We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Enhancing nucleic acid delivery by photochemical internalization

    Sigurd Leinæs Bøe

    * Author for correspondence

    Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, NO-0310 Oslo, Norway.

    &
    Eivind Hovig

    Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, NO-0310 Oslo, Norway

    Published Online:https://doi.org/10.4155/tde.13.78

    Photochemical internalization (PCI) is a method for releasing macromolecules from endosomal and lysosomal compartments. The PCI approach uses a photosensitizer that localizes to endosomal and lysosomal compartments, and a light source with appropriate light spectra for excitation of the photosensitizer. Upon photosensitizer excitation, endosomal and lysosomal membranes are destroyed, due to the formation of reactive oxygen species, followed by release of the endocytosed material. PCI has been demonstrated to enhance and control (site- and time-specific) delivery of various macromolecules such as viruses, proteins, chemotherapeutics, nucleic acid, and so on. In this Review we present past and current studies of PCI-controlled delivery of natural and artificial nucleic acids, such as peptide nucleic acids, siRNA molecules, mRNA molecules and plasmids. We also discuss critical aspects to further the possibilities for successful gene targeting in space and time.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Juliano RL, Carver K, Cao C, Ming X. Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J. Drug Target.21(1),27–43 (2013).
    • Lloyd JB. Lysosome membrane permeability: implications for drug delivery. Adv. Drug Deliv. Rev.41(2),189–200 (2000).
    • Felgner PL, Gadek TR, Holm M et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA84(21),7413–7417 (1987).
    • Boussif O, Lezoualc’h F, Zanta MA et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA92(16),7297–7301 (1995).
    • Read ML, Logan A, Seymour LW. Barriers to gene delivery using synthetic vectors. Adv. Genet.53PA,19–46 (2005).
    • Sioud M. RNA interference and innate immunity. Adv. Drug Deliv. Rev.59(2–3),153–163 (2007).
    • Pirollo KF, Chang EH. Targeted delivery of small interfering RNA: approaching effective cancer therapies. Cancer Res.68(5),1247–1250 (2008).
    • Berg K, Selbo PK, Prasmickaite L et al. Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res.59(6),1180–1183 (1999).▪▪ First article that describes the photochemical internalization (PCI) method for delivery of macromolecules.
    • Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl Acad. Sci. USA75(1),285–288 (1978).
    • 10  Inoue H, Hayase Y, Asaka M et al. Synthesis and properties of novel nucleic acid probes. Nucleic Acids Symp. Ser. (16), 165–168 (1985).
    • 11  Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science254(5037),1497–1500 (1991).
    • 12  Koshkin AA, Singh SK, Nielsen P et al. LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron54,3607–3630 (1998).
    • 13  Singh SK, Nielsen P, Koshkin AA, Wengel J. LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem. Commun.455–456 (1998).
    • 14  Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev.7(3),187–195 (1997).
    • 15  Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell31(1),147–157 (1982).
    • 16  Mizuno T, Chou MY, Inouye M. Regulation of gene expression by a small RNA transcript (mic RNA) in Escherichia coli K-12. Proc. Jpn. Acad. Sci.59,335–338 (1983).
    • 17  Eckstein F. Nucleoside phosphorothioates. Annu. Rev. Biochem.54,367–402 (1985).
    • 18  Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature391(6669),806–811 (1998).
    • 19  Karkare S, Bhatnagar D. Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl. Microbiol. Biotechnol.71(5),575–586 (2006).
    • 20  Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res.29(18),3882–3891 (2001).
    • 21  Wolff JA, Malone RW, Williams P et al. Direct gene transfer into mouse muscle in vivo. Science247(4949 Pt 1),1465–1468 (1990).
    • 22  Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J. Exp. Integr. Med.186(7),1177–1182 (1997).
    • 23  Melikov K, Chernomordik LV. Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery. Cell. Mol. Life Sci.62(23),2739–2749 (2005).
