We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Biophysical characterization of lectin–glycan interactions for therapeutics, vaccines and targeted drug-delivery

    Michelle P Christie

    School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia

    ,
    Istvan Toth

    School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia

    School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Cornwall Street, Woolloongabba, QLD 4102, Australia

    &
    Pavla Simerská

    *Author for correspondence:

    E-mail Address: p.simerska@uq.edu.au

    School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia

    Published Online:https://doi.org/10.4155/fmc.14.130

    Lectin–glycan interactions play a role in biological processes, host–pathogen interactions and in disease. A more detailed understanding of these interactions is not only useful for the elucidation of their biological function but can also be applied in immunology, drug development and delivery and diagnostics. We review some commonly used biophysical techniques for studying lectin–glycan interactions; namely: frontal affinity chromatography, glycan/lectin microarray, surface plasmon resonance, electrochemical impedance spectroscopy, isothermal titration calorimetry, fluorescent assays, enzyme linked lectin sorbent assay and saturation transfer difference nuclear magnetic resonance spectroscopy. Each method is evaluated on efficiency, cost and throughput. We also consider the advantages and limitations of each technique and provide examples of their application in biology, drug discovery and delivery, immunology, glycoprofiling and biosensing.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Varki A, Cummings RD, Esko JD et al. Historical background and overview. In: Essentials of Glycobiology. Varki A, Cummings RD, Esko JD et al. (Eds). Cold Springs Harbor Laboratory Press, Cold Springs Harbor, NY, USA (2009).
    • 2 Varki A, Etzler ME, Cummings RD, Esko JD. Discovery and classification of glycan-binding proteins. In: Essentials of Glycobiology. Varki A, Cummings RD, Esko JD et al. (Eds). Cold Springs Harbor Laboratory Press, Cold Springs Harbor, NY, USA (2009).
    • 3 Collins BE, Paulson JC. Cell surface biology mediated by low affinity multivalent protein–glycan interactions. Curr. Opin. Chem. Biol. 8(6), 617–625 (2004).
    • 4 Murray CW, Rees DC. The rise of fragment-based drug discovery. Nat. Chem. 1(3), 187–192 (2009).
    • 5 Disney MD, Seeberger PH. The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem. Biol. 11(12), 1701–1707 (2004).
    • 6 Giaever I, Keese CR. A morphological biosensor for mammalian-cells. Nature 366(6455), 591–592 (1993).
    • 7 Rossi AM, Taylor CW. Analysis of protein-ligand interactions by fluorescence polarization. Nat. Protoc. 6(3), 365–387 (2011).•• Principles and experimental considerations for establishing fluorescence polarization experiments.
    • 8 Zadran S, Standley S, Wong K, Otiniano E, Amighi A, Baudry M. Fluorescence resonance energy transfer (FRET)-based biosensors: visualizing cellular dynamics and bioenergetics. Appl. Microbiol. Biotechnol. 96(4), 895–902 (2012).
    • 9 Pochapsky TC, Pochapsky SS. Nuclear magnetic resonance spectroscopy. In: Molecular Biophysics for the Life Sciences, Alewell N, Narhi LO, Rayment I (Eds). Springer New York, New York, NY, USA (2013).
    • 10 Wiederschain GY. Glycobiology: progress, problems, and perspectives. Biochemistry (Moscow) 78(7), 679–696 (2013).
    • 11 Rabinovich GA, Croci DO. Regulatory circuits mediated by lectin–glycan interactions in autoimmunity and cancer. Immunity 36(3), 322–335 (2012).
    • 12 Roy RM, Klein BS. Fungal glycan interactions with epithelial cells in allergic airway disease. Curr. Opin. Microbiol. 16(4), 404–408 (2013).
    • 13 Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science 343(6166), 1235681 (2014).
    • 14 Christie MP, Simerska P, Jen FEC et al. A drug-delivery strategy: binding enkephalin to asialoglycoprotein receptor by enzymatic galactosylation. PLoS ONE 9(4), e95024 (2014).
    • 15 Serrano ID, Ribeiro MMB, Castanho MaRB. A focus on glucose-mediated drug-delivery to the central nervous system. Mini Rev. Med. Chem. 12(4), 301–312 (2012).
