We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/bio.10.172

Isothermal DNA amplification is an alternative to PCR-based amplification for point-of-care diagnosis. Since the early 1990s, the approach has been refined into a simple, rapid and cost-effective tool by means of several distinct strategies. Input signals have been diversified from DNA to RNA, protein or small organic molecules by translating these signals into input DNA before amplification, thus allowing assays on various classes of biomolecules. In situ detection of single biomolecules has been achieved using an isothermal method, leveraging localized signal amplification in an intact specimen. A few pioneering studies to develop a homogenous isothermal protein assay have successfully translated structure-switching of a probe upon target binding into input DNA for isothermal amplification. In addition to the detection of specific targets, isothermal methods have made whole-genome amplification of single cells possible owing to the unbiased, linear nature of the amplification process as well as the large size of amplified products given by ϕ29 DNA polymerase. These applications have been devised with the four isothermal amplification strategies covered in this review: strand-displacement amplification, rolling circle amplification, helicase-dependent amplification and recombinase polymerase amplification.

Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

Bibliography

  • Moore P. PCR: replicating success. Nature435(7039),235–238 (2005).
  • Herrmann MG, Durtschi JD, Wittwer CT, Voelkerding KV. Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clin. Chem.53(8),1544–1548 (2007).
  • Elenitoba-Johnson O, David D, Crews N, Wittwer CT. Plastic versus glass capillaries for rapid-cycle PCR. Biotechniques44(4),487–488 490 492 (2008).
  • Oda RP, Strausbauch MA, Huhmer AF et al. Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. Anal. Chem.70(20),4361–4368 (1998).
  • Easley CJ, Humphrey JAC, Landers JP. Thermal isolation of microchip reaction chambers for rapid noncontact DNA amplification. J. Micromech. Microeng.17,1758–1766 (2007).
  • Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl Acad. Sci. USA89(13),5847–5851 (1992).
  • Wells D, Delhanty JD. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol. Hum. Reprod.6(11),1055–1062 (2000).
  • Barker DL, Hansen MS, Faruqi AF et al. Two methods of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage panel. Genome Res.14(5),901–907 (2004).
  • Aryan E, Makvandi M, Farajzadeh A et al. A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110 for detection of mycobacterium tuberculosis complex. Microbiol. Res.165(3),211–220 (2010).
  • 10  Bachmann LH, Johnson RE, Cheng H, Markowitz LE, Papp JR, Hook EW 3rd. Nucleic acid amplification tests for diagnosis of Neisseria gonorrhoeae oropharyngeal infections. J. Clin. Microbiol.47(4),902–907 (2009).
  • 11  Hawkins TL, Detter JC, Richardson PM. Whole genome amplification – applications and advances. Curr. Opin. Biotechnol.13(1),65–67 (2002).
  • 12  Lasken RS, Egholm M. Whole genome amplification: abundant supplies of DNA from precious samples or clinical specimens. Trends Biotechnol.21(12),531–535 (2003).
  • 13  Chow WH, Mccloskey C, Tong Y et al. Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic Clostridium difficile. J. Mol. Diagn.10(5),452–458 (2008).
  • 14  Kaneko H, Kawana T, Fukushima E, Suzutani T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. Methods70(3),499–501 (2007).
  • 15  Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother.15(2),62–69 (2009).
  • 16  Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep.5(8),795–800 (2004).▪▪ First paper to report helicase-dependent amplification (HDA).
  • 17  Dafforn A, Chen P, Deng G et al. Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis. Biotechniques37(5),854–857 (2004).
  • 18  Goldmeyer J, Kong H, Tang W. Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection. J. Mol. Diagn.9(5),639–644 (2007).
  • 19  Christian AT, Pattee MS, Attix CM, Reed BE, Sorensen KJ, Tucker JD. Detection of DNA point mutations and mRNA expression levels by rolling circle amplification in individual cells. Proc. Natl Acad. Sci. USA98(25),14238–14243 (2001).
  • 20  Zhou L, Ou LJ, Chu X, Shen GL, Yu RQ. Aptamer-based rolling circle amplification: A platform for electrochemical detection of protein. Anal. Chem.79(19),7492–7500 (2007).
  • 21  Cheng W, Yan F, Ding L, Ju H, Yin Y. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Anal. Chem.82(8),3337–3342 (2010).
  • 22  Ou LJ, Liu SJ, Chu X, Shen GL, Yu RQ. DNA encapsulating liposome based rolling circle amplification immunoassay as a versatile platform for ultrasensitive detection of protein. Anal. Chem.81(23),9664–9673 (2009).
  • 23  Lasken RS. Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochem. Soc. Trans.37(Pt 2),450–453 (2009).
  • 24  Dean FB, Hosono S, Fang L et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl Acad. Sci. USA99(8),5261–5266 (2002).▪▪ First paper to report whole-genome amplification using strand-displacement amplification (SDA).
  • 25  Hosono S, Faruqi AF, Dean FB et al. Unbiased whole-genome amplification directly from clinical samples. Genome Res.13(5),954–964 (2003).
