We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Challenges in developing bioanalytical assays for characterization of antibody–drug conjugates

    Jean Philippe Stephan

    † Author for correspondence

    Protein Chemistry Department, Genentech, Inc., MS#98, 1 DNA Way, South San Francisco, CA 94080, USA.

    ,
    Katherine R Kozak

    Assay & Automation Technology Department, Genentech, Inc., South San Francisco, CA, USA

    &
    Wai Lee T Wong

    Assay & Automation Technology Department, Genentech, Inc., South San Francisco, CA, USA

    Published Online:https://doi.org/10.4155/bio.11.30

    With more than 34 targets being investigated and nearly 20 clinical trials at various phases of development, antibody–drug conjugates (ADCs) hold a lot of promise for improving oncological malignancy therapy. This therapeutic strategy designed to specifically or preferentially deliver a cytotoxic agent to tumor cells through conjugation to a monoclonal antibody is not new. Although this approach is relatively simple conceptually, the history of ADCs clearly attests to the high degree of complexity in their development. Each component of an ADC is important to achieve efficacy with minimal toxicity, and the ability to monitor this multicomponent therapeutic entity is deemed to be critical for their successful optimization. In this article we review the different bioanalytical strategies that have been implemented to characterize various ADCs and discuss the challenges and issues associated with these approaches.

    Papers of special note have been highlighted as: ▪ of interest

    Bibliography

    • Reichert JM, Rosensweig CJ, Faden LB et al. Monoclonal antibody successes in the clinic. Nat. Biotechnol.23,1073–1078 (2005).
    • Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat. Biotechnol.23,1147–1157 (2005).
    • Reichert JM, Valge-Archer VE Development trends for monoclonal antibody cancer therapeutics. Nat. Rev. Drug Discov.6,349–356 (2007).
    • Carter PJ. Potent antibody therapeutics by design. Nat. Rev. Immunol.6,343–357 (2006).
    • Schrama D, Reisfeld RA, Becker JC. Antibody targeted drug as cancer therapeutics. Nat. Rev. Drug Discov.5,147–159 (2006).
    • Weiner LM. Building better magic bullets – improving unconjugated monoclonal antibody therapy for cancer. Nat. Rev. Cancer7,701–706 (2007).
    • Desjarlais JR, Lazar GA, Zhukovsky EA et al. Optimizing engagement of the immune system by antitumor antibodies: an engineer’s perspective. Drug Discov. Today12,898–910 (2007).
    • Collins F. Has the revolution arrived? Nature464,674–675 (2010).
    • Venter C. Multiple personal genomes await. Nature464,676–677 (2010).
    • 10  Carter PJ, Senter PD. Antibody–drug conjugates for cancer therapy. The Cancer Journal14,154–168 (2008).▪ Discusses critical parameters for antibody–drug conjugate (ADC) development, especially from an antibody aspect.
    • 11  Teicher BA. Antibody–drug conjugate targets. Current Cancer Drug Target9,982–1004 (2009).▪ Review article discussing the different proteins being targeted through ADCs. Extensive list of references.
    • 12  Senter PD. Recent advancements in the use of antibody drug conjugates for cancer therapy. Current trends in monoclonal antibody development and manufacturing, Biotechnology: Pharmaceutical Aspects309–322 (2010).▪ Review article discussing critical parameters for ADC development, especially from a drug and linker aspect. Extensive list of references.
    • 13  Hughes B. Antibody–drug conjugates for cancer: poised to deliver? Nature Rev.9,665–667 (2010).
    • 14  Singh R, Erickson HK. Antibody–cytotoxic agent conjugates: preparation and character-ization. Therapeutic Antibodies: Methods and Protocols (Volume 525), Dimitrov A (Ed.). Humana press, 445–467 (2009).
    • 15  Mascelli MA, Zhou H, Sweet R et al. Molecular, biologic and pharmacokinetic properties of monoclonal antibodies: impact of these parameters on early clinical development. J. Clin. Pharmacol,47,553–565 (2007).
    • 16  Sievers EL, Larson RA, Stadtmauer EA et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J. Clin. Oncol.19,3244–3254 (2001).