    • 16 Simerska P, Christie MP, Goodwin D, Jen FEC, Jennings MP, Toth I. α-1,4-Galactosyltransferase-catalyzed glycosylation of sugar and lipid modified Leu-enkephalins. J. Mol. Catal. B Enzym. 97(0), 196–202 (2013).
    • 17 Eliaz I. The Role of Galectin-3 as a marker of cancer and inflammation in a stage IV ovarian cancer patient with underlying pro-inflammatory comorbidities. Case Rep. Oncol. 6(2), 343–349 (2013).
    • 18 Kaneko N, Gotoh A, Okamura N et al. Potential tumor markers of renal cell carcinoma: alpha-enolase for postoperative follow up, and galectin-1 and galectin-3 for primary detection. Int. J. Urol. 20(5), 530–535 (2013).
    • 19 Steffl M, Fik Z, Valach J et al. Loss of Galectin-9 from head and neck squamous cell carcinoma is a potent indicator of malignant transformation. FASEB J. 27, 523. 16 (2013).
    • 20 Andre S, Specker D, Bovin NV et al. Carbamate-linked lactose: design of clusters and evidence for selectivity to block binding of human lectins to (neo)glycoproteins with increasing degree of branching and to tumor cells. Bioconjug. Chem. 20(9), 1716–1728 (2009).
    • 21 Mesch S, Lemme K, Koliwer-Brandl H et al. Kinetic and thermodynamic properties of MAG antagonists. Carbohydr. Res. 345(10), 1348–1359 (2010).
    • 22 Springer GF. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J. Mol. Med. 75(8), 594–602 (1997).
    • 23 Fogt, Zimmerman, Furth et al. Sialosyl-Tn expression in benign and neoplastic proliferative lesions of the colon: of questionable value in predicting dysplasia. Colorectal Dis. 1(5), 256–262 (1999).
    • 24 Stuchlová Horynová M, Raška M, Clausen H, Novak J. Aberrant O-glycosylation and anti-glycan antibodies in an autoimmune disease IgA nephropathy and breast adenocarcinoma. Cell. Mol. Life Sci. 70(5), 829–839 (2013).
    • 25 Ju T, Wang Y, Aryal RP et al. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin. Appl. 7(9–10), 618–631 (2013).
    • 26 Liu CL, Wu SL. Mucin-type O-glycans in human cancer: altered structures and biological functions. Prog. Inorg. Biochem. Biophys. 37(5), 475–483 (2010).
    • 27 Wu AM, Wu JH, Singh T, Liu JH, Tsai MS, Gilboa-Garber N. Interactions of the fucose-specific Pseudomonas aeruginosa lectin, PA-IIL, with mammalian glycoconjugates bearing polyvalent Lewis(a) and ABH blood group glycotopes. Biochimie 88(10), 1479–1492 (2006).
    • 28 Zhang Y, Li Q, Rodriguez LG, Gildersleeve JC. An array-based method to identify multivalent inhibitors. J. Am. Chem. Soc. 132(28), 9653–9662 (2010).
    • 29 Frederick JR, Petri WA. Roles for the galactose-/N-acetylgalactosamine-binding lectin of Entamoeba in parasite virulence and differentiation. Glycobiology 15(12), R53–R59 (2005).
    • 30 Levan S, De S, Olson R. Vibrio cholerae cytolysin recognizes the heptasaccharide core of complex N-glycans with nanomolar affinity. J. Mol. Biol. 425(5), 944–957 (2013).
    • 31 Dam TK, Brewer CF. Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology 20(3), 270–279 (2010).
    • 32 Adams EW, Ratner DM, Bokesch HR, Mcmahon JB, O'keefe BR, Seeberger PH. Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology; glycan-dependent gp120/protein interactions. Chem. Biol. 11(6), 875–881 (2004).
    • 33 Mcmahon A, O'neill MJ, Gomez E et al. Targeted gene delivery to hepatocytes with galactosylated amphiphilic cyclodextrins. J. Pharm. Pharmacol. 64(8), 1063–1073 (2012).
    • 34 Zhang J, Wang X, Chen L, Li J, Luzak K. Harnessing a nanostructured fluorescence energy transfer sensor for quick detection of extremely small amounts of glucose. J. Diabetes Sci. Technol. 7(1), 45–52 (2013).
