We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Combining hard and soft magnetism into a single core-shell nanoparticle to achieve both hyperthermia and image contrast

    Qiuhong Yang

    Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA

    ,
    Maogang Gong

    Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA

    ,
    Shuang Cai

    Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA

    ,
    Ti Zhang

    Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA

    ,
    Justin T Douglas

    Nuclear Magnetic Resonance Laboratory, University of Kansas, Lawrence, KS 66045, USA

    ,
    Viktor Chikan

    Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA

    ,
    Neal M Davies

    The Faculty of Pharmacy, University of Manitoba, Winnipeg, MB R3E OT5, Canada

    ,
    Phil Lee

    Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA

    Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA

    ,
    In-Young Choi

    Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA

    Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA

    ,
    Shenqiang Ren

    Department of Mechanical Engineering and Temple Material Institute, Temple University, Philadelphia, PA 19122, USA

    &
    M Laird Forrest

    *Author for correspondence:

    E-mail Address: mforrest@ku.edu

    Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA

    Published Online:https://doi.org/10.4155/tde.15.68

    Background: A biocompatible core/shell structured magnetic nanoparticles (MNPs) was developed to mediate simultaneous cancer therapy and imaging. Methods & results: A 22-nm MNP was first synthesized via magnetically coupling hard (FePt) and soft (Fe3O4) materials to produce high relative energy transfer. Colloidal stability of the FePt@Fe3O4 MNPs was achieved through surface modification with silane-polyethylene glycol (PEG). Intravenous administration of PEG-MNPs into tumor-bearing mice resulted in a sustained particle accumulation in the tumor region, and the tumor burden of treated mice was a third that of the mice in control groups 2 weeks after a local hyperthermia treatment. In vivo magnetic resonance imaging exhibited enhanced T2 contrast in the tumor region. Conclusion: This work has demonstrated the feasibility of cancer theranostics with PEG-MNPs.