    • 17  Mandler R, Kobayashi H, Hinson ER, Brechbiel MW, Waldmann TA. Herceptin®–gledanamycin immunoconjugates: Pharmacokinetics, biodistribution, and enhance antitumor activity. Cancer Res..64,1460–1467 (2004).
    • 18  Phillips GDL, Li G, Dugger DL et al. Targeting HER2-positive breast cancer with trastuzumab–DM1, an antibody–cytotoxic drug conjugate. Cancer Res.68,9280–9290 (2008).
    • 19  Polson AG, Williams M, Gray AM et al. Anti-CD22–MCC-DM1: an antibody–drug conjugate with a stable linker for the treatment of non-Hodgkin’s lymphoma. Leukemia24,1566–1573 (2010).
    • 20  Carter PJ, Presta L, Gorman CM et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl Acad. Sci. USA89,4285–4289 (1992).
    • 21  Roguska MA, Petersen JT, Keddy CA et al. Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc. Natl Acad. Sci. USA91,969–973 (1994).
    • 22  McCafferty J, Griffiths A, Winter G et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature348,552–554 (1990).
    • 23  Bross PF, Beitz J, Chen G et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res.7,1490–1496 (2001).
    • 24  Hamann PR, Hinman LM, Hollander I et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody–clicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem.13,47–58 (2002).
    • 25  Dijoseph JF, Armellino DC, Boghaert ER et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for treatment of B-lymphoid malignancies. Blood103,1807–1814 (2004).▪ Investigative article describing the characterization of an anti-CD22 ADC. Implementation of various bioanalytical assays, including a conjugated antibody ELISA-based assay.
    • 26  Larson RA, Sievers EL, Stadtmauer EA et al. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg®) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer92,1442–1452 (2005).
    • 27  Jedema I, Barge RM, van der Velden VH et al. Internalization and cell cycle-dependent killing of leukemia cells by gemtuzumab ozogamicin: rational for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia18,316–325 (2004).
    • 28  Boghaert ER, Khandke K, Sridharan L et al. Tumoricidal effect of calicheamicin immuno-conjugates using a passive targeting strategy. Int. J. Oncol.28,675–684 (2006).▪ Investigative article describing the characterization of an anti-5T4 ADC. Implementation of various bioanalytical assays, including a total antibody assay using surface plasmon resonance.
    • 29  Widdison WC, Wilhelm SD, Cavanagh EE et al. Semisynthetic maytansine analogues for targeted treatment of cancer. J. Med. Chem.49,4392–4408 (2006).
    • 30  Chari RVJ. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc. Chem. Res.41,98–107 (2008).
    • 31  Chari RVJ, Martell BA, Gross JL et al. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res.52,127–131 (1992).
    • 32  Doronina SO, Toki BE, Torgov MY et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol.21,778–754 (2003).
    • 33  Doronina SO, Mendelsohn BA, Bovee TD et al. Enhance activity of monomethylauristatin F through monoclonal antibody delivery: effect of linker technology on efficacy and toxicity. Bioconjug. Chem.17,114–124 (2006).▪ Investigative article describing the characterization of an anti-CD30 ADC. Implementation of various bioanalytical assays, including a total antibody assay using MS.
    • 34  Erickson HK, Park PU, Widdison WC et al. Antibody-maytansinoid conjugates are activated in target cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res.66,4426–4433 (2006).
    • 35  Sutherland MSK, Sanderson RJ, Gordon KA et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30–auristatin conjugates. J. Biol. Chem.281,10540–10547 (2006).
    • 36  Ranson M, Sliwkowski MX. Perspective on anti-HER monoclonal antibodies. Oncology63,17–24 (2002).
    • 37  Vogel CL, Burris HA, Limentani S et al. A Phase II study of trastuzumab–DM1 (T–DM1), a HER2 antibody–drug conjugate (ADC) in patients (pts) with HER2+ metastatic breast cancer (MBC): final results Clin. Oncol.27,15s (2009) (Abstract 1017).
    • 38  Pietersz GA, Rowland A, Smyth MJ et al. Chemoimmunoconjugates for the treatment of cancer. Adv. Immunol.56,301–387 (1994).
