We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/bio.09.65

The continuing desire to analyze complex biological samples with the minimum number of steps places high demands on increasing speed, dynamic signal range, quantitative capability and the facility with which the mass spectrometers can interface with chromatographic separation methods. Reliable identification of metabolites in complex mixtures requires robust mass spectrometers with high resolving power, mass accuracy, sensitivity and dynamic range, while tandem MS is an invaluable tool for further structural characterization. This review begins with a discussion of the key properties of the Orbitrap™ mass analyzer: mass accuracy, resolution, fidelity of isotope pattern abundancies and dynamic range. The main objective is to provide an overview of Orbitrap applications in the field of bioanalysis. Specific areas of drug metabolism, doping control and food contaminants are discussed in detail illustrating the performance and versatility of the Orbitrap mass analyzer.

Papers of special note have been highlighted as: ▪ of interest

Bibliography

  • Srinivas NR. Changing need for bioanalysis during drug development. Biomed. Chromatogr.22(3),235–243 (2008).
  • Chen GD, Pramanik BN, Liu YH, Mirza UA. Applications of LC/MS in structure identifications of small molecules and proteins in drug discovery. J. Mass Spectrom.42(3),279–287 (2007).
  • Holcapek M, Kolarova L, Nobilis M. High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of Phase I and Phase II drug metabolites. Anal. Bioanal. Chem.391,59–78 (2008).▪ Summarizes applications of tandem MS techniques coupled with High-Performance Liquid Chromatography to the identification and determination of Phase I and II metabolites.
  • Scigelova M, Makarov A. Orbitrap mass analyzer – overview and applications in proteomics. Proteomics6,16–21 (2006).▪ Easy-to-understand introduction to the Orbitrap™ mass analyzer with details about its use in various areas of proteomics.
  • Perry RH, Cooks G, Noll RJ. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom. Rev.27,661–699 (2008).▪ Excellent description of the Orbitrap function, performance and experimental techniques, all accessible to a reader with no in-depth knowledge of physics or MS theory in particular. It provides a very comprehensive overview of the Orbitrap applications listing most articles published until mid-2008.
  • O’Connor D, Mortishire-Smith R. High-throughput bioanalysis with simultaneous acquisition of metabolic route data using ultra performance liquid chromatography coupled with time-of-flight mass spectrometry. Anal. Bioanal. Chem.385,114–121 (2006).
  • Ackermann BL, Berna MJ, Murphy AT. Advances in high throughput quantitative drug discovery bioanalysis. In: Integrated Strategies for Drug Discovery Using Mass Spectrometry. Lee MS (Ed.). John Wiley & Sons, NJ, USA 315–358 (2005).
  • van den Broek I, Sparidans RW, Schellens JHM, Beijnen JH. Quantitative bioanalysis of peptides by liquid chromatography coupled to (tandem) mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed.872,1–22 (2008).
  • Olsen JV, de Godoy LMF, Li G et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics4,2010–2021 (2005).
  • 10  Makarov A, Denisov E, Kholomeev A et al. performance evaluation of a hybrid linear ion trap/Orbitrap mass spectrometer. Anal. Chem.78(7),2113–2120 (2006).
  • 11  Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol.26,1367–1372 (2008).
  • 12  Dernovics M, Lobinski R. Speciation analysis of selenium metabolites in yeast-based food supplements by ICPMS-assisted hydrophilic interaction HPLC-hybrid linear ion trap/Orbitrap MS(n). Anal. Chem.80,3975–3984 (2008).
  • 13  Erve JCL, DeMaio W, Talaat RE. Rapid metabolite identification with sub parts-per-million mass accuracy from biological matrices by direct infusion nanoelectrospray ionization after clean-up on a ZipTip and LTQ/Orbitrap mass spectrometry. Rapid Commun. Mass Spectrom.22,3015–3026 (2008).
  • 14  Scheltema RA, Kamleh A, Wildridge D et al. Increasing the mass accuracy of high-resolution LC–MS data using background ions – a case study on the LTQ-Orbitrap. Proteomics8,4647–4656 (2008).
  • 15  De Laeter JR, Bohlke JK, De Bievre P et al. Atomic weights of the elements: review 2000. Pure Appl. Chem.75,683–800 (2003).
  • 16  Kind T, Fiehn O. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics7,234–244 (2006).▪ Discussion of the value and limits of using mass accuracy for elemental composition assignment; use of isotopic abundance patterns as a further constraint to remove the majority of false candidates.
  • 17  Zhang H, Zhang D, Ray K. A software filter to remove interference ions from drug metabolites in accurate mass liquid chromatography/mass spectrometric analyses. J. Mass Spectrom.38,1110–1112 (2003).
