We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Bioanalytical techniques in nontargeted clinical lipidomics

    Tuulia Hyötyläinen

    *Author for correspondence:

    E-mail Address: tuhy@steno.dk

    Steno Diabetes Center, Niels Steensens Vej 2, 2820 Gentofte, Denmark

    Turku Centre for Biotechnology, University of Turku & Åbo Akademi University, Turku, Finland

    &
    Matej Orešič

    Steno Diabetes Center, Niels Steensens Vej 2, 2820 Gentofte, Denmark

    Turku Centre for Biotechnology, University of Turku & Åbo Akademi University, Turku, Finland

    Published Online:https://doi.org/10.4155/bio.15.244

    Lipidomic analysis aims at comprehensive characterization of molecular lipids in biological systems. Due to the central role of lipid metabolism in many devastating diseases, lipidomics is being increasingly applied in biomedical research. Over the past years, advances in analytical techniques and bioinformatics enabled increasingly comprehensive and accurate coverage of lipids both in tissues and biofluids, yet many challenges remain. This review highlights recent progress in the domain of analytical lipidomics, with main emphasis on non-targeted methodologies for large scale clinical applications, as well as discusses some of the key challenges and opportunities in this field.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Shevchenko A, Simons K. Lipidomics: coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 11(8), 593–598 (2010).
    • 2 Rolim AE, Henrique-Araujo R, Ferraz EG, De Araujo Alves Dultra FK, Fernandez LG. Lipidomics in the study of lipid metabolism: current perspectives in the omic sciences. Gene 554(2), 131–139 (2015).
    • 3 Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal. Chem. 61, 192–206 (2014). • A comprehensive review on the LC–MS application in lipidomics.
    • 4 Sandra K, Sandra P. Lipidomics from an analytical perspective. Curr. Opin. Chem. Biol. 17(5), 847–853 (2013).•• A comprehensive review of instrumental aspects in lipidomics.
    • 5 Blanksby SJ, Mitchell TW. Advances in mass spectrometry for lipidomics. Annual Rev. Anal. Chem. 3, 433–465 (2010).
    • 6 Jørgenrud B, Jäntti S, Mattila I et al. The influence of sample collection methodology and sample preprocessing on the blood metabolic profile. Bioanalysis 7(8), 991–1006 (2015).
    • 7 Han X, Yang K, Gross RW. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 31(1), 134–178 (2012).
    • 8 Ishikawa M, Maekawa K, Saito K et al. Plasma and serum lipidomics of healthy white adults shows characteristic profiles by subjects’ gender and age. PLoS ONE 9(3), e91806 (2014).
    • 9 Weir JM, Wong G, Barlow CK et al. Plasma lipid profiling in a large population-based cohort. J. Lipid Res. 54(10), 2898–2908 (2013).
    • 10 Cai X, Perttula K, Pajouh SK, Hubbard A, Nomura DK, Rappaport SM. . Untargeted lipidomic profiling of human plasma reveals differences due to race, gender and smoking status. J. Postgenomics Drug Biomarker Dev. 4, 131 (2014).
    • 11 Deo RC, Reich D, Tandon A et al. Genetic differences between the determinants of lipid profile phenotypes in African and European Americans: the Jackson Heart Study. PLoS Genet. 5(1), e1000342 (2009).
    • 12 Kim K, Mall C, Taylor SL et al. Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. PLoS ONE 9(1), e86223 (2014).
    • 13 Perez-Caballero AI, Alcala-Diaz JF, Perez-Martinez P et al. Lipid metabolism after an oral fat test meal is affected by age-associated features of metabolic syndrome, but not by age. Atherosclerosis 226(1), 258–262 (2013).
    • 14 Bondia-Pons I, Maukonen J, Mattila I et al. Metabolome and fecal microbiota in monozygotic twin pairs discordant for weight: a Big Mac challenge. FASEB J. 28(9), 4169–4179 (2014).
    • 15 Fusconi E, Pala V, Riboli E et al. Relationship between plasma fatty acid composition and diet over previous years in the Italian centers of the European Prospective Investigation into Cancer and Nutrition (EPIC). Tumori 89(6), 624–635 (2003).
