
Future
Medicinal
Chemistry 

Research Article

part of

381Future Med. Chem. (2017) 9(4), 402–381 ISSN 1756-891910.4155/fmc-2016-0197 © Daniel Reker et al.

Future Med. Chem.

Research Article 2017/02/23
9

4

2017

Aim: Computational chemogenomics models the compound–protein interaction 
space, typically for drug discovery, where existing methods predominantly either 
incorporate increasing numbers of bioactivity samples or focus on specific subfamilies 
of proteins and ligands. As an alternative to modeling entire large datasets at once, 
active learning adaptively incorporates a minimum of informative examples for 
modeling, yielding compact but high quality models. Results/methodology: We 
assessed active learning for protein/target family-wide chemogenomic modeling by 
replicate experiment. Results demonstrate that small yet highly predictive models can 
be extracted from only 10–25% of large bioactivity datasets, irrespective of molecule 
descriptors used. Conclusion: Chemogenomic active learning identifies small subsets 
of ligand–target interactions in a large screening database that lead to knowledge 
discovery and highly predictive models.
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Background
Identifying new associations between small 
molecules and their macromolecular targets 
via computational prediction has been estab-
lished in academic and industrial research 
workflows both for hit and lead discovery as 
well as for chemical biology [1–5]. The differ-
ent approaches can be distinguished accord-
ing to the origin of the data used for infer-
ring new ligand–target relationships [6–8]. 
Receptor-based approaches extract infor-
mation about the target on the level of the 
amino acid sequence, tertiary structure infor-
mation or protein family relationships [9,10]. 
Conversely, ligand-based prediction methods 
rely on mathematical representation of ligand 
structures and comparisons guided by the 
chemical similarity principle (structurally 
similar ligands often exhibit similar bioac-
tivity) [11–15]. The choice for either approach 
is strongly governed by data availability or 
simply personal preference, with no clear 

winner among the numerous retrospective 
comparisons or when reviewing the literature 
on prospective applications [16–18]. The ben-
efit of using complementary approaches has 
been investigated previously and justifies the 
existence of a multitude of methods that have 
distinct applicability domains [19–21].

Computational chemogenomics (or pro-
teochemometric modeling) is an integral 
part of the molecular informatics toolbox 
and represents a consequent coalescence 
of the ligand- and receptor-based philoso-
phies [22–24]. Computational chemogenomic 
models leverage the information available by 
comparing the similarities of both ligands 
and targets simultaneously. Such develop-
ments were motivated by the completion of 
the human genome [25] and the successful 
application of consensus models [26–29], as 
well as the increasing value of pharmaco-
logical insight derived from investigating 
ligand–target networks [1,30].
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Chemogenomic data come to utility when, for 
instance, one has new compounds with a phenotypi-
cal readout but not target data, and wishes to generate 
hypotheses about the targets of the new compounds 
by comparing them to similar existing compounds for 
which target data are indeed known. Chemogenomic 
data come to utility in the target space as well when, for 
example, a team begins research into a new target and 
can begin by considering the existing bioactivity pro-
files of other similar proteins. Protein promiscuity [31] 
and the similarity principle [32] can provide directions 
in hit selection or lead optimization. The pair of per-
spectives for ligand-based and target-based hypothesis 
generation have been explored independently but typi-
cally not in combination. Intertwining information 
from both the ligand and the target space in a mac-
roscopic, comprehensive model has been recognized 
as a possible strategy to benefit simultaneously from 
ligand and target similarities which thereby increases 
the domain of applicability compared to separate mod-
els [22,33].

Commonly, chemogenomics approaches rely on 
concatenating descriptors for ligands and targets as 
inputs to statistical learning methods that classify a 
query ligand–target pair as interacting or noninter-
acting [34,35]. Retrospective studies and a slowly ris-
ing number of prospective validations have shown 
that various machine learning techniques are indeed 
capable of navigating the interface of chemical and bio-
logical spaces [23,33]. They can efficiently use the avail-
able data to predict links between the provided sets of 
bioactive compounds and their biomacromolecular 
targets (termed ‘Class I’ prediction in [33], see Box 1 
for terminology). Two noteworthy prospective appli-
cations of computational chemogenomics have applied 
the concept to discover ligands for simulated orphan 
targets [36] (‘Class III’ prediction) as well as study 
resistance development through point mutations in 
HIV non-nucleoside reverse transcriptase mutants [37]. 
These studies specifically highlight how computational 
chemogenomics methods are able to explore potential 
pharmacological relationships both from a ligand- as 
well as a target-centric perspective [38].