    • 39  Trail PA, King HD, Dubowchik GM. Monoclonal antibody drug immunoconjugates for targeted treatment of cancer. Cancer Immunol. Immunother.52,328–337 (2003).
    • 40  Trail PA, Willner D, Lasch SJ et al. Cure of xenografted human carcinomas by BR96–doxorubicin immunoconjugates. Science261,212–215 (1993).
    • 41  Tolcher AW, Sugarman S, Gelmon KA et al. Randomized Phase II study of BR96–doxorubicin conjugate in patient with metastatic breast cancer. J. Clin. Oncol.17,478–484 (1999).
    • 42  Saleh MN, Sugarman S, Murray J et al. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96–doxorubicin in patients with lewis Y-expressing epithelial tumors. J. Clin. Oncol.18,2282–2292 (2000).
    • 43  Lee MD, Manning JK, Williams DR et al. Calichemicins, a novel family of antitumor antibiotics. 3. Isolation, purification and characterization of calichemicins β1Br, γ1Br, α2I, α3I, β1I, γ1I, and Δ1I. J. Antibiotic.42(7),1070–87 (1989).
    • 44  Myers AG, Cohen SB, Kwon BM. A Study of the reaction of calicheamicin γ1 with glutathione in the presence of double-stranded DNA. J. Am. Chem. Soc.116,1255–1271 (1994).
    • 45  Rinehart KL, Shield L S. Chemistry of the ansamycin antibiotics. Fortsch. Chem. Org. Naturst.33,231–307 (1976).
    • 46  Suwanborirux K, Chang CJ, Spiut RW et al. Ansamitocin P-3, a maytansinoid, from Claopodium crispifolium and Anomodon attenuatus or associated actinomycetes. Experientia46,117 (1990).
    • 47  Yu TW, Bai L, Clade D et al. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc. Natl Acad. Sci. USA (12),7968–7973 (2002).
    • 48  Ikeyama S, Takeuchi M. Antitubulin activities of ansamitocins and maytansinoids. Biochem. Pharm.30,2421–25 (1981).
    • 49  Issell BF, Crooke ST. Maytansine. Cancer Treat. Rev.5,199–207 (1978).
    • 50  Petti GR, Kamano Y, Herald C et al. The isolation and structure of remarkable marine animal antineoplastic constituent: dolostatin 10. J. Am. Chem. Soc.109,6883–6885 (1987).
    • 51  Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. Nat. Biotechnol.23(9),1137–1146.(2005).
    • 52  Walker MA, Dubowchik GM, Hofstead SJ et al. Synthesis of an immonoconjugate of camptothecin. Bioorg. Med. Chem. Lett.12,217–219 (2002).
    • 53  Francisco JA, Cerveny CG, Meyer DL et al. cAC10-Val-CitMMAE, an anti-CD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood102,1458–1465 (2003).
    • 54  Ryan MC, Hering M, Peckham D et al. Antibody targeting of B-cell maturation antigen on malignant plasma cells. Mol. Cancer Ther.6, 11, 3009–3018 (2007).
    • 55  Benjamin D et al. Humanized anti-CD19 auristatin antibody–drug conjugates display potent antitumor activity in preclinical models of B-cell malignancies. Presented at: AACR-NCI-EORTC Conference on Molecular Targets and Cancer Therapeutics. San Francisco, CA, USA 12–16 November. (Abstract B60).
    • 56  Law L, Cerveny CG, Gordon KA et al. Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates. Clin. Cancer Res.10,23, 7842–7851 (2004).
    • 57  Law L, Gordon KA, Toki BE et al. Lymphocyte activation antigen CD70 expressed by renal cell carcinoma is a potential therapeutic target for anti-CD70 antibody–drug conjugates. Cancer Res.66, 4, 2328–2337 (2006).
    • 58  Polson AG, Calamine-Fenaux J, Chan P et al. Antibody–drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res.69,2358–2364 (2009).▪ Investigative article describing the characterization of seven different ADCs. Implementation of pharmacokinetic ELISA-based assay.