    • 16 Lankinen M, Schwab U, Erkkila A et al. Fatty fish intake decreases lipids related to inflammation and insulin signaling-a lipidomics approach. PLoS ONE 4(4), e5258 (2009).
    • 17 Urquiaga I, Guasch V, Marshall G et al. Effect of Mediterranean and Occidental diets, and red wine, on plasma fatty acids in humans. An intervention study. Biol. Res. 37(2), 253–261 (2004).
    • 18 Lankinen M, Schwab U, Kolehmainen M et al. Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the Sysdimet study. PLoS ONE 6(8), e22646 (2011).
    • 19 Krajcovicova-Kudlackova M, Simoncic R, Bederova A, Grancicova E, Magalova T. Influence of vegetarian and mixed nutrition on selected haematological and biochemical parameters in children. Nahrung 41(5), 311–314 (1997).
    • 20 Bondia-Pons I, Pöhö P, Bozzetto L et al. Isoenergetic diets differing in their n-3 fatty acid and polyphenol content reflect different plasma and HDL-fraction lipidomic profiles in subjects at high cardiovascular risk. Mol. Nutr. Food Res. 58(9), 1873–1882 (2014).
    • 21 Krug S, Kastenmuller G, Stuckler F et al. The dynamic range of the human metabolome revealed by challenges. FASEB J. 26(6), 2607–2619 (2012).
    • 22 Kim M, Suk J, Kim H, Jung H, Kim T, Park J. Post-prandial lipid levels for assessing target goal achievement in Type 2 diabetic patients taking statin. J. Korean Med. Sci. 25(3), 387–392 (2010).
    • 23 Choi JM, Kim TE, Cho JY, Lee HJ, Jung BH. Development of lipidomic platform and phosphatidylcholine retention time index for lipid profiling of rosuvastatin treated human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 944, 157–165 (2014).
    • 24 Snowden SG, Grapov D, Settergren M et al. High-dose simvastatin exhibits enhanced lipid-lowering effects relative to simvastatin/ezetimibe combination therapy. Circulation 7(6), 955–964 (2014).
    • 25 Breier M, Wahl S, Prehn C et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS ONE 9(2), e89728 (2014).
    • 26 Zivkovic AM, Wiest MM, Nguyen UT, Davis R, Watkins SM, German JB. Effects of sample handling and storage on quantitative lipid analysis in human serum. Metabolomics 5(4), 507–516 (2009). • Study on the effect of preanalytical factors on lipid analysis.
    • 27 Alsaif M, Guest PC, Schwarz E et al. Analysis of serum and plasma identifies differences in molecular coverage, measurement variability, and candidate biomarker selection. Proteomics Clin. Appl. 6(5–6), 297–303 (2012).
    • 28 Hammad SM, Pierce JS, Soodavar F et al. Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J. Lipid Res. 51(10), 3074–3087 (2010).
    • 29 Yang W, Chen Y, Xi C et al. Liquid chromatography-tandem mass spectrometry-based plasma metabonomics delineate the effect of metabolites’ stability on reliability of potential biomarkers. Anal. Chem. 85(5), 2606–2610 (2013).
    • 30 Taylor LA, Arends J, Hodina AK, Unger C, Massing U. Plasma lyso-phosphatidylcholine concentration is decreased in cancer patients with weight loss and activated inflammatory status. Lipids Health Dis. 6, 17 (2007).
    • 31 Lessig J, Fuchs B. Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr. Med. Chem. 16(16), 2021–2041 (2009).
    • 32 Onorato JM, Shipkova P, Minnich A, Aubry AF, Easter J, Tymiak A. Challenges in accurate quantitation of lysophosphatidic acids in human biofluids. J. Lipid Res. 55(8), 1784–1796 (2014).
    • 33 Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226(1), 497–509 (1957).
    • 34 Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49(5), 1137–1146 (2008).
    • 35 Sarafian MH, Gaudin M, Lewis MR et al. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal. Chem. 86(12), 5766–5774 (2014).
    • 36 Hyotylainen T, Oresic M. Optimizing the lipidomics workflow for clinical studies-practical considerations. Anal. Bioanal. Chem. 407(17), 4973–4993 (2015).•• A review of preanalytical and analytical parameters in clinical lipidomics.
    • 37 Orešič M, Hyötyläinen T, Kotronen A et al. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia 56(10), 2266–2274 (2013).
    • 38 Oresic M, Gopalacharyulu P, Mykkanen J et al. Cord serum lipidome in prediction of islet autoimmunity and Type 1 diabetes. Diabetes 62(9), 3268–3274 (2013).