The ability to execute such methods is tightly cou-
pled to the increasing data available through high-
throughput and high-content screens. However, the 
cardinality of the theoretically available space gener-
ated through the product of all possible organic com-
pounds and all biomacromolecular targets is compu-
tationally intractable, with estimates for the number 
of possible pairs reaching no less than 1065 [39]. This 
might serve in part as an explanation why most com-
putational chemogenomic applications have focused 
on specific subfamilies of proteins and ligands [40]. 

Current complex machine learning models, for exam-
ple following ‘deep learning’ principles [41,42], that are 
trained on comprehensive datasets are still difficult 
to interpret, and result in performances that are as of 
yet insignificant compared with existing methodolo-
gies. In particular, large ligand–target networks have 
been reported to suffer from a strong target selection 
bias [43], which may force models to learn historic tar-
get preferences rather than identifying informative 
ligand–target patterns [44].

While complex model research continues, active 
learning methods have recently gained attention in the 
drug discovery community [45,46]. In short, instead of 
fitting models to data en masse, active learning adds 
machine-picked examples in stepwise fashion, termi-
nating once satisfactory prediction performance is 
achieved or once a specified number of data points have 
been included for model calculation (Figure 1 & Box 2). 
The machine learning model is re-trained after every 
data addition in order to adapt experimental design 
‘on-the-fly’ for improved experimental efficiency. Pro-
spective studies have recognized the ability of active 
learning to dynamically steer model development and 
rapidly identify structurally novel compounds for indi-
vidual targets [46–51]. In such prospective chemistry 
applications, novel compounds would be predicted and 
assayed, after which those experimental results become 
the additional examples to learn from, and another 
round of modeling, prediction and validation begins. 
When applied retrospectively, active learning has also 
been recognized as a data mining technique to identify 
the most informative subset of data to fit high-quality 
models [52–55]. By starting from scratch, active learning 
can retrospectively pick only the examples necessary 
for model construction.

Driven by the importance of chemogenomics, and 
by the potential benefits of active learning, we set out 
to investigate whether chemogenomic active learning 
can identify key subsets of ligand–target pairs gener-
ated by large screening data of drug discovery projects 
in order to construct predictive models with reduced 
target bias and lend the subset of pairs selected to man-
ual analysis.

Rarey and coworkers recently published an active 
learning framework for a multitarget problem in drug 
discovery, namely the ability of active learning com-
bined with chemogenomic reasoning to build a predic-
tive model for a target subfamily by using only a subset 
of available data [56]. Their investigation demonstrated 
efficient navigation of focused ligand–target spaces 
and provided a means for model training and experi-
mental design.

The objective of our contemporaneous investiga-
tion challenges this hypothesis for much larger, full 
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proteochemometric spaces. That is, we investigate the 
potential of active learning to act as the steering wheel 
for family-wide computational chemogenomic model 
building. We evaluate its ability to predict bioactivity 
and how it evolves a chemogenomic model [49,56–58], 
finding that protein/target family-wide chemogenomic 
active learning can build an interaction model from 
only a small fraction of bioactivity data points in a 
screening database. These models show high predic-
tive performance on datasets many folds larger than 
that used for model construction. This leads to the 
implication that chemogenomic active learning might 
actually be able to computationally identify the most 
beneficial assays for subsequent execution and evalua-
tion. It could serve as a platform to iteratively include 
the results in an actively updating model, which con-
sequently would lead to making strides in improving 
discovery rates and reducing screening costs.

Materials
Compound–protein interaction data
We extracted ligand–target bioactivity from the 
ChEMBL SARfari databases [59], and from a recent 
G-protein coupled receptor (GPCR)-specific data-
base GLASS [60] in which data were acquired from the 
database portal website in October 2015. The work-
flow to process the data is graphically demonstrated in 
Supplementary Figure 1.