    References

    • 1 Tsiapa I, Efthimiadou EK, Fragogeorgi E et al. Tc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of alphabeta-mediated tumor expression and feasibility for hyperthermia treatment. J. Colloid Interface Sci. 433C, 163–175 (2014).
    • 2 Yuan C, An Y, Zhang J et al. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma. Nanotechnology 25(34), 345101 (2014).
    • 3 Majeed J, Pradhan L, Ningthoujam RS, Vatsa RK, Bahadur D, Tyagi AK. Enhanced specific absorption rate in silanol functionalized feo core-shell nanoparticles: Study of fe leaching in feo and hyperthermia in l929 and hela cells. Colloids Surf. B. Biointerfaces 122C, 396–403 (2014).
    • 4 Baldi G, Ravagli C, Mazzantini F et al. In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor receptor-targeted peg-based nanocarrier containing magnetic nanoparticles. Int. J. Nanomedicine 9, 3037–3056 (2014).• Confirms the possibility of using magnetic nanoparticle (MNP) containing nanocarrier as an anticancer agent against epidermoid carcinoma.
    • 5 Burford CD, Bhattacharyya KD, Boriraksantikul N et al. Nanoparticle mediated thermal ablation of breast cancer cells using a nanosecond pulsed electric field. IEEE Trans. Nanobiosci. 12(2), 112–118 (2013).• Demonstrates the thermal ablation of breast cancer cells using functionalized metallic nanoparticles.
    • 6 Singh A, Sahoo SK. Magnetic nanoparticles: A novel platform for cancer theranostics. Drug Discov. Today 19(4), 474–481 (2013).
    • 7 Shubayev VI, Pisanic TR 2nd, Jin S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 61(6), 467–477 (2009).
    • 8 Hayashi K, Nakamura M, Sakamoto W et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 3(6), 366–376 (2013).
    • 9 Laurent S, Dutz S, Hafeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166(1–2), 8–23 (2011).
    • 10 Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (London, UK) 2(1), 23–39 (2007).
    • 11 Mccarthy JR, Kelly KA, Sun EY, Weissleder R. Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine (London, UK) 2(2), 153–167 (2007).
    • 12 Mikhaylova M, Kim DK, Bobrysheva N et al. Superparamagnetism of magnetite nanoparticles: Dependence on surface modification. Langmuir 20(6), 2472–2477 (2004).
    • 13 Warner S. Diagnostics + therapy = theranostics. Scientist 18(16), 38–39 (2004).
    • 14 Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 60(16), 4324–4327 (2000).
    • 15 Torosean S, Flynn B, Axelsson J et al. Nanoparticle uptake in tumors is mediated by the interplay of vascular and collagen density with interstitial pressure. Nanomedicine 9(2), 151–158 (2013).
    • 16 Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 65(1), 71–79 (2013).
    • 17 Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41(12), 1578–1586 (2008).
    • 18 Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat. Biotechnol. 24(10), 1211–1217 (2006).
    • 19 Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001).
    • 20 Durymanov MOAAR, Alexander S, Sobolev AS. Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics 5(9), 1007–1020 (2015).
    • 21 Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11(11), 2319–2331 (2001).
    • 22 Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3(11), 397–415 (2008).
    • 23 Pollert E, Veverka P, Veverka M et al. Search of new core materials for magnetic fluid hyperthermia: preliminary chemical and physical issues. Prog. Solid State Chem. 37(1), 1–14 (2009).
    • 24 Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J. Am. Chem. Soc. 132(38), 13270–13278 (2010).• Demonstrates the potential application of FePt nanoparticles as molecular imaging contrast agent for MRI and CT.
    • 25 Kim J, Rong C, Liu JP, Sun S. Dispersible ferromagnetic FePt nanoparticles. Adv. Mater. 21(8), 906–909 (2009).
    • 26 Lee SJ, Cho JH, Lee C, Cho J, Kim YR, Park JK. Synthesis of highly magnetic graphite-encapsulated FeCo nanoparticles using a hydrothermal process. Nanotechnology 22(37), 375603 (2011).
    • 27 Ennas G, Falqui A, Marras S, Sangregorio C, Marongiu G. Influence of metal content on size, dispersion, and magnetic properties of iron−cobalt alloy nanoparticles embedded in silica matrix. Chem. Mater. 16(26), 5659–5663 (2004).