  • 18  Zhu MS, Ma L, Zhang HY, Humphreys WG. Detection and structural characterization of glutathione-trapped reactive metabolites using liquid chromatography–high-resolution mass spectrometry and mass defect filtering. Anal. Chem.79,8333–8341 (2007).
  • 19  Böcker S, Letzel MC, Lipták Z, Pervukhin A. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics25,218–224 (2009).
  • 20  Makarov A, Denisov E, Lange O, Kholomeev A, Horning S. Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. J. Am. Soc. Mass Spectrom.17,977–982 (2006).
  • 21  Makarov A, Denisov E. Dynamics of ions of intact proteins in the Orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. DOI: 10/1016/j.jasms.2009.03.024. (2009) (E-pub ahead of print).
  • 22  Tang K, Page J, Smith RD. Charge competition and linear dynamic range of detection in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom.15(10),1416–1423 (2004).
  • 23  Blom KF. Estimating the precision of exact mass measurements on an orthogonal time-of-flight mass spectrometer. Anal. Chem.73,715–719 (2001).
  • 24  Nielen MWF, van Engelen MC, Zuiderent R, Ramaker R. Screening and confirmation criteria for hormone residue analysis using liquid chromatography accurate mass time-of-flight, Fourier transform ion cyclotron resonance and Orbitrap mass spectrometry techniques. Anal. Chim. Acta586,122–129 (2007).
  • 25  Bateman KP, Kellmann M, Muenster H, Papp R, Taylor L. Quantitative–qualitative data acquisition using a bench-top Orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. DOI: 10.1016/j.jasms.2009.03.002 (2009) (E-pub ahead of print).
  • 26  Dunn WB, Broadhurst D, Brown M et al. Metabolic profiling of serum using ultra performance liquid chromatography and the LTQ-Orbitrap mass spectrometry system. J. Chrom. B871,288–298 (2008).▪ Interfacing sub-2-µm Liquid Chromatography to the linear ion trap (LTQ) Orbitrap; detection of metabolites in a complex mammalian biofluid, serum.
  • 27  Li AC, Shou WZ, Mai TT, Jiang XY. Complete profiling and characterization of in vitro nefazodone metabolites using two different tandem mass spectrometric platforms. Rapid Comm. Mass Spectrom.21,4001–4008 (2007)
  • 28  Chen GD, Khusid A, Daaro I, Irish P, Pramanik BN. Structural identification of trace level enol tautomer impurity by on-line hydrogen/deuterium exchange HR–LC/MS in a LTQ Orbitrap hybrid mass spectrometer. J. Mass Spectrom.42,967–970 (2007).
  • 29  Opinion of the Scientific Panel on Additives and Products or Substances used in Animal Feed on the safety and efficacy of the product Selenium enriched yeast (Saccharomyces cerevisiae NCYC R397) as a feed additive for all species in accordance with Regulation (EC) No 1831/2003. Eur. Food Saf. Authority J.430,1–23 (2006).
  • 30  Cuyckens F, Balcaen LIL, De Wolf K et al. Use of the bromine isotope ratio in HPLC –ICP–MS and HPLC–ESIMS analysis of a new drug in development. Anal. Bioanal. Chem.390,1717–1729 (2008).
  • 31  Lim HK, Chen J, Cook K, Sensenhauser C, Silva J, Evans DC. A generic method to detect electrophilic intermediates using isotopic pattern triggered data-dependent high-resolution accurate mass spectrometry. Rapid Comm. Mass Spectrom.22,1295–1311 (2008).
  • 32  Peterman SM, Duczak N, Kalgutkar AS, Lame ME, Soglia JR. Application of a linear ion trap/Orbitrap mass spectrometer in metabolite characterization studies: Examination of the human liver microsomal metabolism of the non-tricyclic anti-depressant nefazodone using data-dependent accurate mass measurements. J. Am. Soc. Mass Spectrom.17,363–375 (2006).
  • 33  Lim HK, Chen J, Sensenhauser C, Cook K, Subramanyam V. Metabolite identification by data-dependent accurate mass spectrometric analysis at resolving power of 60,000 in external calibration mode using an LTQ/Orbitrap. Rapid Comm. Mass Spectrom.21,1821–1832 (2007).
  • 34  Wang YY, Chen XY, Li Q, Zhong DF. Characterization of metabolites of a novel histamine H(2)-receptor antagonist, lafutidine, in human liver microsomes by liquid chromatography coupled with ion trap mass spectrometry. Rapid Commun. Mass Spectrom.22,1843–1852 (2008).