    • 35 Neutsch L, Wirth EM, Spijker S et al. Synergistic targeting/prodrug strategies for intravesical drug-delivery – lectin-modified PLGA microparticles enhance cytotoxicity of stearoyl gemcitabine by contact-dependent transfer. J. Control. Release 169(1–2), 62–72 (2013).
    • 36 Muro S, Schuchman EH, Muzykantov VR. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Mol. Ther. 13(1), 135–141 (2006).
    • 37 Urayama A, Grubb JH, Sly WS, Banks WA.Mannose-6-phosphate receptor mediated transport of sulfamidase across the blood-brain barrier in the newborn mouse. Mol. Ther. 16(7), 1261–1266 (2008).
    • 38 Letoha T, Keller-Pinter A, Kusz E et al. Cell-penetrating peptide exploited syndecans. Biochim. Biophys. Acta 1798(12), 2258–2265 (2010).
    • 39 Rehman ZU, Sjollema KA, Kuipers J, Hoekstra D, Zuhorn IS. Nonviral gene delivery vectors use syndecan-dependent transport mechanisms in filopodia to reach the cell surface. ACS Nano 6(8), 7521–7532 (2012).
    • 40 Montrose K, Yang Y, Sun X, Wiles S, Krissansen GW. Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs. Sci. Rep. 3, (2013).
    • 41 Letoha T, Kolozsi C, Ekes C et al. Contribution of syndecans to lipoplex-mediated gene delivery. Eur. J. Pharm. Sci. 49(4), 550–555 (2013).
    • 42 Kuziemko GM, Stroh M, Stevens RC. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35(20), 6375–6384 (1996).
    • 43 Horan N, Yan L, Isobe H, Whitesides GM, Kahne D. Nonstatistical binding of a protein to clustered carbohydrates. Proc. Natl Acad. Sci. USA 96(21), 11782–11786 (1999).
    • 44 Hirabayashi J. Concept, strategy and realization of lectin-based glycan profiling. J. Biochem. 144(2), 139–147 (2008).
    • 45 Daniels JS, Pourmand N. Label-free impedance biosensors: opportunities and challenges. Electroanal 19(12), 1239–1257 (2007).• Provides an overview on electrochemical impedance spectroscopy in general and is a useful reference point when establishing such an experimenttostudy lectin–glycan interactions.
    • 46 Ng ESM, Yang F, Kameyama A, Palcic MM, Hindsgaul O, Schriemer DC. High-throughput screening for enzyme inhibitors using frontal affinity chromatography with liquid chromatography and mass spectrometry. Anal. Chem. 77(19), 6125–6133 (2005).
    • 47 Palcic MM, Zhang B, Qian XP, Rempel B, Hindsgaul O. Evaluating carbohydrate-protein binding interactions using frontal affinity chromatography coupled to mass spectrometry. Methods Enzymol. 362, 369–376 (2003).
    • 48 Hirabayashi J, Hashidate T, Arata Y et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572(2–3), 232–254 (2002).
    • 49 Yabe R, Tateno H, Hirabayashi J. Frontal affinity chromatography analysis of constructs of DC-SIGN, DC-SIGNR and LSECtin extend evidence for affinity to agalactosylated N-glycans. FEBS J. 277(19), 4010–4026 (2010).
    • 50 Ng ESM, Chan NWC, Lewis DF, Hindsgaul O, Schriemer DC. Frontal affinity chromatography-mass spectrometry. Nat. Protoc. 2(8), 1907–1917 (2007).•• Highlights the basic principles of frontal affinity chromatographyand a protocol for setting up an experiment.
    • 51 Iwaki J, Minamisawa T, Tateno H et al. Desulfated galactosaminoglycans are potential ligands for galectins: evidence from frontal affinity chromatography. Biochem. Biophys. Res. Commun. 373(2), 206–212 (2008).
    • 52 Dyukova VI, Shilova NV, Galanina OE, Rubina AY, Bovin NV. Design of carbohydrate multiarrays. Biochim. Biophys. Acta 1760(4), 603–609 (2006).• Provides a good overview on glycan-microarrays.
    • 53 Tao SC, Li Y, Zhou JB et al. Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18(10), 761–769 (2008).