    • 24  Kopatz I, Remy JS, Behr JP. A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J. Gene Med.6(7),769–776 (2004).
    • 25  Labat-Moleur F, Steffan AM, Brisson C et al. An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Ther.3(11),1010–1017 (1996).
    • 26  De Duve C. Lysosomes. In: Ciba Foundation Symposium. AVS de Reuck, MP Cameron (Eds). Churchill, London, UK 411–412 (1963).
    • 27  Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol. Rev.77(3),759–803 (1997).
    • 28  Al-Awqati Q. Proton-translocating ATPases. Annu. Rev. Cell Biol.2,179–199 (1986).
    • 29  Bainton DF. The discovery of lysosomes. J. Cell Biol.91(3 Pt 2),66s–76s (1981).
    • 30  Berg T, Gjoen T, Bakke O. Physiological functions of endosomal proteolysis. Biochem. J.307(Pt 2),313–326 (1995).
    • 31  Shiraishi T, Pankratova S, Nielsen PE. Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides. Chem. Biol.12(8),923–929 (2005).
    • 32  Dalluge R, Haberland A, Zaitsev S et al. Characterization of structure and mechanism of transfection-active peptide–DNA complexes. Biochim. Biophys. Acta1576(1–2),45–52 (2002).
    • 33  Ciftci K, Levy RJ. Enhanced plasmid DNA transfection with lysosomotropic agents in cultured fibroblasts. Int. J. Pharm.218(1–2),81–92 (2001).
    • 34  Berg K, Moan J. Lysosomes as photochemical targets. Int. J. Cancer59(6),814–822 (1994).
    • 35  Moan J, Berg K, Anholt H, Madslien K. Sulfonated aluminium phthalocyanines as sensitizers for photochemotherapy. Effects of small light doses on localization, dye fluorescence and photosensitivity in V79 cells. Int. J. Cancer58(6),865–870 (1994).
    • 36  Gibson SL, Murant RS, Hilf R. Photosensitizing effects of hematoporphyrin derivative and photofrin II on the plasma membrane enzymes 5´-nucleotidase, Na+K+-ATPase, and Mg2+-ATPase in R3230AC mammary adenocarcinomas. Cancer Res.48(12),3360–3366 (1988).
    • 37  Moan J, Johannessen JV, Christensen T, Espevik T, Mcghie JB. Porphyrin-sensitized photoinactivation of human cells in vitro. Am. J. Pathol.109(2),184–192 (1982).
    • 38  Boegheim JP, Dubbelman TM, Mullenders LH, Van Steveninck J. Photodynamic effects of haematoporphyrin derivative on DNA repair in murine L929 fibroblasts. Biochem. J.244(3),711–715 (1987).
    • 39  Gomer CJ, Rucker N, Banerjee A, Benedict WF. Comparison of mutagenicity and induction of sister chromatid exchange in Chinese hamster cells exposed to hematoporphyrin derivative photoradiation, ionizing radiation, or ultraviolet radiation. Cancer Res.43(6),2622–2627 (1983).
    • 40  Berns MW, Dahlman A, Johnson FM et al.In vitro cellular effects of hematoporphyrin derivative. Cancer Res.42(6),2325–2329 (1982).
    • 41  Hilf R, Murant RS, Narayanan U, Gibson SL. Relationship of mitochondrial function and cellular adenosine triphosphate levels to hematoporphyrin derivative-induced photosensitization in R3230AC mammary tumors. Cancer Res.46(1),211–217 (1986).
    • 42  Pass HI. Photodynamic therapy in oncology: mechanisms and clinical use. J. Natl Cancer Inst.85(6),443–456 (1993).
    • 43  Mang TS. Lasers and light sources for PDT: past, present and future. Photodiagnosis Photodyn. Ther.1,43–48 (2004).
    • 44  Selbo PK, Weyergang A, Hogset A et al. Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J. Control. Release148(1),2–12 (2010).▪▪ Overview of therapeutic molecules delivered by PCI.