    • 28 Mori K, Kondo Y, Yamashita H. Synthesis and characterization of FePd magnetic nanoparticles modified with chiral binap ligand as a recoverable catalyst vehicle for the asymmetric coupling reaction. Phys. Chem. Chem. Phys. 11(39), 8949–8954 (2009).
    • 29 Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 44(10), 875–882 (2011).
    • 30 Zeng H, Li J, Wang ZL, Liu JP, Sun S. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 4(1), 187–190 (2003).
    • 31 Zeng H, Sun S, Li J, Wang ZL, Liu JP. Tailoring magnetic properties of core/shell nanoparticles. Appl. Phys. Lett. 85(5), 792–794 (2004).
    • 32 Masala O, Hoffman D, Sundaram N et al. Preparation of magnetic spinel ferrite core/shell nanoparticles: soft ferrites on hard ferrites and vice versa. Solic State Sci. 8(9), 1015–1022 (2006).
    • 33 Lee JH, Jang JT, Choi JS et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 6(7), 418–422 (2011).• Demonstrates the increased antitumor efficiency of core/shell-mediated hyperthermia.
    • 34 Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252(0), 370–374 (2002).
    • 35 Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293–346 (2003).
    • 36 Chen M, Yamamuro S, Farrell D, Majetich SA. Gold-coated iron nanoparticles for biomedical applications. J. Appl. Phys. 93(10), 7551–7553 (2003).
    • 37 Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10), 2900–2906 (2001).
    • 38 Tartaj P, González-Carreño T, Serna CJ. Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties. Adv. Mater. 13(21), 1620–1624 (2001).
    • 39 Berry CC, Wells S, Charles S, Curtis AS. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24(25), 4551–4557 (2003).
    • 40 Carmen Bautista M, Bomati-Miguel O, Del Puerto Morales M, Serna CJ, Veintemillas-Verdaguer S. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J. Magn. Magn. Mater. 293(1), 20–27 (2005).
    • 41 Hee Kim E, Sook Lee H, Kook Kwak B, Kim B-K. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289(0), 328–330 (2005).
    • 42 Li G-Y, Jiang Y-R, Huang K-L, Ding P, Yao L-L. Kinetics of adsorption of saccharomyces cerevisiae mandelated dehydrogenase on magnetic Fe3O4–chitosan nanoparticles. Colloids Surf. A 320(1–3), 11–18 (2008).
    • 43 Li G-Y, Huang K-L, Jiang Y-R, Ding P, Yang D-L. Preparation and characterization of carboxyl functionalization of chitosan derivative magnetic nanoparticles. Biochem. Eng. J. 40(3), 408–414 (2008).
    • 44 Chen F, Gao Q, Hong G, Ni J. Synthesis of magnetite core–shell nanoparticles by surface-initiated ring-opening polymerization of L-lactide. J. Magn. Magn. Mater. 320(13), 1921–1927 (2008).
    • 45 Gómez-Lopera SA, Arias JL, Gallardo V, Delgado ÁV. Colloidal stability of magnetite/poly(lactic acid) core/shell nanoparticles. Langmuir 22(6), 2816–2821 (2006).
    • 46 Gupta AK, Curtis AS. Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. J. Mater. Sci. Mater. Med. 15(4), 493–496 (2004).
    • 47 Liu Z, Robinson JT, Sun X, Dai H. Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008).
    • 48 Liu D, Wu W, Ling J, Wen S, Gu N, Zhang X. Effective pegylation of iron oxide nanoparticles for high performance in vivo cancer imaging. Adv. Funct. Mater. 21(8), 1498–1504 (2011).
    • 49 Larsen EKU, Nielsen T, Wittenborn T et al. Size-dependent accumulation of pegylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3(7), 1947–1951 (2009).• Reveals an easy surface modification strategy of MNPs to enhance their dispersity in aqueous solution.
    • 50 Larsen EK, Nielsen T, Wittenborn T et al. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. Nanoscale 4(7), 2352–2361 (2012).
    • 51 Cole AJ, David AE, Wang J, Galban CJ, Hill HL, Yang VC. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32(8), 2183–2193 (2011).
    • 52 Cole AJ, David AE, Wang J, Galban CJ, Yang VC. Magnetic brain tumor targeting and biodistribution of long-circulating peg-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials 32(26), 6291–6301 (2011).
    • 53 Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7), 1553–1561 (2002).
    • 54 Cohen MS, Cai S, Xie Y, Forrest ML. A novel intralymphatic nanocarrier delivery system for cisplatin therapy in breast cancer with improved tumor efficacy and lower systemic toxicity in vivo. Am. J. Surg. 198(6), 781–786 (2009).
    • 55 Sun C, Sze R, Zhang M. Folic acid-peg conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J. Biomed. Mater. Res. A. 78A(3), 550–557 (2006).• Reports an MNPs-based nanoconjugate to achieve targeted tumor delivery and enhance the MRI contrast.