    • 39 Yang K, Cheng H, Gross RW, Han X. Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal. Chem. 81(11), 4356–4368 (2009).
    • 40 Houjou T, Yamatani K, Imagawa M, Shimizu T, Taguchi R. A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Comm. Mass Spectrom. 19(5), 654–666 (2005).
    • 41 Graessler J, Schwudke D, Schwarz PE, Herzog R, Shevchenko A, Bornstein SR. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS ONE 4(7), e6261 (2009).
    • 42 Nikkila J, Sysi-Aho M, Ermolov A et al. Gender-dependent progression of systemic metabolic states in early childhood. Mol. Syst. Biol. 4, 197 (2008).
    • 43 Mittelstrass K, Ried JS, Yu Z et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet. 7(8), e1002215 (2011).
    • 44 Gooley JJ, Chua EC. Diurnal regulation of lipid metabolism and applications of circadian lipidomics. J. Genet. Genomics 41(5), 231–250 (2014).
    • 45 Chua EC, Shui G, Lee IT et al. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proc. Natl Acad. Sci. USA 110(35), 14468–14473 (2013).
    • 46 Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. Proc. Natl Acad. Sci. USA 109(7), 2625–2629 (2012).
    • 47 Ang JE, Revell V, Mann A et al. Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach. Chronobiol. Int. 29(7), 868–881 (2012).
    • 48 Kasukawa T, Sugimoto M, Hida A et al. Human blood metabolite timetable indicates internal body time. Proc. Natl Acad. Sci. USA 109(37), 15036–15041 (2012).
    • 49 Bonham MP, Linderborg KM, Dordevic A et al. Lipidomic profiling of chylomicron triacylglycerols in response to high fat meals. Lipids 48(1), 39–50 (2013).
    • 50 Langsted A, Freiberg JJ, Nordestgaard BG. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction. Circulation 118(20), 2047–2056 (2008).
    • 51 Zivkovic AM, Wiest MM, Nguyen U, Nording ML, Watkins SM, German JB. Assessing individual metabolic responsiveness to a lipid challenge using a targeted metabolomic approach. Metabolomics 5(2), 209–218 (2009).
    • 52 Krajcovicova-Kudlackova M, Simoncic R, Klvanova J, Bederova A, Babinska K, Grancicova E. [The plasma profile of fatty acids in vegetarians]. Bratislavske lekarske listy 98(1), 23–27 (1997).
    • 53 Bondia-Pons I, Poho P, Bozzetto L et al. Isoenergetic diets differing in their n-3 fatty acid and polyphenol content reflect different plasma and HDL-fraction lipidomic profiles in subjects at high cardiovascular risk. Mol. Nutr. Food Res. 58(9), 1873–1882 (2014).
    • 54 Becan-Mcbride K. Laboratory sampling: does the process affect the outcome? J. Infus. Nurs. 22(3), 137 (1999).
    • 55 Gonzalez-Covarrubias V, Dane A, Hankemeier T, Vreeken RJ. The influence of citrate, EDTA, and heparin anticoagulants to human plasma LC-MS lipidomic profiling. Metabolomics 9(2), 337–348 (2013).
    • 56 Kudo I, Murakami M. Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat. 68–69:3–58 (2002).
    • 57 Max Scherer GS, Gerhard Liebisch. High-throughput analysis of sphingosine 1-phosphate, sphinganine 1-phosphate, and lysophosphatidic acid in plasma samples by liquid chromatography-tandem mass spectrometry. Clin. Chem. 55(6), 5 (2009).
    • 58 Brugger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Ann. Rev. Biochem. 83, 79–98 (2014).
    • 59 Lam SM, Shui G. Lipidomics as a principal tool for advancing biomedical research. J. Genet. Genomics 40(8), 375–390 (2013).
    • 60 Li M, Yang L, Bai Y, Liu H. Analytical methods in lipidomics and their applications. Anal. Chem. 86(1), 161–175 (2014).
    • 61 Sandra K, Pereira Ados S, Vanhoenacker G, David F, Sandra P. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 1217(25), 4087–4099 (2010). • Comprehensive analysis of lipids with LC–MS.
    • 62 Zhao YY, Wu SP, Liu S, Zhang Y, Lin RC. Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chem. Biol. Interact. 220, 181–192 (2014).
    • 63 Holcapek M, Jirasko R, Lisa M. Recent developments in liquid chromatography-mass spectrometry and related techniques. J. Chromatogr. A 1259 3–15 (2012).
    • 64 Lisa M, Holcapek M. High-throughput and comprehensive lipidomic analysis using ultrahigh-performance supercritical fluid chromatography-mass spectrometry. Anal. Chem. 87(14), 7187–7195 (2015).