    • 45  Foote C. Type I and Type II mechanisms of photodynamic action. In: Light-Activated Pesticides. Heitz JR, Downnum KR (Eds). American Chemical Society, Washington, DC, USA, 22–38 (1987).
    • 46  Spikes JD. Photobiology of porphyrins. Prog. Clin. Biol. Res.170,19–39 (1984).
    • 47  Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol.53(4),549–553 (1991).
    • 48  Hallett FR, Hallett BP, Snipes W. Reactions between singlet oxygen and the constituents of nucleic acids. Importance of reactions in photodynamic processes. Biophys. J.10(4),305–315 (1970).
    • 49  Berg K, Western A, Bommer JC, Moan J. Intracellular localization of sulfonated meso-tetraphenylporphines in a human carcinoma cell line. Photochem. Photobiol.52(3),481–487 (1990).
    • 50  Moan J, Berg K, Kvam E et al. Intracellular localization of photosensitizers. Ciba Found. Symp.146,95–107; discussion 107–111 (1989).
    • 51  Moan J, Berg K, Bommer JC, Western A. Action spectra of phthalocyanines with respect to photosensitization of cells. Photochem. Photobiol.56(2),171–175 (1992).
    • 52  Maman N, Dhami S, Phillips D, Brault D. Kinetic and equilibrium studies of incorporation of di-sulfonated aluminum phthalocyanine into unilamellar vesicles. Biochim. Biophys. Acta1420(1–2),168–178 (1999).
    • 53  Prasmickaite L, Hogset A, Berg K. Evaluation of different photosensitizers for use in photochemical gene transfection. Photochem. Photobiol.73(4),388–395 (2001).▪▪ Investigation of various photosensitizers for use in PCI.
    • 54  Engesaeter BO, Tveito S, Bonsted A, Engebraaten O, Berg K, Maelandsmo GM. Photochemical treatment with endosomally localized photosensitizers enhances the number of adenoviruses in the nucleus. J. Gene Med.8(6),707–718 (2006).
    • 55  Nishiyama N, Iriyama A, Jang WD et al. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat. Mater.4(12),934–941 (2005).▪ A novel dendrimeric photosensitizer for PCI.
    • 56  Shieh MJ, Peng CL, Lou PJ et al. Non-toxic phototriggered gene transfection by PAMAM-porphyrin conjugates. J. Control. Release129(3),200–206 (2008).
    • 57  Gaware VS, Hakerud M, Leosson K et al. Tetraphenylporphyrin tethered chitosan based carriers for photochemical transfection. J. Med. Chem.56(3),807–819 (2013).
    • 58  Boe SL, Longva AS, Hovig E. A novel photosensitizer for light-controlled gene silencing. Nucleic Acid Ther.21(5),359–367 (2011).
    • 59  Peng Q, Moan J. Correlation of distribution of sulphonated aluminium phthalocyanines with their photodynamic effect in tumour and skin of mice bearing CaD2 mammary carcinoma. Br. J. Cancer72(3),565–574 (1995).
    • 60  Peng Q, Moan J, Cheng LS. The effect of glucose administration on the uptake of photofrin II in a human tumor xenograft. Cancer Lett.58(1–2),29–35 (1991).
    • 61  Henderson BW, Bellnier DA. Tissue localization of photosensitizers and the mechanism of photodynamic tissue destruction. Ciba Found. Symp.146,112–125; discussion 125–130 (1989).
    • 62  Freitas I. Lipid accumulation: the common feature to photosensitizer-retaining normal and malignant tissues. J. Photochem. Photobiol.7(2–4),359–361 (1990).
    • 63  Musser DA, Wagner JM, Weber FJ, Datta-Gupta N. The binding of tumor localizing porphyrins to a fibrin matrix and their effects following photoirradiation. Res. Commun. Chem. Pathol. Pharmacol.28(3),505–525 (1980).