SARfari databases were processed as follows. The 
databases contain bioactivity tables encoded as flat 
text files, with each interaction composed of a target 
domain (typically protein name), a compound ID, 
an assay type and a bioactivity record including the 
bioactivity metric (e.g., IC

50
, EC

50
, K

i
) and relational 

value (e.g., = 10 μM or >1 nM). SARfari uses inter-
nal compound and protein IDs. We eliminated Starlite 
ADMET and Starlite functional assays, thereby retain-
ing target-based biochemical and functional assays, 
with further restriction to exclusively human tar-
gets. Compound–protein interaction pairs (hereafter, 
‘CPIs’) were further filtered to use K

i
 values for GPCRs 

(GPCR SARfari 3) and IC
50

 values for kinases (Kinase 

SARfari 5.01). ‘Interactions’ were extracted using a 
cutoff at 100 nM and ‘noninteractions’ were defined 
using a cutoff of 10 μM, thus separating the classes by 
two full logarithmic values. Interactions between the 
two ranges were discarded, as their classification is sub-
jective. A postprocessing step was developed to elimi-
nate any interactions with records in both the resulting 
interaction and noninteraction subsets. Additionally, 
interactions were eliminated for targets that did not 
contain activity data for at least 50 compounds.

The GPCR GLASS database is similarly available 
as a flat text file, using UniProt [61] IDs and InChI [62] 
keys as protein and compound identifiers, respectively. 
Using the UniProt IDs for targets, we reduced the 
GLASS database to human-specific proteins. GLASS 
was processed analogously to SARfari, however, due to 
the distribution of K

i
 bioactivities in GLASS, nonin-

teractions were defined by the lower limit of 1 μM. A 
contradiction detection and 50 ligands/target filter was 
applied identical to that for SARfari datasets.

The resulting dataset sizes are given in Table 1. A num-
ber of analyses have shown that hit compounds turning 
out to be false positives contain common substructures, 
and in light of this, we have executed an analysis of the 
compounds in Table 1, flagging them by Rishton and 
Hann false-positive substructure flags [63,64], flagging 
them by a recent ligand multifamily promiscuity pre-
diction tool [65], and finally, flagging them as potential 
pan-assay interference compounds (PAINS) [66] (see 
Box 3 for details on each flagging method). The promi-
nent Hann false-positive flags were Michael acceptors, 
reactive alkylhalides, aliphatic methylene chains (n > 6) 
and disulfides. Note, however, that these compounds 
were not removed before modeling and evaluation, but 
were investigated for whether the learning strategies 
exhibit a bias toward selecting potential ‘attrition’ com-
pounds. The raw distribution of ligands per target for 
each da taset is included as Supplementary Figure 2.

Molecule descriptors
Feature vectors to describe the interactions were con-
structed by concatenating the vector representations 

Box 1. Chemogenomic prediction problems.

The goal of computational chemogenomics is to build predictive models by leveraging the similarity 
of compounds and similarity of proteins/targets. Brown et al. have previously defined four classes of 
prospective chemogenomic prediction problems [33], ordered in terms of increasing challenge. In Class I 
problems, the goal is to predict the missing values in a matrix of ligands and targets containing at least 
one data point per molecule. No new ligands or targets are used for prediction. In Class II, novel ligands 
are predicted for the existing targets. This class includes de novo design and lead optimization predictions. 
In Class III, new targets are predicted for existing ligands. This class includes screening for orphan, 
homolog or mutant proteins. In Class IV, neither the ligands nor the targets to be tested for association 
are included in the training/reference data, which is a stringent test of a model’s ability to extrapolate 
from the reference bioactivity data



Figure 1. Concept of chemogenomic active learning. Chemogenomic active learning starts with an input dataset 
containing interactions and noninteractions, and molecule descriptors that represent features of compounds and 
proteins. After an initial random selection of one interaction and one noninteraction for generation of a minimal 
model, a model–predict–evaluate–incorporate cycle is executed. The cycle is repeated for a predetermined 
number of iterations, after which the modeling terminates. A goal of chemogenomic active learning is to 
terminate having extracted only the 10–20% of compound–protein pairs most informative for effective prediction 
on the remaining 80–90% of recorded bioactivity.  
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of each interaction’s component compound and pro-
tein. To assess the sensitivity of results against molec-
ular representation, multiple representations were 
e valuated.