    • 54 Fry SA, Afrough B, Lomax-Browne HJ, Timms JF, Velentzis LS, Leathem AJC. Lectin microarray profiling of metastatic breast cancers. Glycobiology 21(8), 1060–1070 (2011).
    • 55 Seo JH, Kim CS, Hwang BH, Cha HJ. A functional carbohydrate chip platform for analysis of carbohydrate-protein interaction. Nanotechnology 21(21), 215101 (2010).
    • 56 Haga Y, Ishii K, Hibino K et al. Visualizing specific protein glycoforms by transmembrane fluorescence resonance energy transfer. Nat. Commun. 3, 907 (2012).
    • 57 Smith DF, Song X, Cummings RD. Use of glycan microarrays to explore specificity of glycan-binding proteins. Methods Enzymol. 480, 417–444 (2010).
    • 58 Campbell CT, Gulley JL, Oyelaran O, Hodge JW, Schlom J, Gildersleeve JC. Humoral response to a viral glycan correlates with survival on PROSTVAC-VF. Proc. Natl Acad. Sci. USA 111(17), E1749–E1758 (2014).
    • 59 Kong W, Liu L, Wang Y et al. Hemagglutinin mutation D222N of the 2009 pandemic H1N1 influenza virus alters receptor specificity without affecting virulence in mice. Virus Res. 189(0), 79–86 (2014).
    • 60 Foley KJ, Forzani ES, Joshi L, Tao N. Detection of lectin–glycan interaction using high resolution surface plasmon resonance. Analyst 133(6), 744–746 (2008).•• Details for setting up a surface plasmon resonance experiment for studying lectin–glycan interactions.
    • 61 Mamidyala SK, Dutta S, Chrunyk BA et al. Glycomimetic ligands for the human asialoglycoprotein receptor. J. Am. Chem. Soc. 134(4), 1978–1981 (2012).
    • 62 Dehuyser L, Schaeffer E, Chaloin O, Mueller CG, Baati R, Wagner A. Synthesis of novel mannoside glycolipid conjugates for inhibition of HIV-1 trans-infection. Bioconjugate Chem. 23(9), 1731–1739 (2012).
    • 63 Mesch S, Lemme K, Wittwer M et al. From a library of MAG antagonists to nanomolar CD22 ligands. ChemMedChem 7(1), 134–143 (2012).
    • 64 Egger J, Weckerle C, Cutting B et al. Nanomolar E-selectin antagonists with prolonged half-lives by a fragment-based approach. J. Am. Chem. Soc. 135(26), 9820–9828 (2013).
    • 65 Wanaguru M, Crosnier C, Johnson S, Rayner JC, Wright GJ. Biochemical analysis of the plasmodium falciparum Erythrocyte-Binding Antigen-175 (EBA175)-glycophorin-A interaction implications for vaccine design. J. Biol. Chem. 288(45), 32106–32117 (2013).
    • 66 Chang BY, Park SM. Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3, 207–229 (2010).
    • 67 Gamella M, Campuzano S, Parrado C, Reviejo AJ, Pingarron JM. Microorganisms recognition and quantification by lectin adsorptive affinity impedance. Talanta 78(4–5), 1303–1309 (2009).
    • 68 Ding L, Ji Q, Qian R, Cheng W, Ju H. Lectin-based nanoprobes functionalized with enzyme for highly sensitive electrochemical monitoring of dynamic carbohydrate expression on living cells. Anal. Chem. 82(4), 1292–1298 (2010).
    • 69 Cao JT, Hao XY, Zhu YD, Sun K, Zhu JJ. Microfluidic platform for the evaluation of multi-glycan expressions on living cells using electrochemical impedance spectroscopy and optical microscope. Anal. Chem. 84(15), 6775–6782 (2012).
    • 70 Damian L. Isothermal titration calorimetry for studying protein-ligand interactions. Methods Mol. Biol. 1008, 103–118 (2013).•• Provides the basic information necessary for establishing an isothermal titration calorimetry experiment.
    • 71 Takeda Y, Seko A, Sakono M et al. Parallel quantification of lectin-glycan interaction using ultrafiltration. Carbohydr. Res. 375, 112–117 (2013).
    • 72 Kakehi K, Oda Y, Kinoshita M. Fluorescence polarization: analysis of carbohydrate-protein interaction. Anal. Biochem. 297(2), 111–116 (2001).