    • 64  Van Dongen GA, Visser GW, Vrouenraets MB. Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv. Drug Deliv. Rev.56(1),31–52 (2004).
    • 65  Demidov VV, Potaman VN, Frank-Kamenetskii MD et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol.48(6),1310–1313 (1994).
    • 66  Egholm MB, Nielsen PE, Buchardt O, Berg RH. Recognition of guanine and adenine in DNA by thymine and cytosine containing peptide nucleic acids. J. Am. Chem. Soc.114,9677–9678 (1992).
    • 67  Egholm MB, Nielsen PE, Buchardt O, Berg RH. Peptide nucleic acids (PNA). Oligonucleotide analogues with an achiral peptide backbone. J. Am. Chem. Soc.114,1895–1897 (1992).
    • 68  Egholm M, Buchardt O, Christensen L et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature365(6446),566–568 (1993).
    • 69  Hanvey JC, Peffer NJ, Bisi JE et al. Antisense and antigene properties of peptide nucleic acids. Science258(5087),1481–1485 (1992).
    • 70  Ray A, Norden B. Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J.14(9),1041–1060 (2000).
    • 71  Boffa LC, Cutrona G, Cilli M et al. Inhibition of Burkitt’s lymphoma cells growth in SCID mice by a PNA specific for a regulatory sequence of the translocated c-myc. Cancer Gene Ther.14(2),220–226 (2007).
    • 72  Pooga M, Soomets U, Hallbrink M et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol.16(9),857–861 (1998).
    • 73  Tyler BM, Mccormick DJ, Hoshall CV et al. Specific gene blockade shows that peptide nucleic acids readily enter neuronal cells in vivo. FEBS Lett.421(3),280–284 (1998).
    • 74  Sazani P, Gemignani F, Kang SH et al. Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat. Biotechnol.20(12),1228–1233 (2002).
    • 75  Yin H, Lu Q, Wood M. Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Mol. Ther.16(1),38–45 (2008).
    • 76  Wang G, Xu X, Pace B et al. Peptide nucleic acid (PNA) binding-mediated induction of human gamma-globin gene expression. Nucleic Acids Res.27(13),2806–2813 (1999).
    • 77  Karras JG, Maier MA, Lu T, Watt A, Manoharan M. Peptide nucleic acids are potent modulators of endogenous pre-mRNA splicing of the murine interleukin-5 receptor-alpha chain. Biochemistry40(26),7853–7859 (2001).
    • 78  Shammas MA, Simmons CG, Corey DR, Shmookler Reis RJ. Telomerase inhibition by peptide nucleic acids reverses ‘immortality’ of transformed human cells. Oncogene18(46),6191–6200 (1999).
    • 79  Hamilton SE, Simmons CG, Kathiriya IS, Corey DR. Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem. Biol.6(6),343–351 (1999).
    • 80  Herbert B, Pitts AE, Baker SI et al. Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl Acad. Sci. USA96(25),14276–14281 (1999).
    • 81  Doyle DF, Braasch DA, Simmons CG, Janowski BA, Corey DR. Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mismatched bases, and PNA length. Biochemistry40(1),53–64 (2001).
    • 82  Uhlmann E. Peptide nucleic acids (PNA) and PNA-DNA chimeras: from high binding affinity towards biological function. Biol. Chem.379(8–9),1045–1052 (1998).
    • 83  Simmons CG, Pitts AE, Mayfield LD, Shay JW, Corey DR. Synthesis and membrane permeability of PNA-peptide conjugates Bioorg. Med. Chem. Lett.7,3001–3006 (1997).
    • 84  Aldrian-Herrada G, Desarmenien MG, Orcel H et al. A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide. The antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Res.26(21),4910–4916 (1998).
    • 85  Ljungstrom T, Knudsen H, Nielsen PE. Cellular uptake of adamantyl conjugated peptide nucleic acids. Bioconj. Chem.10(6),965–972 (1999).