    • 59  Chen Y, Clark S, Wong T et al. Armed antibodies targeting the mucin repeats of the ovarian cancer antigen, MUC16, are highly efficacious in animal tumor models. Cancer Res.67, 10, 4924–4932 (2007).
    • 60  Junutula JR, Raab H, Clark S et al. W Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index Nat. Biotech.26,925–932 (2008).▪ Investigative article describing a strategy to generate an anti-MUC16 ADC with engineered cysteine substitutions at specific positions for drug loading. Implementation of various bioanalytical methods.
    • 61  Alley SC, Benjamin DR, Jeffrey SC et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem.19,759–765 (2008).
    • 62  Lyons A, King DJ, Owens RJ et al. Site-specific attachment to recombinant antibodies via introduced surface cysteine residues. Protein Eng.3,703–708 (1990).
    • 63  Stimmel JB et al. Site-specific conjugation on serine right-arrow cysteine variant monoclonal antibodies. J. Biol. Chem.275,30445–30450 (2000).
    • 64  Junutula JR, Bhakta S, Raab H et al. Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J. Immunol. Meth.332,41–52 (2008b).
    • 65  Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry8,871–874 (1971).
    • 66  Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem.51,2415–2418 (2005).
    • 67  Li W, Lam MS, Birkeland A. Cell-based assays for profiling activity and safety properties of cancer drugs. J. Parmacol. Toxicol. Meth.54,313–319 (2006).
    • 68  Michelini E, Cevenini L, Mezzanotte L, Coppa A, Roda A. Cell-based assays: fuelling drug discovery. Anal. Bioanal. Chem.398,227–238 (2010).
    • 69  Tsukazaki K, Hayman EG, Rusolahti E. Effects of ricin A chain conjugates of monoclonal antibodies to human α-fetoprotein and placental alkaline phosphatase on antigen-producing tumor cells in culture. Cancer Res.45,1834–1838 (1985).
    • 70  Stephan JP, Chan P, Lee C et al. Anti-CD22–MCC-DM1 and MC-MMAF conjugates: impact of assay format on pharmacokinetic parameters determination. Bioconjug. Chem.19,1673–1683 (2008).▪ Investigative article describing various total and conjugated antibody ELISA-based assays for anti-CD22 ADCs. Extensive discussion about strengths and weaknesses of the different assay formats.
    • 71  Lambert JM, Senter PD, Yay-Young A, Blättler WA, Gldmacher VS. Purified immunotoxins that are reactive with human lymphoid cells. J. Biol. Chem260,12035–12041 (1985).
    • 72  Sapra P, Stein R, Pickett J et al. Anti-CD74 antibody–doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin. Cancer Res.11,5257–5264 (2005).
    • 73  McDonagh CF, Turcott E, Westendorf L et al. Engineered antibody–drug conjugates with defined sites and stoichiometries of drug attachment. Protein Engin. Design Select.19,299–307 (2006).▪ Investigative article describing a strategy to generate an anti-CD30 ADC with defined sites and stoichiometries of drug loading. Implementation of various bioanalytical methods.
    • 74  Vater CA, Reid K, Bartle LM, Goldmacher VS. Characterization of antibody binding to cell surface antigens using a plasma membrane-bound plate assay. Anal. Biochem.224,39–50 (1995).
    • 75  Boghaert ER, Khandke KM, Sridharan L et al. Determination of pharmacokinetic values of calicheamicin–antibody conjugates in mice by plasmon resonance analysis of small (5 microl). blood samples. Cancer Chemother. Pharmacol.61,1027–1035 (2008a).
    • 76  Hamblett KJ, Senter PD, Chace DF et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res.10,7063–7070 (2004).
    • 77  Sun MMC, Beam KS, Cerveny CG et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconj. Chem.16,1282–1290 (2005).
    • 78  Chari RV, Jackel KA, Bourret LA et al. Enhancement of the selectivity and antitumor efficacy of a CC-1065 analog through immunoconjugate formation. Cancer Res.55,4079–4084 (1995).▪ Investigative article describing the characterization of an anti-CD19 ADC. Implementation of various bioanalytical assays including a cell-based ELISA as total antibody assay.