For compounds, we computed the extended con-
nectivity fingerprint (ECFP) [67] with a radius of 
4 bonds hashed to 4096 bits (OpenEye OEChem 
library), as well as the 166-bit MACCS finger-
print [68]. For proteins, we applied the PROFEAT [69] 
protein descriptor to yield a 1497-dimensional vector 
describing the physicochemical and sequence prop-
erties of each target. In addition, we computed the 
frequency of dipeptides from the primary amino acid 
sequence of each protein (e.g., for the subsequence 
LDHLLLLAL in the prostaglandin D2 receptor 
with UniProt ID Q13258, the frequency of dipep-
tides would be LD = 1, DH = 1, HL = 1, LL = 3, LA 
= 1 and AL = 1).

Methods
Actively learned models
Datasets were randomly shuffled after input to avoid 
artifacts introduced through data ordering. Random 
forest models [70] (see Box 4) were trained using scikit-
learn [71] by initializing RandomForestClassifier(n_
estimators=500, max_features=’sqrt’) on one ran-
domly picked interaction and one randomly picked 
noninteraction (Figure 1). From these sparsely trained 
models, active learning [45] was performed for 10,000 
iterations, adding one new interaction to the model per 
iteration. In addition to the model methodology, the 
second and other crucial element of an active learning 
platform is the strategy used to select the next instance 
(CPI) to include in an updated model (Figure 1). Here, 
we implemented three CPI picking strategies (see Box 5 
for a more detailed explanation of strategy semantics): 
random picking (simple random subsampling), 
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‘greedy’ picking (Equation 1, the CPI i which results 
in the maximum number of individual interaction 
c lassification trees T(i) that classify i as an interaction),

and ‘curiosity’ picking driven by predictive uncer-
tainty (Equation 2, the CPI which results in the largest 
d isagreement of individual tree predictions):

where F represents the average prediction over the whole 
forest of classification trees for CPI i, and where Num-
Trees corresponds to the number of trees in the forest.

Replicate experiments & evaluation
Input datasets were evaluated over 10 repeated execu-
tions of learning, where the execution number was 
used as the seed value for randomizing the input CPI 
list (and subsequent selection of the first two CPIs), 
and for seeding the random forest.

The actively learned CPI models were evaluated by 
multiple criteria, which are summarized in Table 2. 
First, we compared picking strategies by using the Mat-
thews correlation coefficient (MCC) [72] of a model 
at each iteration of each execution for each strategy, 
where the full set of input CPIs was used for evaluation 
to ensure a comparability of the values obtained from 
different runs (see Box 6 for types of prediction out-
comes and MCC concept). While this arguably biases 
the MCC results through adding known actives/inac-
tives in the performance evaluation, this is a system-
atic bias equivalent for all evaluated runs and there-
fore does not influence our relative comparisons. The 
MCC is calculated as follows (Equation 3): 

The raw data from an MCC curve are jagged, and 
therefore, methods to smoothen the data and lend 
it to analytical methods can help in interpreting the 
results. We fitted MCC curve data to an exponential 
decay function y(x) = a*exp(-b*x) + c, where a controls 
the speed of growth, b controls the speed of decay and 
c is a constant used to position the decay curve. Substi-
tuting x for an iteration of learning and y for the MCC 
at that iteration, we fit (Equation 4):

by applying the SciPy [74] ‘optimize’ module and its 
member function ‘curve_fit’ (nonlinear least squares), 
after which we solved (Equation 5):

to find the iteration whose tangent line has slope v (see 
Results). The exponential decay function was chosen 
because its shape mirrors the shape expected by active 
learning – that is, sustained improvement in prediction 
performance up to a given limit, at which performance 
is saturated and little to no further improvement can 
be achieved through addition of more data. Solving the 
derivative (5) provides an estimate on the number of 
CPIs that can be added while maintaining a defined 
level of performance improvement.

In addition to the MCC values, we calculate the 
iterative true positive rate (TP/[TP+FN]) and the true 
negative rate (TN/[TN+FP]) for additional perspec-
tives on evaluating model performances.