    • 86  Mologni L, Marchesi E, Nielsen PE, Gambacorti-Passerini C. Inhibition of promyelocytic leukemia (PML)/retinoic acid receptor-alpha and PML expression in acute promyelocytic leukemia cells by anti-PML peptide nucleic acid. Cancer Res.61(14),5468–5473 (2001).
    • 87  Koppelhus U, Awasthi SK, Zachar V, Holst HU, Ebbesen P, Nielsen PE. Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev.12(2),51–63 (2002).
    • 88  Abes S, Williams D, Prevot P, Thierry A, Gait MJ, Lebleu B. Endosome trapping limits the efficiency of splicing correction by PNA-oligolysine conjugates. J. Control. Release110(3),595–604 (2006).
    • 89  Shiraishi T, Nielsen PE. Photochemically enhanced cellular delivery of cell penetrating peptide–PNA conjugates. FEBS Lett.580(5),1451–1456 (2006).
    • 90  Boe S, Hovig E. Photochemically induced gene silencing using PNA-peptide conjugates. Oligonucleotides16(2),145–157 (2006).
    • 91  Folini M, Berg K, Millo E et al. Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase. Cancer Res.63(13),3490–3494 (2003).
    • 92  Folini M, Bandiera R, Millo E et al. Photochemically enhanced delivery of a cell-penetrating peptide nucleic acid conjugate targeting human telomerase reverse transcriptase: effects on telomere status and proliferative potential of human prostate cancer cells. Cell Prolif.40(6),905–920 (2007).
    • 93  Sei S, Yang QE, O’Neill D, Yoshimura K, Nagashima K, Mitsuya H. Identification of a key target sequence to block human immunodeficiency virus type 1 replication within the gag-pol transframe domain. J. Virol.74(10),4621–4633 (2000).
    • 94  Cutrona G, Carpaneto EM, Ulivi M et al. Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nat. Biotechnol.18(3),300–303 (2000).
    • 95  Shiraishi T, Nielsen PE. Nanomolar cellular antisense activity of peptide nucleic acid (PNA) cholic acid (‘umbrella’) and cholesterol conjugates delivered by cationic lipids. Bioconj. Chem.23(2),196–202 (2012).
    • 96  Shiraishi T, Hamzavi R, Nielsen PE. Subnanomolar antisense activity of phosphonate-peptide nucleic acid (PNA) conjugates delivered by cationic lipids to HeLa cells. Nucleic Acids Res.36(13),4424–4432 (2008).
    • 97  Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411(6836),494–498 (2001).
    • 98  Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Develop.15(2),188–200 (2001).
    • 99  Boe S, Longva AS, Hovig E. Photochemically induced gene silencing using small interfering RNA molecules in combination with lipid carriers. Oligonucleotides17(2),166–173 (2007).
    • 100  Oliveira S, Fretz MM, Hogset A, Storm G, Schiffelers RM. Photochemical internalization enhances silencing of epidermal growth factor receptor through improved endosomal escape of siRNA. Biochim. Biophys. Acta1768(5),1211–1217 (2007).
    • 101  Oliveira S, Hogset A, Storm G, Schiffelers RM. Delivery of siRNA to the target cell cytoplasm: photochemical internalization facilitates endosomal escape and improves silencing efficiency, in vitro and in vivo. Curr. Pharm. Des.14(34),3686–3697 (2008).▪▪ Proof-of-concept study showing in vivo delivery of siRNA by PCI.
    • 102  Jorgensen JA, Longva AS, Hovig E, Boe SL. Evaluation of biodegradable peptide carriers for light-directed targeting. Nucleic Acid Ther.23(2),131–139 (2013).▪ Demonstrates effective PCI-induced siRNA targeting by peptide carriers.