    • 73 Malek MA, Hoang MH, Jia Y et al. Ombuin-3-O-beta-D-glucopyranoside from Gynostemma pentaphyllum is a dual agonistic ligand of peroxisome proliferator-activated receptors alpha and delta/beta. Biochem. Biophys. Res. Commun. 430(4), 1322–1328 (2013).
    • 74 Cumpstey I, Carlsson S, Leffler H, Nilsson UJ. Synthesis of a phenyl thio-beta-D-galactopyranoside library from 1,5-difluoro-2,4-dinitrobenzene: discovery of efficient and selective monosaccharide inhibitors of galectin-7. Org. Biomol. Chem. 3(10), 1922–1932 (2005).
    • 75 Kornilova AY, Algayer B, Breslin M, Uebele V. Development of a fluorescence polarization binding assay for asialoglycoprotein receptor. Anal. Biochem. 425(1), 43–46 (2012).
    • 76 Taccone FS, De Backer D, Laterre PF et al. Pharmacokinetics of a loading dose of amikacin in septic patients undergoing continuous renal replacement therapy. Int. J. Antimicrob. Agents 37(6), 531–535 (2011).
    • 77 Mccoy JP, Jr., Varani J, Goldstein IJ. Enzyme-linked lectin assay (ELLA): use of alkaline phosphatase-conjugated Griffonia simplicifolia B4 isolectin for the detection of alpha-D-galactopyranosyl end groups. Anal. Biochem. 130(2), 437–444 (1983).• One of the first publications on enzyme linked lectin sorbent assay, and can be used as a starting point when setting up new experiments.
    • 78 Mccoy JP, Jr., Varani J, Goldstein IJ. Enzyme-linked lectin assay (ELLA). II. Detection of carbohydrate groups on the surface of unfixed cells. Exp. Cell Res. 151(1), 96–103 (1984).
    • 79 Dwek MV, Jenks A, Leathem AJC. A sensitive assay to measure biomarker glycosylation demonstrates increased fucosylation of prostate specific antigen (PSA) in patients with prostate cancer compared with benign prostatic hyperplasia. Clin. Chim. Acta. 411(23–24), 1935–1939 (2010).
    • 80 Matsumoto H, Shinzaki S, Narisada M et al. Clinical application of a lectin-antibody ELISA to measure fucosylated haptoglobin in sera of patients with pancreatic cancer. Clin. Chem. Lab. Med. 48(4), 505–512 (2010).
    • 81 Calarese DA, Lee HK, Huang CY et al. Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc. Natl Acad. Sci. USA 102(38), 13372–13377 (2005).
    • 82 Wu AM, Wu JH, Tsai MS, Kaltner H, Gabius HJ. Carbohydrate specificity of a galectin from chicken liver (CG-16). Biochem. J. 358, 529–538 (2001).
    • 83 Haselhorst T, Lamerz AC, Itzstein M. Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution. Methods Mol. Biol. 534, 375–386 (2009).•• Explanation on the principle of saturation transfer difference-NMR and a detailed method for setting up and conducting the experiment.
    • 84 Angulo J, Diaz I, Reina JJ et al. Saturation transfer difference (STD) NMR spectroscopy characterization of dual binding mode of a mannose disaccharide to DC-SIGN. ChemBioChem 9(14), 2225–2227 (2008).
    • 85 Caraballo R, Dong H, Ribeiro JP, Jimenez-Barbero J, Ramstrom O. Direct STD NMR identification of beta-galactosidase inhibitors from a virtual dynamic hemithioacetal system. Angew. Chem. Int. Ed. Engl. 49(3), 589–593 (2010).
    • 86 Rademacher C, Guiard J, Kitov PI et al. Targeting norovirus infection-multivalent entry inhibitor design based on NMR experiments. Chemistry 17(27), 7442–7453 (2011).
    • 87 Ribeiro JP, Andre S, Canada FJ et al. Lectin-based drug design: combined strategy to identify lead compounds using STD NMR spectroscopy, solid-phase assays and cell binding for a plant toxin model. ChemMedChem 5(3), 415–419 (2010).
    • 88 Bernardi A, Arosio D, Potenza D et al. Intramolecular carbohydrate-aromatic interactions and intermolecular van der Waals interactions enhance the molecular recognition ability of GMI glycomimetics for cholera toxin. Chemistry 10(18), 4395–4406 (2004).