As shown in Table 1, chemogenomic datasets can 
be heavily biased toward actives. Therefore, pick-
ing behaviors were also evaluated by monitoring the 
ratio of picked interactions to noninteractions over the 
learning process. How chemical and protein spaces 
were dynamically explored was investigated by com-
paring each selected CPI instance to the previously 
selected CPI. This was done by measuring the simi-
larity between the stepwise compounds (ECFP finger-
prints with Tanimoto similarity) and stepwise proteins 
(using the Local Alignment Kernel [75]). Alternatively, 
the selected CPI instance was compared with the entire 
collection of previously selected CPIs to calculate the 
maximum similarity to the model’s existing training 
set. Each type of comparison was analyzed using 2D 
histograms (heatmaps reflecting the binning of com-
pound similarity on one axis and protein similarity on 
a second axis).

Next, ‘target-trees’, where each leaf of a tree repre-
sents an individual target and is augmented by a time-
series heatmap reflecting that target’s specific MCC 
trajectory, were constructed using neighbor join-

Box 2. Active learning for chemogenomics.

Despite advancements in combinatorial 
chemistry and high-throughput screening, it is 
prohibitively expensive to perform biochemical 
assays for target-level activity across all possible 
combinations of compounds and targets. In this 
respect, chemogenomic active learning seeks to 
achieve two goals. First, it seeks to yield the most 
informative compound–protein interactions in 
an existing bioactivity collection. Second, with 
sufficient predictive performance on the existing 
bioactivity collection, including an evaluation on 
those points not selected as the most informative, 
the method aims to predict the experimental 
validations most likely to succeed or provide 
valuable information before they are actually 
carried out, potentially saving a screening facility 
from incurring additional large costs

argmaxi T i T iTrT ees∈ ( ), ( ) { , }0 1

argmaxi T i F i∑ [ ( )- ( )]2

F i T i NumTrees( ) [ ( )] /= ∑

using

TreesT∈

TreesT∈

MCC Iter a cb Iter( ) *exp ( * )= +−

dMCC dIter v/ =

(1)

(2)

(3)

(4)

(5)
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ing as implemented in the BioPython package (ver-
sion 1.65) [76], based on the protein–protein distance 
matrix generated by the local alignment kernel. Target 
trees were visualized using the ETE2 library (version 
2.3.1) [77].

Reproducibility tests & comparison of means
For each picking strategy, we executed the Kol-
mogorov–Smirnov (KS) test for normality of results, 
where the samples to be tested are the average itera-
tions (number of included CPIs) derived from the eval-
uation of (Equation 5). We used the implementation 
provided by the SciPy ‘stats’ module, called as stats.
kstest(iterations,’norm’).

Two-sided statistical t-tests, where mentioned 
below, were executed by calling stats.ttest_ind(group1, 
group2, equal_var=False) in SciPy.

Modeling of scrambled bioactivity end points
In certain situations, data may be easy enough to 
model such that nonsensical or randomized prediction 
end points can still be modeled with high accuracy. 
When such is successful, it raises doubt as to the valid-
ity of the original modeling, and when such fails, it 
signals that the original model indeed uncovered pat-
terns in the data. This approach is known as y-scram-
bling, end point-shuffling or similar terminology. We 
performed an independent experiment for learning 

on the chemogenomic data that was preprocessed via 
y-scrambling in order to test the validity of the original 
unscrambled models.

External validation
To ensure that evaluation on predicting the entire data-
set allows evaluating the learning behavior similar to a 
classical external validation test, we performed replicate 
external prediction using the GLASS dataset to build an 
actively learned model and the data points exclusively 
contained in the GPCR SARfari dataset as an external 
prediction set. The full SARfari dataset was predicted at 
every iteration of active learning on GLASS.

Results
Comparison of selection strategies
Ten executions each of CPI selection and modeling 
by using random, greedy and curiosity picking (Box 5) 
were evaluated with a fixed combination of ECFP and 
dipeptide descriptors. At each iteration, the MCC 
value of predictions on the entire input CPI set was 
computed to assess iterative model improvement, and 
the strategy’s average performance, rather than any 
one individual run, was evaluated using the mean and 
standard deviation (Figure 2).

Inspection of performance across all datasets shows 
that the greedy selection strategy performs poorly 
in family-wise model development, with little to 

Table 1. Datasets in this study and their properties.