    • 79  Goldmacher VS, Tinnel NL, Nelson BC. Evidence that pinocytosis in lymphoid cells has a low capacity. J. Cell Bio.102,1312–1319 (1986).
    • 80  Scott CF, Goldmacher VS, Lambert JM, Chari RVJ, Bolender S, Gauthier MN, Blättler WA. The antileukemic efficacy of an immunotoxin composed of a monoclonal anti-Thy-1 antibody disulfide linked to the ribosome-inactivating protein gelonin. Cancer Immunol. Immunother.25,31–40 (1987).
    • 81  Sellers JR, Cook S, Goldmacher VS. A cytotoxicity assay utilizing a fluorescence dye that determines accurate surviving fractions of cells. J. Immunol. Methods172,255–264 (1994).
    • 82  Senter PD, Saulnier MG, Schreiber GJ. Anti-tumor effects of antibody–alkaline phosphatase conjugates in combination with etoposide phosphate. Proc. Natl Acad. Sci USA85,4842–4846 (1988).
    • 83  Tai YT, Li XF, Catley L et al. Imonomodulatory drug lenalidomide (CC-5013, IMiD3). augments anti-CD40 SGN-40-induced cytotoxicity in human multiple myeloma: clinical implications. Cancer Research65,11712–11720 (2005).
    • 84  Pirker R, FitzGerald DJP, Hamilton TC, Ozols RF, Willingham MC, Pastan I. Anti-transferrin receptor antibody linked to pseudomonas exotoxin as a model immunotoxin in human ovarian carcinoma cell lines. Cancer Research45,751–757 (1985).
    • 85  DiJoseph JF, Dougher MM, Armellino DC et al. CD20-specific antibody-targeted chemotherapy of non-Hodgkin’s B-cell lymphoma using calicheamicin-conjugated rituximab. Cancer Immunol. Immunother.56,1107–1117 (2007).
    • 86  Jeffrey SC, Torgov MY, Andreyka JB et al. Design, synthesis, and in vitro evaluation of dipeptide-based antibody minor groove binder conjugates. J. Med. Chem.48,1344–1358 (2005).
    • 87  Kim KM, McDonagh CF, Westendorf L et al. Anti-CD30 diabody–drug conjugates with potent antitumor activity. Mol. Cancer Ther7,2486–2497 (2008).▪ Investigative article describing the characterization of an anti-CD30 ADC. Implementation of various bioanalytical assays, including a total antibody assay using radioactivity.
    • 88  Anoopkumar-Dukie, Carey JB, Conere T, O’Sullivan E, Van Pelt FN, Allshire A. Resazurin assay of radiation response in cultured cells. Br. J. Radiol.78,945–947 (2005).
    • 89  Francisco JA, Gilliland LK, Stebbins MR, Norris NA, Ledbetter JA, Siegall CB. Activity of a single-chain immunotoxin that selectively kills lymphoma and other B-lineage cell expressing the CD40 antigen. Cancer Res.55,3099–3104 (1995).
    • 90  Ingle GS, Pamela Chan P et al. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br. J. Haematol.140,46–58 (2007).▪ Investigative article describing the in vitro cell-based characterization of an anti-CD19 ADC. Implementation of various cell-based assays.
    • 91  Hannah R. CellTiter-Glo™ luminescent cell viability assay: a sensitive and rapid method for determining cell viability. Promega Cell Notes2,11–13 (2001).
    • 92  Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree INITIAL. Clonogenic assay of cells in vitro. Nature Protocols1,2315–2319 (2006).
    • 93  Herrera L, Farah RA, Pelligrini VA. Immonotoxins against CD19 and CD22 are effective in killing precursor-B acute lymphoblastic leukemia cells in vitro. Leukemia14,853–858 (2000).
    • 94  Daya S, Roberts M, Isherwood B et al.. Integrating an automated in vitro combination screening platform with live-cell and endpoint phenotypic assays to support the testing of drug combinations. SBS 16th Annual Conference & Exhibition. AZ, USA 11–15 April 2010.
    • 95  Solly K, Wang X, Xu X, Strulovici B, Zheng W. Application of real-time cell electronic sensing (RT-CES). technology to cell-based assays. Assay Drug Dev. Technol.2,363–72 (2004).
