treated with antieoplastic chemotherapy: a prospective randomized study. Eur. J. Pediatr.157(10) 806–810 (1998).
    • 67  Hughes W. 2002 Guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin. Infect. Dis.34(6),730–751 (2002).
    • 68  Kallioniemi OP, Holli K, Visakorpi T, Koivula T, Helin H, Jorma I. Association of c-erbB-2 protein over- expression with high rate of cell proliferation, increased risk of visceral metastasis and poor long-term survival in breast cancer. Int. J. Cancer.49(5),650–655 (1991).
    • 69  Lin WL, Kuo WH, Chen FL et al. Identification of the coexisting HER2 gene amplification and novel mutations in the HER2 protein-over expressed mucinous epithelial ovarian cancer. Annals. Surg. Oncol.18(8),2388–2394 (2011).
    • 70  Santin AD, Bellone D, Roman JJ, McKenney JK, Pecorelli S. Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int. J. Gyne. Obstet.102(2),128–131 (2003).
    • 71  Kono K, Naganuma H, Sekikawa T, Amemiya H, Takahashi A. Serum level of HER-2/neu in patients with gastric cancer: correlation with HER-2/neu overexpression in gastric carcinoma tissue. Tumor Biology J. Int. Soc. Onco. Developmental Bio. Med.3,139–144 (2000).
    • 72  Hynes N, Stern D. The biology of erbB-2/HER-2 and its role in cancer. Bioch. Biophysica Acta.1198(2–3),165–184 (1994).
    • 73  Semenza G. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends. Pharma. Sci.33(4),207–214 (2012).
    • 74  Cheng J. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials28(5),869–876 (2007).
    • 75  Fetal A. HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem.3(12),1839–1843 (2008).
    • 76  Service R. Nanoparticle trojan horses gallop from the lab to the clinic. Science330(6002),314–315 (2010).
    • 77  Ghosh A, Heston WDW. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell. Biochem.91,528–539 (2004).
    • 78  Kleinstreuer C, Li J, Koo J. Microfluidics of nano-drug delivery. Int. J. Heat. Mass. Transfer.51(23–24),5590–5597 (2008).
    • 79  Fiering J, Mescher MJ, Leary Swan EE et al. Local drug delivery with a self-contained, programmable, microfluidic system. Biomedical Microdevices11(3),571–578 (2009).
    • 80  Pirmoradi FN, Jackson J, Burt H, Chiao M. Delivery of an anti-cancer drug from a magnetically controlled MEMS device show cytotoxicity in PC3 and HUVEC cells. Presented at: Solid-State Sensors, Actuators and Microsystems Conference, 16th International. Beijing, China, 5–9 June 2011.
    • 81  Rahimi S, Sarraf EH, Wong GK, Takahata K. Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves. Biomedical Microdevices13(2),267–277 (2011).
    • 101  Bang & lufsenMedicom A/S: US0312195 A1 (2008).
    • 102  Chun T: S0005737 A1 (2007).
    • 103  Sanofi-Aventis Deutchland GmbH: US0101446 A1 (2012).
    • 104  Aegis Therapeutics Inc.: US0031549 (2005).
    • 105  SHL Group AB: US0222742 A1 (2010).
    • 106  Massachusetts Institute of Technology: US6939323 B2 (2005).
    • 107  Massachusetts Institute of Technology: US7425204 B2 (2008).
    • 108  Marpam International, Inc.: US4874367 (1988).
    • 109  Clark WD, Hollenbeck KE: US3853125 (1974).
    • 110  SHL Group AB: US0249705 A1 (2010).
    • 201  Incline therapeutics. http://inclinethera.com/?page_id=74
    • 202  InterSpace™. www.transpharma-medical.com/ViaDor_system.html
    • 203  ONdrugDELIVERY. www.ondrugdelivery.com/publications/diabetes.pdf (PassPort)
    • 204  ONdrugDELIVERY. Niche information and guidance. www.ondrugdelivery.com/publications/diabetes.pdf (general)
    • 205  Animas insulin pump. www.animas.com/animas-insulin-pumps/onetouch-ping
    • 206  OmniPod. Insulin management system. www.myomnipod.com
    • 207  Debiotech. www.debiotech.com
    • 208  Debiotech. JewelPUMP™. www.JewelPUMP.com
    • 209  Solo. New possibilities. www.solo4you.com/?page=AboutSolo&ID=9&pageType=0
    • 210  Pancreum™: the wearable artificial pancreas company. pancreum.com/index.html
    • 211  Medtronic Diabetes: Paradigm revel pump. www.medtronicdiabetes.com/products/paradigmrevelpump
    • 212  Replenish Inc. ophthalmic micropump™ system. www.replenishinc.com/our-technology/ophthalmic-micropump-system
    • 213  On Demand therapeutics: breaking through challenges in ophthalmic drug delivery. www.ondemandtx.com
    • 214  Martin F. Liposome drug products: product evolution and influence of formulation on pharmaceutical properties and pharmacology (2012). www.fda.gov/ohrms/dockets/ac/01/slides/3763s2_08_martin/sld001.htm
    • 215  DiabetesBasics. Diabetes Statistics.N.p., July 2012. www.diabetes.org/diabetes-basics/diabetes- statistics/?loc=DropDownDB-stats