  • 26  Woyke T, Tighe D, Mavromatis K et al. One bacterial cell, one complete genome. PLoS ONE5(4),e10314 (2010).▪ Emphasizes isothermal whole-genome amplification (WGA) as a tool for single cell genome sequencing.
  • 27  Pan X, Urban AE, Palejev D et al. A procedure for highly specific, sensitive, and unbiased whole-genome amplification. Proc. Natl Acad. Sci. USA105(40),15499–15504 (2008).▪ Describes a detailed protocol for improving WGA.
  • 28  Geigl JB, Obenauf AC, Waldispuehl-Geigl J et al. Identification of small gains and losses in single cells after whole genome amplification on tiling oligo arrays. Nucleic Acids Res.37(15),e105 (2009).
  • 29  Mill J, Petronis A. Profiling DNA methylation from small amounts of genomic DNA starting material: efficient sodium bisulfite conversion and subsequent whole-genome amplification. Methods Mol. Biol.507,371–381 (2009).
  • 30  Vaissiere T, Cuenin C, Paliwal A et al. Quantitative analysis of DNA methylation after whole bisulfitome amplification of a minute amount of DNA from body fluids. Epigenetics4(4),221–230 (2009).
  • 31  Zhou D, Zhang R, Fang R, Cheng L, Xiao P, Lu Z. Methylation pattern analysis using high-throughput microarray of solid-phase hyperbranched rolling circle amplification products. Electrophoresis29(3),626–633 (2008).
  • 32  Zhang K, Martiny AC, Reppas NB et al. Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol.24(6),680–686 (2006).
  • 33  Walker GT, Little MC, Nadeau JG, Shank DD. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc. Natl Acad. Sci. USA89(1),392–396 (1992).▪▪ First paper to mention exponential SDA.
  • 34  Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand displacement amplification –an isothermal, in vitro DNA amplification technique. Nucleic Acids Res.20(7),1691–1696 (1992).
  • 35  Walker GT, Linn CP. Detection of Mycobacterium tuberculosis DNA with thermophilic strand displacement amplification and fluorescence polarization. Clin. Chem.42(10),1604–1608 (1996).
  • 36  Bean DC, Hills A, Ryan T, Aitken J. Evaluation of the BD probetec et system for direct detection of Mycobacterium bovis in veterinary specimens. J. Clin. Microbiol.45(10),3434–3435 (2007).
  • 37  Notomi T, Okayama H, Masubuchi H et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res.28(12),E63 (2000).▪▪ First paper to describe loop-mediated isothermal amplification (LAMP).
  • 38  Nagamine K, Watanabe K, Ohtsuka K, Hase T, Notomi T. Loop-mediated isothermal amplification reaction using a nondenatured template. Clin. Chem.47(9),1742–1743 (2001).
  • 39  Suzuki R, Ihira M, Enomoto Y et al. Heat denaturation increases the sensitivity of the cytomegalovirus loop-mediated isothermal amplification method. Microbiol. Immunol.54(8),466–470 (2010).
  • 40  Mori Y, Kitao M, Tomita N, Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods59(2),145–157 (2004).▪ Good example of simple detection of LAMP product.
  • 41  Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc.3(5),877–882 (2008).
  • 42  Fang XE, Liu YY, Kong JL, Jiang XY. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal. Chem.82(7),3002–3006 (2010).
  • 43  Fukuta S, Mizukami Y, Ishida A, Kanbe M. Development of loop-mediated isothermal amplification (LAMP)-based SNP markers for shelf-life in melon (Cucumis melo L.). J. Appl. Genet.47(4),303–308 (2006).
  • 44  Nakamura N, Ito K, Takahashi M et al. Detection of six single-nucleotide polymorphisms associated with rheumatoid arthritis by a loop-mediated isothermal amplification method and an electrochemical DNA chip. Anal. Chem.79(24),9484–9493 (2007).
  • 45  Higashimoto Y, Ihira M, Ohta A et al. Discriminating between varicella-zoster virus vaccine and wild-type strains by loop-mediated isothermal amplification. J. Clin. Microbiol.46(8),2665–2670 (2008).
  • 46  Nakamura N, Ito K, Takahashi M et al. Clinical verification of a combination technology of a loop-mediated isothermal amplification method and an electrochemical DNA chip for personalized medicine. Clin. Biochem.42(10–11),1158–1161 (2009).
  • 47  Guo Q, Yang X, Wang K et al. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Res.37(3),e20 (2009).
  • 48  He JL, Wu ZS, Zhou H et al. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Anal. Chem.82(4),1358–1364 (2010).▪▪ Excellent example to show SDA is a flexible platform to amplify signals generated from non-DNA molecules.
  • 49  Fire A, Xu SQ. Rolling replication of short DNA circles. Proc. Natl Acad. Sci. USA92(10),4641–4645 (1995).
  • 50  Liu DY, Daubendiek SL, Zillman MA, Ryan K, Kool ET. Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J. Am. Chem. Soc.118(7),1587–1594 (1996).
  • 51  Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science265(5181),2085–2088 (1994).
  • 52  Nilsson M, Dahl F, Larsson C, Gullberg M, Stenberg J. Analyzing genes using closing and replicating circles. Trends Biotechnol.24(2),83–88 (2006).