    • 96  Xing JZ, Zhu L, Jackson JA. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem. Res. Toxicol18,154–61 (2005).
    • 97  Goodman TT, Ng CP, Pun SH. 3-D tissue culture systems for the evaluation and optimization of nanoparticle-based drug carriers. Bioconjugate Chem.19,1951–1959 (2008).
    • 98  Souza GR, Molina JR, Raphael RM et al. Tree-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotech5,291–296 (2010).
    • 99  Austin CD, De Maziere AM, Pisacane PI et al. Endocytosis and sorting of ErbB2 and the site action of cancer therapeutics trastuzumab and geldanamycin. Mol. Bio. Cell15,5268–5282, (2004).
    • 100  Hurwitz E, Levy R, Maron R et al. The covalent binding of daunomycin and adriamycin to antibodies, with retention of both drug and antibody activities. Cancer Res..35,1175–1181 (1975).
    • 101  Gilliland DG, Steplewski Z, Collier RJ et al. Biochemistry antibody-directed cytotoxic agents: use of monoclonal antibody to direct the action of toxin A chains to colorectal carcinoma cells (diphtheria toxin/ricin toxin/targeting agents/chemotherapy). Proc. Natl Acad. Sci. USA77(8),4539–4543 (1980).
    • 102  Dowell JA, Korth-Bradley J, Liu H et al. Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J. Clin. Pharmacol.41,1206–1214 (2001).
    • 103  Pollack VA, Alvarez E, Tse KF et al. Treatment parameters modulating regression of human melanoma xenografts by an antibody–drug conjugate (CR011-vcMMAE). targeting GPNMB. Cancer Chemother. Pharmacol.60,423–435 (2007).
    • 104  Hwu P, Sznol M, Pavlick A et al. A Phase I/II study of CR011-vcMMAE, an antibody–drug conjugate, in patients with unresectable stage III or stage IV melanoma. Presented at: American Society of Clinical Oncology. Chicago, IL, USA, 30 May–3 June 2008.
    • 105  Sznol M, Hamid O, Hwu P et al. Pharmacokinetics of CR011-vcMMAE, an antibody–drug conjugate, in a Phase I study of patients with advanced melanoma. Presented at: American Society of Clinical Oncology Orlando, FL, USA 29 May–2 June 2009.▪ Investigative article describing the characterization of an anti-GPNMB ADC. Implementation of various bioanalytical assays including a LC–MS-based free drug assay.
    • 106  Hong K, Presta, LG, Lu Y et al. Simple quantitative live cell and anti-idiotypic based ELISA for humanized antibody direct to cell surface protein CD20. J. Immunol. Methods294,189–197 (2004).
    • 107  Lu Y, Wong WL, Meng YG. A high throughput electrochemiluminescent cell-binding assay for therapeutic anti-CD20 antibody selection. J. Immunol. Methods314,74–79 (2006).
    • 108  Henry MD, Wen S, Silva MD et al. A Prostate-specific membrane antigen-targeted monoclonal antibody–chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Research64,7995-8001 (2004).
    • 109  Tolcher AW, Ochoa L, Hammond LA et al. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a Phase I, pharmacokinetic, and biologic correlative study. J. Clin. Oncol.21,211–222 (2003).▪ Investigative article describing the characterization of an anti-CanAg ADC. Implementation of various bioanalytical assays, including a conjugated antibody ELISA-based assay using an anti-idiotypic antibody as capture reagent.
    • 110  Sanderson RJ, Hering MA, James SF et al. In vivo drug-linker stability of anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin. Cancer Res.11,843–852 (2005).
    • 111  McDonagh CF, Kim KM, Turcott E et al. Engineered anti-CD70 antibody–drug conjugate with increased therapeutic index. Mol. Cancer Ther.7,2913–2931 (2008).
    • 112  Xie H Audette C Hoffee M et al. Pharmacokinetics and biodistribution of the antitumor immunoconjugate, cantuzumab mertansine (huC242-DM1), and its two components in mice. J. Pharmacol. Exp. Ther.308,1073–1082 (2004).