    • 65 Zhong Y, Hyung SJ, Ruotolo BT. Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions. Analyst 136(17), 3534–3541 (2011).
    • 66 Holcapek M, Ovcacikova M, Lisa M, Cifkova E, Hajek T. Continuous comprehensive two-dimensional liquid chromatography-electrospray ionization mass spectrometry of complex lipidomic samples. Anal. Bioanal. Chem. 407(17), 5033–5043 (2015).
    • 67 Gao X, Zhang Q, Meng D et al. A reversed-phase capillary ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling. Anal. Bioanal. Chem. 402(9), 2923–2933 (2012).
    • 68 Bang DY, Lim S, Moon MH. Effect of ionization modifiers on the simultaneous analysis of all classes of phospholipids by nanoflow liquid chromatography/tandem mass spectrometry in negative ion mode. J. Chromatogr. A 1240 69–76 (2012).
    • 69 Kliman M, May JC, Mclean JA. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim. Biophys. Acta 1811(11), 935–945 (2011).
    • 70 Shah V, Castro-Perez JM, Mclaren DG, Herath KB, Previs SF, Roddy TP. Enhanced data-independent analysis of lipids using ion mobility-TOFMSE to unravel quantitative and qualitative information in human plasma. Rapid Commun. Mass Spectrom. 27(19), 2195–2200 (2013).
    • 71 Xiao JF, Zhou B, Ressom HW. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trends Analyt. Chem. 32 1–14 (2012).
    • 72 Foster JM, Moreno P, Fabregat A et al. LipidHome: a database of theoretical lipids optimized for high throughput mass spectrometry lipidomics. PLoS ONE 8(5), e61951 (2013).
    • 73 Kind T, Liu KH, Lee Do Y, Defelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10(8), 755–758 (2013).•• A comprehensive article of lipid identification.
    • 74 Pham HT, Trevitt AJ, Mitchell TW, Blanksby SJ. Rapid differentiation of isomeric lipids by photodissociation mass spectrometry of fatty acid derivatives. Rapid Commun. Mass Spectrom. 27(7), 805–815 (2013).
    • 75 Pham HT, Ly T, Trevitt AJ, Mitchell TW, Blanksby SJ. Differentiation of complex lipid isomers by radical-directed dissociation mass spectrometry. Anal. Chem. 84(17), 7525–7532 (2012).
    • 76 Katajamaa M, Oresic M. Data processing for mass spectrometry-based metabolomics. J. Chromatogr. A 1158(1–2), 318–328 (2007).
    • 77 Castillo S, Gopalacharyulu P, Yetukuri L, Orešič M. Algorithms and tools for the preprocessing of LC-MS metabolomics data. Chemometr. Intell. Lab. Syst. 108, 23–32 (2011).
    • 78 Husen P, Tarasov K, Katafiasz M et al. Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLoS ONE 8(11), e79736 (2013).
    • 79 Herzog R, Schwudke D, Schuhmann K et al. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol. 12(1), R8 (2011).
    • 80 Song H, Hsu FF, Ladenson J, Turk J. Algorithm for processing raw mass spectrometric data to identify and quantitate complex lipid molecular species in mixtures by data-dependent scanning and fragment ion database searching. J. Am. Soc. Mass Spectrom. 18(10), 1848–1858 (2007).
    • 81 Haimi P, Uphoff A, Hermansson M, Somerharju P. Software tools for analysis of mass spectrometric lipidome data. Anal. Chem. 78(24), 8324–8331 (2006).
    • 82 Leavell MD, Leary JA. Fatty acid analysis tool (FAAT): an FT-ICR MS lipid analysis algorithm. Anal. Chem. 78(15), 5497–5503 (2006).
    • 83 Hubner G, Crone C, Lindner B. lipID-a software tool for automated assignment of lipids in mass spectra. J. Mass Spectrom. 44(12), 1676–1683 (2009).
    • 84 Ejsing CS, Duchoslav E, Sampaio J et al. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal. Chem. 78(17), 6202–6214 (2006).
    • 85 Schwudke D, Oegema J, Burton L et al. Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal. Chem. 78(2), 585–595 (2006).
    • 86 Lommen A. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81(8), 3079–3086 (2009).
    • 87 Katajamaa M, Oresic M. Processing methods for differential analysis of LC/MS profile data. BMC Bioinform. 6, 179 (2005).
    • 88 Smith CA, Want EJ, O’maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78(3), 779–787 (2006).