  • 35  Zhang NR, Yu S, Tiller P, Yeh S, Mahan E, Emary WB. Quantitation of small molecules using high-resolution accurate mass spectrometers – a different approach for analysis of biological samples. Rapid Commun. Mass Spectrom.23,1085–1094 (2009).▪ Direct comparison of quantitative performance between API 4000™ triple–quadrupole and the LTQ Orbitrap.
  • 36  Bluemlein K, Raab A, Meharg AA, Charnock JM, Fledmann J. Can we trust mass spectrometry for determination of arsenic peptides in plants: comparison of LC ICP–MS and LC–ES–MS/ICP–MS with XANES/EXAFS in analysis of Thunbergia alata. Anal. Bioanal. Chem.390,1739–1751 (2007).
  • 37  Ruan Q, Peterman S, Szewc MA et al. An integrated method for metabolite detection and identification using a linear ion trap/Orbitrap mass spectrometer and multiple data processing techniques: application to indinavir metabolite detection. J. Mass Spectrom.43(2),251–261 (2008).
  • 38  Mathur R, O’Connor PB. Artifacts in Fourier transform mass spectrometry. Rapid Commun. Mass Spectrom.23(4),523–529 (2009).
  • 39  Pico Y, Barcelo D. The expanding role of LC–MS in analyzing metabolites and degradation products of food contaminants. Trac. Trends Anal. Chem.27,821–835 (2008).
  • 40  van der Heeft E, Bolck YJC, Beumer B, Nijrolder AWJM, Stolker AAM, Nielen MWF. Full-scan accurate mass selectivity of ultra-performance liquid chromatography with time-of-flight and Orbitrap mass spectrometry in hormone and veterinary drug residue analysis. J. Am. Soc. Mass Spectrom.20,451–463 (2009).▪ Demonstrates the benefits of high-resolution accurate mass analysis with the LTQ Orbitrap by direct comparison with results from a quadruple time-of-flight instrument.
  • 41  Le Breton MH, Rochereau-Roulet S, Pinel G et al. Direct determination of recombinant bovine somatotropin in plasma from a treated goat by liquid chromatography/high-resolution mass spectrometry. Rapid Commun. Mass Spectrom.22,3130–3136 (2008).
  • 42  Hogenboom AC, van Leerdam JA, de Voogt P. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography–hybrid linear ion trap Orbitrap mass spectrometry. J. Chromatogr. A1216,510–519 (2009).
  • 43  Thevis M, Kamber M, Schanzer W. Screening for metabolically stable aryl-propionamide-derived selective androgen receptor modulators for doping control purposes. Rapid Comm. Mass Spectrom.20,870–876 (2006).
  • 44  Thevis M, Kohler M, Maurer J, Schlorer N, Kamber M, Schanzer W. Screening for 2-quinolinone-derived selective androgen receptor agonists in doping control analysis. Rapid Comm. Mass Spectrom.21,3477–3486 (2007).
  • 45  Thevis M, Kohler M, Thomas A et al. Determination of benzimidazole- and bicyclic hydantoin-derived selective androgen receptor antagonists and agonists in human urine using LC–MS/MS. Anal. Bioanal. Chem.391,251–261 (2008).
  • 46  Thevis M, Kohler M, Schlorer N et al. Mass spectrometry of hydantoin-derived selective androgen receptor modulators. J. Mass Spectrom.43,639–650 (2008).
  • 47  Thevis M, Schanzer W. Mass spectrometry of selective androgen receptor modulators. J. Mass Spectrom.43,865–876 (2008).
  • 48  Thevis M, Kohler M, Thomas A, Schlorer N, Schanzer W. Doping control analysis of tricyclic tetrahydroquinoline-derived selective androgen receptor modulators using liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom.22,2471–2478 (2008).
  • 49  Thevis M, Wilkens F, Geyer H, Schanzer W. Determination of therapeutics with growth-hormone secretagogue activity in human urine for doping control purposes. Rapid Comm. Mass Spectrom.20(22),3393–3409 (2006).
  • 50  Thevis M, Sigmund G, Schiffer AK, Schanzer W. Determination of N-desmethyl- and N-bisdesmethyl metabolite of sibutramine in doping control analysis using liquid chromatography–tandem mass spectrometry. Eur. J. Mass Spectrom.12,129–136 (2006).
  • 51  Thevis M, Krug O, Schanzer W. Mass spectrometric characterization of efaproxiral (RSR13) and its implementation into doping controls using liquid chromatography atmospheric pressure ionization–tandem mass spectrometry. J. Mass Spectrom.41(3),332–338 (2006).