    • 103  Lu D, Benjamin R, Kim M, Conry RM, Curiel DT. Optimization of methods to achieve mRNA-mediated transfection of tumor cells in vitro and in vivo employing cationic liposome vectors. Cancer Gene Ther.1(4),245–252 (1994).
    • 104  Kariko K, Kuo A, Barnathan E. Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther.6(6),1092–1100 (1999).
    • 105  Felgner PL, Ringold GM. Cationic liposome-mediated transfection. Nature337(6205),387–388 (1989).
    • 106  Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc. Natl Acad. Sci. USA86(16),6077–6081 (1989).
    • 107  Hecker JG, Hall LL, Irion VR. Nonviral gene delivery to the lateral ventricles in rat brain: initial evidence for widespread distribution and expression in the central nervous system. Mol. Ther.3(3),375–384 (2001).
    • 108  Fisher KJ, Wilson JM. The transmembrane domain of diphtheria toxin improves molecular conjugate gene transfer. Biochem. J.321(Pt 1),49–58 (1997).
    • 109  Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat. Biotechnol.16(4),364–369 (1998).
    • 110  Boe S, Saeboe-Larssen S, Hovig E. Light-induced gene expression using messenger RNA molecules. Oligonucleotides20(1),1–6 (2010).▪ The possibility of effective PCI-induced mRNA delivery for gain-of-function studies.
    • 111  Boe SL, Jorgensen JA, Longva AS, Lavelle T, Saeboe-Larssen S, Hovig E. Light-controlled modulation of gene expression using polyamidoamine formulations. Nucleic Acid Ther.23(2),160–165 (2013).
    • 112  Prasmickaite L, Hogset A, Olsen VM, Kaalhus O, Mikalsen SO, Berg K. Photochemically enhanced gene transfection increases the cytotoxicity of the herpes simplex virus thymidine kinase gene combined with ganciclovir. Cancer Gene Ther.11(7),514–523 (2004).
    • 113  Ndoye A, Merlin JL, Leroux A et al. Enhanced gene transfer and cell death following p53 gene transfer using photochemical internalisation of glucosylated PEI–DNA complexes. J. Gene Med.6(8),884–894 (2004).
    • 114  Maurice-Duelli A, Ndoye A, Bouali S, Leroux A, Merlin JL. Enhanced cell growth inhibition following PTEN nonviral gene transfer using polyethylenimine and photochemical internalization in endometrial cancer cells. Technol. Cancer Res. Treat3(5),459–465 (2004).
    • 115  Nishiyama N, Arnida, Jang WD, Date K, Miyata K, Kataoka K: Photochemical enhancement of transgene expression by polymeric micelles incorporating plasmid DNA and dendrimer-based photosensitizer. J. Drug Target.14(6),413–424 (2006).
    • 116  Kloeckner J, Prasmickaite L, Hogset A, Berg K, Wagner E. Photochemically enhanced gene delivery of EGF receptor-targeted DNA polyplexes. J. Drug Target.12(4),205–213 (2004).
    • 117  Boe S, Longva AS, Hovig E. Evaluation of various polyethylenimine formulations for light-controlled gene silencing using small interfering RNA molecules. Oligonucleotides18,23–32 (2008).▪ Demonstrates how to optimize parameters for effective PCI-induced siRNA targeting.
    • 118  Boe SL, Longva AS, Hovig E. Cyclodextrin-containing polymer delivery system for light-directed siRNA gene silencing. Oligonucleotides20(4),175–182 (2010).
    • 119  Hogset A, Prasmickaite L, Tjelle TE, Berg K. Photochemical transfection: a new technology for light-induced, site-directed gene delivery. Hum. Gene Ther.11(6),869–880 (2000).
    • 120  De Paula D, Bentley MV, Mahato RI. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA13(4),431–456 (2007).
    • 121  Lai PS, Pai CL, Peng CL, Shieh MJ, Berg K, Lou PJ. Enhanced cytotoxicity of saporin by polyamidoamine dendrimer conjugation and photochemical internalization. J. Biomed. Mater. Res. A87(1),147–155 (2008).