  • 53  Larsson C, Koch J, Nygren A et al.In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat. Methods1(3),227–232 (2004).
  • 54  Larsson C, Grundberg I, Soderberg O, Nilsson M. In situ detection and genotyping of individual mRNA molecules. Nat. Methods7(5),395–397 (2010).
  • 55  Soderberg O, Gullberg M, Jarvius M et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods3(12),995–1000 (2006).
  • 56  Jarvius M, Paulsson J, Weibrecht I et al.In situ detection of phosphorylated platelet-derived growth factor receptor β using a generalized proximity ligation method. Mol. Cell Proteomics6(9),1500–1509 (2007).
  • 57  Jonstrup SP, Koch J, Kjems J. A microRNA detection system based on padlock probes and rolling circle amplification. RNA12(9),1747–1752 (2006).▪▪ First paper to quantify miRNA using padlock probe and RCA.
  • 58  Zhou Y, Huang Q, Gao J, Lu J, Shen X, Fan C. A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection. Nucleic Acids Res.38(15),e156 (2010).
  • 59  Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y. Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew. Chem. Int. Ed. Engl.48(18),3268–3272 (2009).
  • 60  Niemeyer CM, Adler M, Wacker R. Detecting antigens by quantitative immuno-PCR. Nat. Protoc.2(8),1918–1930 (2007).
  • 61  Yang L, Fung CW, Cho EJ, Ellington AD. Real-time rolling circle amplification for protein detection. Anal. Chem.79(9),3320–3329 (2007).
  • 62  Wu ZS, Zhou H, Zhang S, Shen G, Yu R. Electrochemical aptameric recognition system for a sensitive protein assay based on specific target binding-induced rolling circle amplification. Anal. Chem.82(6),2282–2289 (2010).
  • 63  Wu ZS, Zhang S, Zhou H, Shen GL, Yu R. Universal aptameric system for highly sensitive detection of protein based on structure-switching-triggered rolling circle amplification. Anal. Chem.82(6),2221–2227 (2010).▪▪ Excellent example to use rolling circle amplification (RCA) for homogenous protein assay.
  • 64  Paez JG, Lin M, Beroukhim R et al. Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res.32(9),e71 (2004).
  • 65  Johne R, Muller H, Rector A, Van Ranst M, Stevens H. Rolling-circle amplification of viral DNA genomes using phi29 polymerase. Trends Microbiol.17(5),205–211 (2009).
  • 66  Hutchison CA 3rd, Smith HO, Pfannkoch C, Venter JC. Cell-free cloning using phi29 DNA polymerase. Proc. Natl. Acad. Sci. USA.102(48),17332–17336 (2005).
  • 67  Kumar G, Chernaya G. Cell-free protein synthesis using multiply-primed rolling circle amplification products. Biotechniques47(1),637–639 (2009).
  • 68  Murakami T, Sumaoka J, Komiyama M. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Nucleic Acids Res.37(3),e19 (2009).
  • 69  Goldmeyer J, Li H, Mccormac M et al. Identification of Staphylococcus aureus and determination of methicillin resistance directly from positive blood cultures by isothermal amplification and a disposable detection device. J. Clin. Microbiol.46(4),1534–1536 (2008).
  • 70  Tong Y, Tang W, Kim HJ, Pan X, Ranalli T, Kong H. Development of isothermal taqman assays for detection of biothreat organisms. Biotechniques45(5),543–557 (2008).
  • 71  Andresen D, Von Nickisch-Rosenegk M, Bier FF. Helicase dependent onchip-amplification and its use in multiplex pathogen detection. Clin. Chim. Acta403(1-2),244–248 (2009).
  • 72  Tang W, Chow WH, Li Y, Kong H, Tang YW, Lemieux B. Nucleic acid assay system for tier II laboratories and moderately complex clinics to detect HIV in low-resource settings. J. Infect. Dis.201(Suppl 1),S46–51 (2010).
  • 73  Li Y, Kim HJ, Zheng C et al. Primase-based whole genome amplification. Nucleic Acids Res.36(13),E79 (2008).▪▪ Describe whole-genome amplification strategy using HDA.
  • 74  Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol.4(7),e204 (2006).▪▪ First paper introducing recombinase polymerase amplification.
  • 75  Zhang C, Xing D. Single-molecule DNA amplification and analysis using microfluidics Chem. Rev.110,4910–4947 (2010).
  • 76  Easley CJ, Karlinsey JM, Bienvenue JP, et al. A fully-integrated microfluidic genetic analysis system with sample in-answer out capability. Proc. Natl Acad. Sci. USA103,19272–19277 (2006).
  • 77  Mahalanabis M, Do J, AlMuayad H, Zhang JY, Klapperich CM. An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed Microdevices12(2),353–359 (2010).
  • 78  Lutz S, Weber P, Focke M et al. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip10(7),887–893 (2010).
  • 79  Navin NE, Hicks J. Tracing the tumor lineage. Mol. Oncol.4(3),267–283 (2010).
  • 101  Eiken Genome Site. http://loopamp.eiken.co.jp/e/lamp/anim.html