    • 89 Styczynski MP, Moxley JF, Tong LV, Walther JL, Jensen KL, Stephanopoulos GN. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Anal. Chem. 79(3), 966–973 (2007).
    • 90 Coble JB, Fraga CG. Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery. J. Chromatogr. A 1358, 155–164 (2014).•• Comparison of the software tools for lipidomics data preprocessing.
    • 91 Han X, Gross RW. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc. Natl Acad. Sci. USA 91(22), 10635–10639 (1994).
    • 92 Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl Acad. Sci. USA 94(6), 2339–2344 (1997).
    • 93 Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R, Somerharju P. Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J. Lipid Res. 42(4), 663–672 (2001).
    • 94 Wheelock C, Goto S, Yetukuri L et al. Bioinformatics strategies for the analysis of lipids. In: Lipidomics. Armstrong D (Ed.). Humana Press, NY, USA 339–368 (2010).
    • 95 Van Iersel MP, Kelder T, Pico AR et al. Presenting and exploring biological pathways with PathVisio. BMC Bioinform. 9, 399 (2008).
    • 96 Junker BH, Klukas C, Schreiber F. VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform. 7, 109 (2006).
    • 97 Byrnes RW, Cotter D, Maer A, Li J, Nadeau D, Subramaniam S. An editor for pathway drawing and data visualization in the Biopathways Workbench. BMC Syst. Biol. 3, 99 (2009).
    • 98 Zhao YY, Cheng XL, Vaziri ND, Liu S, Lin RC. UPLC-based metabonomic applications for discovering biomarkers of diseases in clinical chemistry. Clin. Biochem. 47(15), 16–26 (2014).
    • 99 Orešič M, Seppänen-Laakso T, Sun D et al. Phospholipids and insulin resistance in psychosis: a lipidomics study of twin pairs discordant for schizophrenia. Genome Med. 4(1), 1 (2012).
    • 100 Shui G, Lam SM, Stebbins J et al. Polar lipid derangements in Type 2 diabetes mellitus: potential pathological relevance of fatty acyl heterogeneity in sphingolipids. Metabolomics 9(4), 786–799 (2013).
    • 101 Kotronen A, Velagapudi VR, Yetukuri L et al. Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia 52(4), 684–690 (2009).
    • 102 Rhee EP, Cheng S, Larson MG et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Invest. 121(4), 1402–1411 (2011).
    • 103 Suhre K, Meisinger C, Doring A et al. Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS ONE 5(11), e13953 (2010). • Comprehensive metabolic profiling of diabetic subjects using three parallel analytical platforms.
    • 104 Puri P, Wiest MM, Cheung O et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 50(6), 1827–1838 (2009).
    • 105 Muir K, Hazim A, He Y et al. Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Res. 73(15), 4722–4731 (2013).
    • 106 Stegemann C, Pechlaner R, Willeit P et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation 129(18), 1821–1831 (2014).
    • 107 Wang-Sattler R, Yu Z, Herder C et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 8, 615 (2012).
    • 108 Floegel A, Stefan N, Yu Z et al. Identification of serum metabolites associated with risk of Type 2 diabetes using a targeted metabolomic approach. Diabetes 62(2), 639–648 (2013).
    • 109 Cobb J, Eckhart A, Perichon R et al. A novel test for IGT utilizing metabolite markers of glucose tolerance. J. Diabetes Sci. Technol. 9(1), 69–76 (2015).
    • 110 Ferrannini E, Natali A, Camastra S et al. Early metabolic markers of the development of dysglycemia and Type 2 diabetes and their physiological significance. Diabetes 62(5), 1730–1737 (2013).
    • 111 Roberts LD, Koulman A, Griffin JL. Towards metabolic biomarkers of insulin resistance and Type 2 diabetes: progress from the metabolome. Lancet Diabetes Endocrinol. 2(1), 65–75 (2014).
    • 112 Adams LA, Waters OR, Knuiman MW, Elliott RR, Olynyk JK. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am. J. Gastroenterol. 104(4), 861–867 (2009).
    • 113 Oresic M, Hyotylainen T, Kotronen A et al. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia 56(10), 2266–2274 (2013).
    • 114 Kotronen A, Velagapudi VR, Yetukuri L et al. Saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia 52(4), 684–690 (2009).