    • 113  Xu K, Saad O, Baudys J et al. Bioanalytical strategies for antibody drug conjugate (ADC). Biopharmaceutical development: characterization of trastuzumab–MCC-DM1 in plasma by affinity mass spectrometry. Presented at: AAPS National Biotechnology Conference. 25 June, 2007.
    • 114  Xu K, Liu L, Saad O et al. Characterization of intact antibody–drug conjugates from plasma/serum in vivo by affinity capture capillary LC–MS. Analytical Biochemistry doi:10.1016/j.ab.2011.01.004 (2011) (Epub ahead of print).▪ Investigative article describing a novel method with bead-based affinity capture and capillary LC–MS to allow direct measurement of drug release by quantifying dar distributions of the ADC in plasma/serum.
    • 115  Engert A, Diehl V, Schnell R et al. A Phase-I study of an anti-CD25 ricin a-chain immunotoxin (RFT5-SMPT-dgA) in patients with refractory Hodgkin’s lymphoma. Blood89(2).pp 403–410 (1997).
    • 116  Schnell R, Vitetta E, Schindler JB et al. Treatment of refractory Hodgkin’s lymphoma patients with an anti-CD25 ricin A-chain immunotoxin. Leukemia14,129–135. (2000).
    • 117  Kovtun YV, Audette CA, Ye Y et al. Antibody–drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res.66,3214–3221 (2006).▪ Investigative article describing the characterization of an anti-CanAg ADC. Implementation of various bioanalytical assays, including a conjugated antibody ELISA-based assay as well as a free drug assay.
    • 118  Hsieh FY, Tengstrand E, Li LY et al. Toxicological protein biomarker analysis—an investigative one-week single dose intravenous infusion toxicity and toxicokinetic study in cynomolgus monkeys using an antibody–cytotoxic conjugate against ovarian cancer. Pharmaceut. Res.25(6),1309–1317 (2008).
    • 119  Advani A, Coiffier B, Czuczman MS et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-hodgkin’s lymphoma: results of a Phase I study. J. Clin. Oncol.28(12),2085–2093 (2010).
    • 120  Wang L, Amphlett G, Blattler WA et al. Structural characterization of the maytansinoid–monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci.14,2436–2446 (2005).
    • 121  Alley SC, Zhang X, Okeley NM et al. The pharmacologic basis for antibody–auristatin conjugate activity. J. Pharmacol. Exp. Ther.330,932–938 (2009).
    • 122  Oflazoglu E, Kissler KM, Sievers EL et al. Combination of the anti-CD30-auristatin-E antibody–drug conjugate (SGN-35) with chemotherapy improves antitumor activity in Hodgkin lymphoma. Br. J. Haematol.142,69–73 (2008).
    • 123  Lu SX, Takach EJ, Solomon M et al. Mass spectral analyses of labile DOTA-NHS and heterogeneity determination of DOTA or DM1 conjugated anti-PSMA antibody for prostate cancer therapy. J. Pharmaceut. Sci.94(4),788–797 (2005).
    • 124  Pendley C, Schantz A, Wagner C. Immunogenicity of therapeutic monoclonal antibodies. Curr. Opin. Mol. Therap.5,172–179 (2003).
    • 125  Liang M, Klakamp SL, Funelas C et al. Detection of high- and low-affinity antibodies against a human monoclonal antibody using various technology platforms. ASSAY and Drug Development Technologies5(5),655–662 (2007).
    • 126  Loyet KM, Deng R, Liang WC et al. Technology comparisons for anti-therapeutic antibody and neutralizing antibody assays in the context of an anti-TNF pharmacokinetic study. J. Immunological Methods345,17–28 (2009).
    • 127  Qiu ZJ, Ying Y, Fox M et al. A novel homogeneous biotin–digoxigenin based assay for the detection of human anti-therapeutic antibodies in autoimmune serum. J. Immunological Methods362,101–111 (2010).
    • 128  Peng K, Siradze K, Quarmby V et al. Clinical immunogenicity specificity assessments: a platform evaluation J. Pharmaceutical Biomedical Analysis54,629–635 (2011).