  • 52  Thevis M, Makarov AA, Horning S, Schanzer W. Mass spectrometry of stanozolol and its analogues using electrospray ionization and collision-induced dissociation with quadrupole-linear ion trap and linear ion trap–Orbitrap hybrid mass analyzers. Rapid Comm. Mass Spectrom.19,3369–3378 (2005).
  • 53  Virus ED, Sobolevsky TG, Rodchenkov GM. Introduction of HPLC/Orbitrap mass spectrometry as screening method for doping control. J. Mass Spectrom.43,949–957 (2008).
  • 54  Thomas A, Geyer H, Kamber M, Schanzer W, Thevis M. Mass spectrometric determination of gonadotrophin-releasing hormone (GnRH) in human urine for doping control purposes by means of LC ESI–MS/MS. J. Mass Spectrom.43,908–915 (2008).
  • 55  Thevis M, Thomas A, Schanzer W. Mass spectrometric determination of insulins and their degradation products in sports drug testing. Mass Spectrom. Rev.27,35–50 (2008).
  • 56  Bredehoft M, Schanzer W, Thevis M. Quantification of human insulin-like growth factor-1 and qualitative detection of its analogues in plasma using liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Comm. Mass Spectrom.22,477–485 (2008).
  • 57  Thevis M, Bredehoft M, Geyer H, Kamber M, Delahaut P, Schanzer W. Determination of Synacthen in human plasma using immunoaffinity purification and liquid chromatography/tandem mass spectrometry. Rapid Comm. Mass Spectrom.20,3551–3556 (2006).
  • 58  Thevis M, Maurer I, Kohler M, Geyer H, Schanzer W. Proteases in doping control analysis. Intl J. Sports Med.28,545–549 (2007).
  • 59  Hatsis P, Kapron JT. A review on the application of high-field asymmetric waveform ion mobility spectrometry (FAIMS) in drug discovery. Rapid Commun. Mass Spectrom.22(5),735–738 (2008).
  • 60  Hatsis P, Brockman AH, Wu J. Evaluation of high-field asymmetric waveform ion mobility spectrometry coupled to nanoelectrospray ionization for bioanalysis in drug discovery. Rapid Commun. Mass Spectrom.21(14),2295–2300 (2008).
  • 61  Xuan Y, Creese AJ, Horner JA, Cooper HJ. High field asymmetric waveform ion mobility spectrometry (FAIMS) coupled with high resolution electron transfer dissociation mass spectrometry for the analysis of phosphopeptides. Rapid Commun. Mass Spectrom.23,1963–1969 (2009).
  • 62  Hu QZ, Talaty N, Noll RJ, Cooks RG. Desorption electrospray ionization using an Orbitrap mass spectrometer: exact mass measurements on drugs and peptides. Rapid Comm. Mass Spectrom.20,3403–3408 (2006).
  • 63  Faubert D, Venne K, Champagne C et al. High throughput accurate mass measurement using the LDTD ion source on the LTQ Orbitrap. Presented at: 56th ASMS Conference on Mass Spectrometry and Allied Topics. Denver, CO, USA 1–5 June 2008.
  • 64  Strupat K, Bui H, Kovtoun V et al. MALDI Produced Ions Inspected with a Linear Ion Trap - Orbitrap Mass Analyzer. Presented at: 56th ASMS Conference on Mass Spectrometry and Allied Topics. Denver, CO, USA 1–5 June 2008.
  • 65  Makarov A, Denisov E, Lange O. Performance evaluation of a high-field orbitrap mass analyzer. J. Am. Soc. Mass Spectrom. DOI: 10.1016/j.jasms.2009.01.005 (2009) (E-pub ahead of print).
  • 66  Sheldon MT, Mistrik R, Croley TR. Determination of ion structures in structurally related compounds using precursor ion fingerprinting. J. Am. Soc. Mass Spectrom.20(3),370–376 (2009).▪ Outline of the ‘spectral trees’ concept: use of extensive MS analyses to populate libraries with spectral trees, allowing for automated partial structural identification of unknowns.
  • 101  MetWorks 1.1.0 software including Multiple Mass Defect Filter www.thermo.com/com/cma/article/article_preview_temp/1,,20509–1,00.html
  • 102  Mass Frontier software www.highchem.com
  • 103  Laser Diode Thermal Desorption theory www.ldtd-ionsource.com/stock/eng/an-0712_ldtd_theorical_approach.pdf
  • 104  Laser Diode Thermal Desorption coupled with the LTQ Orbitrap used for polyaromatic compound analysis www.ldtd-ionsource.com/stock/eng/poster-high-throughput-ldtd-ltq-orbitrap.pdf