    • 122  Cabral H, Nakanishi M, Kumagai M, Jang WD, Nishiyama N, Kataoka K. A photo-activated targeting chemotherapy using glutathione sensitive camptothecin-loaded polymeric micelles. Pharm. Res.26(1),82–92 (2009).
    • 123  Lai PS, Lou PJ, Peng CL et al. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J. Control. Release122(1),39–46 (2007).
    • 124  Bae KH, Lee JY, Lee SH, Park TG, Nam YS. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv. Healthc. Mater.2(4),576–584 (2013).
    • 125  Raemdonck K, Naeye B, Buyens K et al. Biodegradable dextran nanogels for RNA interference: focusing on endosomal escape and intracellular siRNA delivery. Adv. Funct. Mater. (19), 1–10 (2009).
    • 126  Varkouhi AK, Schiffelers RM, Van Steenbergen MJ, Lammers T, Hennink WE, Storm G. Photochemical internalization (PCI)-mediated enhancement of gene silencing efficiency of polymethacrylates and N,N,N-trimethylated chitosan (TMC) based siRNA polyplexes. J. Control. Release148(1),e98–e99 (2010).
    • 127  Jin H, Lovell JF, Chen J et al. Cytosolic delivery of LDL nanoparticle cargo using photochemical internalization. Photochem. Photobiol. Sci.10(5),810–816 (2011).
    • 128  Jorgensen JA, Hovig E, Boe SL. Potent gene silencing in vitro at physiological pH using chitosan polymers. Nucleic Acid Ther.22(2),96–102 (2012).
    • 129  Ndoye A, Dolivet G, Hogset A et al. Eradication of p53-mutated head and neck squamous cell carcinoma xenografts using nonviral p53 gene therapy and photochemical internalization. Mol. Ther.13(6),1156–1162 (2006).
    • 130  Hellum M, Hogset A, Engesaeter BO et al. Photochemically enhanced gene delivery with cationic lipid formulations. Photochem. Photobiol. Sci.2(4),407–411 (2003).
    • 131  Prasmickaite L, Hogset A, Tjelle TE, Olsen VM, Berg K. Role of endosomes in gene transfection mediated by photochemical internalisation (PCI). J. Gene Med.2(6),477–488 (2000).
    • 132  Dietze A, Bonsted A, Hogset A, Berg K. Photochemical internalization enhances the cytotoxic effect of the protein toxin gelonin and transgene expression in sarcoma cells. Photochem. Photobiol.78(3),283–289 (2003).
    • 133  Prasmickaite L, Hogset A, Berg K. The role of the cell cycle on the efficiency of photochemical gene transfection. Biochim. Biophys. Acta1570(3),210–218 (2002).
    • 134  Arnida, Nishiyama N, Kanayama N, Jang WD, Yamasaki Y, Kataoka K. PEGylated gene nanocarriers based on block catiomers bearing ethylenediamine repeating units directed to remarkable enhancement of photochemical transfection. J. Control. Release115(2),208–215 (2006).
    • 135  Gargouri M, Sapin A, Arica-Yegin B, Merlin JL, Becuwe P, Maincent P. Photochemical internalization for pDNA transfection: evaluation of poly(d,l-lactide-co-glycolide) and poly(ethylenimine) nanoparticles. Int. J. Pharm.403(1–2),276–284 (2011).
    • 136  Garaiova Z, Strand SP, Reitan NK et al. Cellular uptake of DNA–chitosan nanoparticles: the role of clathrin- and caveolae-mediated pathways. Int. J. Biol. Macromol.51(5),1043–1051 (2012).
    • 137  Prasmickaite L, Hellum M, Kaalhus O, Hogset A, Wagner E, Berg K. Photochemical internalization of transgenes controlled by the heat-shock protein 70 promoter. Photochem. Photobiol.82(3),809–816 (2006).