    • 129  Dodge R, Daus C, Yaskanin D. Challenges in developing antidrug antibody screening assays. Bioanalysis1,699–704 (2009).
    • 130  Stubenrauch K, Wessels U, Essig U et al. Evaluation of a generic immunoassay with drug tolerance to detect immune complexes in serum samples from Cynomolgus monkeys after administration of human antibodies J. Pharmaceut. Biomed. Anal.52,249–254 (2010).
    • 131  Bartelds GM, Wijbrandts CA, Nurmohamed MT et al. Clinical response to adalimumab: relationship to anti-adalimumab antibodies and serum adalimumab concentrations in rheumatoid arthritis. Ann. Rheum. Dis.66,921–926 (2007).
    • 132  Mason S, La S, Mytych D, Swanson SJ, Ferbas J. Validation of the BIACORE 3000 platforms for the detection of antibodies against erythropoietic agents in human serum samples Curr. Med. Res. Opinion19,651–659 (2003).
    • 133  Mire-Sluis AR, Barrett YC, Devanarayan V et al. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J. Immunological Methods289,1–16 (2004).
    • 134  Wadhwa M, Thorpe R. Unwanted immunogenicity: lessons learned and future challenges Bioanalysis2,1073–1084 (2010).
    • 135  Shankar G, Devanarayan V, Amaravadi L et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products, J. Pharmaceut. Biomed. Anal.48,1267–1281 (2008).
    • 136  Swanson SJ, Chirmule N. Assessing specificity for immunogenicity assays. Bioanalysis1,611–617 (2009).
    • 137  Gupta S, Indelicato SR, Jethwa V et al. Recommendations for the design, optimization, and qualification of cell-based assays used for the detection of neutralizing antibody responses elicited to biological therapeutics. J. Immunol. Methods321,1–18 (2007).
    • 138  Butterfield AM, Chain JS, Ackermann BL et al. Comparison of assay formats for drug-tolerant immunogenicity testing Bioanalysis2,1961–1969 (2010).
    • 139  Swann PG, Tolnay M, Muthukkumar S et al. Considerations for the development of therapeutic monoclonal Antibodies. Curr. Opin. Immunol.20,493–499 (2008).
    • 140  Kafi K, Betting DJ, Yamada RE et al. Maleimide conjugation markedly enhances the immunogenicity of both human and murine idiotype-KLH vaccines. Molecular Immunology46,448–456 (2009).
    • 141  Johnson DA, Barton RL, Fix DV et al. Induction of Immunogenicity of monoclonal antibodies by conjugation with drugs. Cancer Res.51,5774–5776 (1991).
    • 142  Carrasco-Triguero M, Mahood C, Ruppel J et al. Overcoming soluble drug target interference in an immunogenicity screening assay for an antibody drug conjugate. Presented at: Biotherapeutic AAPS Annual Meeting. Atlanta, GA, USA 16–20 November 2008
    • 143  Younes A, Bartlett NL, Leonard JP et al. brentuximab vedotin (SGN-35). for relapsed CD30-positive lymphomas N. Engl. J. Med.363,1812–1821 (2010).
    • 144  Damle NK. Tumour-Targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin. Biol. Ther.4(9),1445–1452 (2004).
    • 145  Kovtun YV, Goldmacher VS. Cell killing by antibody–drug conjugates. Cancer Letter255,232–240 (2007).
    • 146  Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A, McLennan MT. Nitrogen mustard therapy. JAMA132,26–32 (1946).
    • 147  Joensuu H. Systemic chemotherapy for cancer: from weapon to treatment. Lancet Oncol.9,304 (2008).
    • 148  Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature332,332–327 (1988).
    • 149  Presta L. Engineering antibodies for therapy. Curr. Pharm. Biotechnol.3,237–256 (2002).
    • 201  European Medicines Agency (EMA), Committee for Medicinal Products for Human Use. Guidelines on the immunogenicity assessment of biotechnology derived therapeutic proteins (2007). www.ema.europa.eu
    • 202  European Medicines Agency (EMA), Committee for Medicinal Products for Human Use. Guideline on immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use (2010). www.ema.europa.eu