    • 89 Enriquez-Navas PM, Marradi M, Padro D, Angulo J, Penades S. A solution NMR study of the interactions of oligomannosides and the anti-HIV-1 2G12 antibody reveals distinct binding modes for branched ligands. Chemistry 17(5), 1547–1560 (2011).
    • 90 Rademacher C, Krishna NR, Palcic M, Parra F, Peters T. NMR experiments reveal the molecular basis of receptor recognition by a calicivirus. J. Am. Chem. Soc. 130(11), 3669–3675 (2008).
    • 91 Kasai K, Ishii S. Quantitative-analysis of affinity chromatography of trypsin – new technique for investigation of protein–ligand interaction. J. Biochem. 77(1), 261–264 (1975).
    • 92 Kasai K, Oda Y, Nishikata M, Ishii S. Frontal affinity-chromatography – theory for its application to studies on specific interactions of biomolecules. J. Chromatogr. 376, 33–47 (1986).
    • 93 Sato C, Yamakawa N, Kitajima K. Measurement of glycan-based interactions by frontal affinity chromatography and surface plasmon resonance. Methods Enzymol. 478, 219–232 (2010).
    • 94 Chan NWC, Lewis DF, Rosner PJ, Kelly MA, Schriemer DC. Frontal affinity chromatography-mass spectrometry assay technology for multiple stages of drug. discovery: applications of a chromatographic biosensor. Anal. Biochem. 319(1), 1–12 (2003).
    • 95 Oo-Puthinan S, Maenuma K, Sakakura M et al. The amino acids involved in the distinct carbohydrate specificities between macrophage galactose-type C-type lectins 1 and 2 (CD301a and b) of mice. Biochim. Biophys. Acta 1780(2), 89–100 (2008).
    • 96 Semchenko EA, Moutin M, Korolik V, Tiralongo J, Day C. Lectin array analysis of purified lipooligosaccharide: a method for the determination of molecular mimicry. J. Glycomics Lipidomics 1(3), (2012).
    • 97 Kuno A, Uchiyama N, Koseki-Kuno S et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nat. Methods. 2(11), 851–856 (2005).
    • 98 Tateno H, Nakamura-Tsuruta S, Hirabayashi J. Frontal affinity chromatography: sugar-protein interactions. Nat. Protoc. 2(10), 2529–2537 (2007).
    • 99 Nakamura-Tsuruta S, Uchiyama N, Hirabayashi J. High-throughput analysis of lectin-oligosaccharide interactions by automated frontal affinity chromatography. Glycobiology 415, 311–325 (2006).
    • 100 Hodgson RJ, Chen Y, Zhang Z et al. Protein-doped monolithic silica columns for capillary liquid chromatography prepared by the sol-gel method: applications to frontal affinity chromatography. Anal. Chem. 76(10), 2780–2790 (2004).
    • 101 Isomura R, Kitajima K, Sato C. Structural and functional impairments of polysialic acid by a mutated polysialyltransferase found in schizophrenia. J. Biol. Chem. 286(24), 21535–21545 (2011).
    • 102 Makyio H, Takeuchi T, Tamura M et al. Structural basis of preferential binding of fucose-containing saccharide by the Caenorhabditis elegans galectin LEC-6. Glycobiology 23(7), 797–805 (2013).
    • 103 Maenuma K, Yim M, Komatsu K et al. Use of a library of mutated Maackia amurensis hemagglutinin for profiling the cell lineage and differentiation. Proteomics 8(16), 3274–3283 (2008).
    • 104 Matsuda A, Kuno A, Ishida H, Kawamoto T, Shoda J, Hirabayashi J. Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem. Biophys. Res. Commun. 370(2), 259–263 (2008).
    • 105 Kuno A, Matsuda A, Ikehara Y, Narimatsu H, Hirabayashi J. Differential glycan profiling by lectin microarray targeting tissue specimens. Methods. Enzymol. 478, 165–179 (2010).
    • 106 Hsu KL, Gildersleeve JC, Mahal LK. A simple strategy for the creation of a recombinant lectin microarray. Mol. Biosyst. 4(6), 654–662 (2008).