    • 56 Strupp J. Stimulate: a GUI based fMRI analysis software package. NeuroImage 3(3), S607 (1996).
    • 57 Wei DH, Yao YD. Magnetization reversal mechanism and microstructure refinement of the FEPT (001) nanogranular films with sio2 capping layer. IEEE Trans. Magn. 45(10), 4092–4095 (2009).
    • 58 Lin Z, Cai W, Jiang W, Fu C, Li C, Song Y. Effects of annealing temperature on the microstructure, optical, ferroelectric and photovoltaic properties of bifeo3 thin films prepared by sol–gel method. Ceram. Int. 39(8), 8729–8736 (2013).
    • 59 Mei Hyie K, Yaacob II. Annealing behavior of fept ferromagnetic nanoparticles prepared in water-in- oil microemulsions. AIP Conf. Proc. 1138(1), 117–128 (2009).
    • 60 Nguyen HL, Howard LEM, Stinton GW et al. Synthesis of size-controlled fcc and fct fept nanoparticles. Chem. Mater. 18(26), 6414–6424 (2006).
    • 61 Kang S, Jia Z, Nikles DE, Harrell JW. Synthesis, self-assembly, and magnetic properties of [FEPT]/sub 1-x/au/sub x/nanoparticles. IEEE Trans. Magn. 39(5), 2753–2757 (2003).
    • 62 Mills N. 150 And More Basic NMR Experiments: A Practical Course (2nd edition). Braun S, Kalinowski H-O, Berger S (Eds). J. Chem. Educ. 77(7), 831 (2000).
    • 63 Habib AH, Ondeck CL, Chaudhary P, Bockstaller MR, Mchenry ME. Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy. J. Appl. Phys. 103(7), (2008).
    • 64 Maenosono S, Saita S. Theoretical assessment of fept nanoparticles as heating elements for magnetic hyperthermia. IEEE Trans. Magn. 42(6), 1638–1642 (2006).
    • 65 Inomata K, Sawa T, Hashimoto S. Effect of large boron additions to magnetically hard Fe–Pt alloys. J. Appl. Phys. 64(5), 2537–2540 (1988).
    • 66 Ma M, Wu Y, Zhou J, Sun Y, Zhang Y, Gu N. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J. Magn. Magn. Mater. 268(1–2), 33–39 (2004).
    • 67 Yamazaki M, Ito T. Deformation and instability in membrane structure of phospholipid vesicles caused by osmophobic association: mechanical stress model for the mechanism of poly(ethylene glycol)-induced membrane fusion. Biochemistry 29(5), 1309–1314 (1990).
    • 68 Dobretsov K, Stolyar S, Lopatin A. Magnetic nanoparticles: a new tool for antibiotic delivery to sinonasal tissues. Results of preliminary studies. Acta Otorhinolaryngol. Ital. 35(2), 97–102 (2015).
    • 69 Chen J, Wu H, Han D, Xie C. Using anti-VEGF MCAB and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Lett. 231(2), 169–175 (2006).
    • 70 Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001).
    • 71 Duguet E, Vasseur S, Mornet S, Devoisselle JM. Magnetic nanoparticles and their applications in medicine. Nanomedicine (London, UK) 1(2), 157–168 (2006).
    • 72 Bulte JWM, Cuyper MD, Despres D, Frank JA. Preparation, relaxometry, and biokinetics of pegylated magnetoliposomes as mr contrast agent. J. Magn. Magn. Mater. 194(1–3), 204–209 (1999).
    • 73 Tong Q, Li H, Li W et al. In vitro and in vivo anti-tumor effects of gemcitabine loaded with a new drug delivery system. J. Nanosci. Nanotechnol. 11(4), 3651–3658 (2011).
    • 74 Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Pt 1), 6387–6392 (1986).
    • 75 Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 148(2), 135–146 (2010).
    • 76 Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the epr effect in macromolecular therapeutics: a review. J. Control. Release 65(1–2), 271–284 (2000).
    • 77 Sawant R, Sawant R, Gultepe E et al. Nanosized cancer cell-targeted polymeric immunomicelles loaded with superparamagnetic iron oxide nanoparticles. J. Nanopart. Res. 11(7), 1777–1785 (2009).
    • 78 Wang R, Billone PS, Mullett WM. Nanomedicine in action: an overview of cancer nanomedicine on the market and in clinical trials. J. Nanomater. 2013, 12 (2013).
    • 79 Dudar TE, Jain RK. Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res. 44(2), 605–612 (1984).
    • 80 Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res. 60(16), 4440–4445 (2000).
    • 81 Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J. Biosci. Bioeng. 96(4), 364–369 (2003).
    • 82 Du L, Zhou J, Wang X et al. Effect of local hyperthermia induced by nanometer magnetic fluid on the rabbit Vx2 liver tumor model. Progr. Nat. Sci. 19(12), 1705–1712 (2009).