    • 107 Ebe Y, Kuno A, Uchiyama N et al. Application of lectin microarray to crude samples: differential glycan profiling of Lec mutants. J. Biochem. 139(3), 323–327 (2006).
    • 108 Hu D, Tateno H, Kuno A, Yabe R, Hirabayashi J. Directed evolution of lectins with sugar-binding specificity for 6-sulfo-galactose. J. Biol. Chem. 287(24), 20313–20320 (2012).
    • 109 Day CJ, Tiralongo J, Hartnell RD et al. Differential carbohydrate recognition by campylobacter jejuni strain 11168: influences of temperature and growth conditions. PLoS ONE 4(3), (2009).
    • 110 Hirabayashi J, Yamada M, Kuno A, Tateno H. Lectin microarrays: concept, principle and applications. Chem. Soc. Rev. 42(10), 4443–4458 (2013).•• Provides a comprehensive overview on lectin arrays.
    • 111 Tateno H, Toyota M, Saito S et al. Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J. Biol. Chem. 286(23), 20345–20353 (2011).
    • 112 Guo Y, Feinberg H, Conroy E et al. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat. Struct. Mol. Biol. 11(7), 591–598 (2004).
    • 113 Gao C, Liu Y, Zhang H et al. Carbohydrate sequence of the prostate cancer-associated antigen F77 assigned by a mucin O-glycome designer array. J. Biol. Chem. 289(23), 16462–16477 (2014).
    • 114 Jason-Moller L, Murphy M, Bruno J. Overview of Biacore systems and their applications. In: Current Protocol in Protein Science. Coligan JE et al. (Ed.) 19 19–13 (2006).
    • 115 Tudos AJ, Schasfoort RBM. Introduction to Surface Plasmon Resonance. Handbook of Surface Plasmon Resonance. Tudos AJ Schasfoort RBM 11–14 (2008).
    • 116 Cooper MA. Optical biosensors in drug discovery. Nat. Rev. Drug. Discov. 1(7), 515–528 (2002).
    • 117 Gonzales NR, Schuck P, Schlom J, Kashmiri SVS. Surface plasmon resonance-based competition assay to assess the sera reactivity of variants of humanized antibodies. J. Immunol. Methods 268(2), 197–210 (2002).
    • 118 Bertok T, Gemeiner P, Mikula M, Gemeiner P, Tkac J. Ultrasensitive impedimetric lectin based biosensor for glycoproteins containing sialic acid. Mikrochim. Acta. 180(1–2), 151–159 (2013).
    • 119 Da Silva JS, Oliveira MD, De Melo CP, Andrade CA. Impedimetric sensor of bacterial toxins based on mixed (Concanavalin A)/polyaniline films. Colloids Surf. B Biointerfaces 117, 549–554 (2014).
    • 120 Maalouf R, Fournier-Wirth C, Coste J et al. Label-free detection of bacteria by electrochemical impedance spectroscopy: Comparison to surface plasmon resonance. Anal. Chem. 79(13), 4879–4886 (2007).
    • 121 Tang H, Chen J, Nie L, Kuang Y, Yao S. A label-free electrochemical immunoassay for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and nonconductive polymer film. Biosens. Bioelectron. 22(6), 1061–1067 (2007).
    • 122 Loaiza OA, Lamas-Ardisana PJ, Jubete E et al. Nanostructured disposable impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A. Anal. Chem. 83(8), 2987–2995 (2011).
    • 123 Hu Y, Zuo P, Ye BC. Label-free electrochemical impedance spectroscopy biosensor for direct detection of cancer cells based on the interaction between carbohydrate and lectin. Biosens. Bioelectron. 43, 79–83 (2013).
    • 124 Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied researchusurvey of the literature from 2010. J. Mol. Recognit. 25(1), 32–52 (2012).
    • 125 Ladbury JE. Application of isothermal titration calorirnetry in the biological sciences: things are heating up! Biotechniques 37(6), 885–887 (2004).
    • 126 Liang Y. Applications of isothermal titration calorimetry in protein science. Acta. Biochim. Biophys. Sin. 40(7), 565–576 (2008).
    • 127 Falconer RJ, Penkova A, Jelesarov I, Collins BM. Survey of the year 2008: applications of isothermal titration calorimetry. J. Mol. Recognit. 23(5), 395–413 (2010).
    • 128 Jiang D, Zhang Q, Zheng Q et al. Structural analysis of Mycobacterium tuberculosis ATP-binding cassette transporter subunit UgpB reveals specificity for glycerophosphocholine. FEBS J. 281(1), 331–341 (2014).
    • 129 Morgan A, Wang X. The novel heparin-binding motif in decorin-binding protein A from strain B31 of Borrelia burgdorferi explains the higher binding affinity. Biochemistry 52(46), 8237–8245 (2013).
    • 130 Gohler A, Buchner C, Andre S, Doose S, Kaltner H, Gabius HJ. Sensing ligand binding to a clinically relevant lectin by tryptophan fluorescence anisotropy. Analyst 136(24), 5270–5276 (2011).
    • 131 Sorme P, Kahl-Knutsson B, Huflejt M, Nilsson UJ, Leffler H. Fluorescence polarization as an analytical tool to evaluate galectin-ligand interactions. Anal. Biochem. 334(1), 36–47 (2004).
    • 132 Harris A, Cox S, Burns D, Norey C. Miniaturization of fluorescence polarization receptor-binding assays using CyDye-labeled ligands. J. Biomol. Screen. 8(4), 410–420 (2003).
    • 133 Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal. Biochem. 230(2), 229–238 (1995).
    • 134 Duk M, Lisowska E, Wu JH, Wu AM. The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically-modified glycoprotein ligand. Anal. Biochem. 221(2), 266–272 (1994).
    • 135 Wu AM, Khoo KH, Yu SY, Yang Z, Kannagi R, Watkins WM. Glycomic mapping of pseudomucinous human ovarian cyst glycoproteins: identification of Lewis and sialyl Lewis glycotopes. Proteomics 7(20), 3699–3717 (2007).
    • 136 Kim HJ, Lee SJ, Kim HJ. Antibody-based enzyme-linked lectin assay (ABELLA) for the sialylated recombinant human erythropoietin present in culture supernatant. J. Pharm. Biomed. Anal. 48(3), 716–721 (2008).
    • 137 Haab BB, Yue TT. High-throughput studies of protein glycoforms using antibody-lectin sandwich arrays. Protein Microarrays 785, 223–236 (2011).
    • 138 Wu AM, Lisowska E, Duk M, Yang ZG. Lectins as tools in glycoconjugate research. Glycoconjugate J. 26(8), 899–913 (2009).
    • 139 Kuzmanov U, Kosanam H, Diamandis EP. The sweet and sour of serological glycoprotein tumor biomarker quantification. BMC Med. 11, 31 (2013).
    • 140 Mayer M, Meyer B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. Engl‥ 38(12), 1784–1788 (1999).
    • 141 Meyer B, Peters T. NMR Spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. Engl. 42(8), 864–890 (2003).
    • 142 Mari S, Serrano-Gomez D, Canada FJ, Corbi AL, Jimenez-Barbera J. 1D saturation transfer difference NMR experiments on living cells: the DC-SIGN/oligomannose interaction. Angew. Chem. Int. Ed. Engl. 44(2), 296–298 (2005).
    • 143 Benie AJ, Moser R, Bauml E, Blaas D, Peters T. Virus-ligand interactions: identification and characterization of ligand binding by NMR spectroscopy. J. Am. Chem. Soc. 125(1), 14–15 (2003).
    • 144 Venkitakrishnan RP, Benard O, Max M, Markley JL, Assadi-Porter FM. Use of NMR saturation transfer difference spectroscopy to study ligand binding to membrane proteins. Methods Mol. Biol. 914, 47–63 (2012).
    • 145 Angulo J, Langpap B, Blume A et al. Blood group B galactosyltransferase: insights into substrate binding from NMR experiments. J. Am. Chem. Soc. 128(41), 13529–13538 (2006).
    • 146 Recht MI, Torres FE, De Bruyker D, Bell AG, Klumpp M, Bruce RH. Measurement of enzyme kinetics and inhibitor constants using enthalpy arrays. Anal. Biochem. 388(2), 204–212 (2009).
    • 147 Kletter D, Singh S, Bern M, Haab BB. Global comparisons of lectin–glycan interactions using a database of analyzed glycan array data. Mol. Cell. Proteomics 12(4), 1026–1035 (2013).