Data source Kinase SARfari 5 GPCR SARfari 3 GPCR GLASS 

Bioactivity type IC50 Ki Ki

Threshold for interaction 100 nM 100 nM 100 nM

Threshold for noninteraction 10 μM 10 μM 1 μM

Resultant ligand–target pairs 39,706 47,602 69,960

Number of CPIs 19,231 (48%) 39,166 (82%) 49,815 (71%)

Number of non-CPIs 20,475 8436 20,145

Ligand statistics

Number of ligands 20,897 31,751 44,484

Number of dual-class ligands 1292 (6%) 1427 (5%) 5302 (12%)

Number of Rishton flagged 2096 (10%) 1806 (6%) 2977 (7%)

Number of Hann flagged 696 (2%) 1270 (4%) 1648 (4%)

Number of promiscuity flagged 2695 (13%) 4041 (13%) 5986 (13%)

Number of PAINS flagged 5490 (26%) 8037 (25%) 11,269 (25%)

Target statistics

Number of targets 98 100 110

Number of dual-class targets 98 (100%) 99 (99%) 82 (75%)

Datasets have been filtered from their original sources to select targets with at least 50 interaction data points after preprocessing. The 
GPCR datasets are heavily biased toward strongly binding ligands. Ligand–target pairs with bioactivity in between the defined ranges have 
been discarded.
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Box 3. ‘False-positive’ chemical substructure flagging.

During the execution of quantitative high-througput screening, compounds might first be evaluated as 
hits, only to either be lost to attrition during optimization or to be later discovered to have interfered 
with the original assay readout. A manual analysis of these types of compounds has been researched, and 
several patterns have been suggested. From those suggestions, software tools have been implemented 
which check chemical structures for the potentially problematic substructures. The software tools ‘flag’ 
compounds when such substructures are detected. These tools can help guide the design of new ligand 
classes by recommending against the time and investment to screen such classes because they can be likely 
to fail downstream. In this article, four such flagging methods were used to assess the rate of potentially 
problematic structures in public data

no iterative improvement in terms of MCC perfor-
mance. Random and curiosity pickers, on the other 
hand, show a marked iterative improvement in pre-
diction accuracy. Curiosity selection exhibits the best 
performance of the three methods evaluated, and is 
the only method capable of achieving MCC values 
greater than 0.8 for all datasets at the limit of 10,000 
selected CPIs. Hence, in our datasets comprising 
40,000–80,000 CPIs, efficient selection of 25% or 
less of the CPIs can still yield a model with substan-
tially high predictive MCC value over the remaining 
75% or more of the data not used for model creation, 
which includes large numbers of compounds not used 
in model calculations.

The visual shapes of MCC curves show that a dif-
ferent learning speed, in terms of MCC improvement, 
is to be expected when performing active learning on 
different datasets and with different selection strate-
gies (Figure 2). We aimed to quantify these qualitative 
differences and their statistical significance. Quanti-
fying the ongoing speed of learning and the expected 
benefit from further learning can be done by comput-
ing the derivative (slope) of the fitted MCC learning 
curves (Equation 4), and solving it for a specified value 
representing learning speed (Equation 5). The solu-
tion, which is the corresponding iteration, then can be 
interpreted as the number of CPIs that can be included 
in a model while maintaining the specified rate of 

learning. In Table 3, results are listed when solving for 
(dMCC/dIter) slope values of 1.0 and 0.8. For both 
curiosity and random picking, only a few thousand 
CPIs were needed to converge on a model indicative of 
its predictive nature. However, compared with random 
selection, the curiosity picking method achieved clearly 
better average p redictive performance at either stopping 
criteria.

By investigating for two slope values, we quantified 
the performance gain achieved compared with the 
additional number of required CPIs. In other words, 
we asked how much we would gain from potentially 
adding more complexity to the model by including 
more bioactivity data. Particularly in the case of the 
larger GLASS dataset, a 10% improvement in MCC 
(0.56 → 0.61) was achieved by lowering the stopping 
criteria (to 0.8), resulting in addition of 500 extra 
(3000 total) CPIs for model development. From a 
larger perspective, this means that we achieved a 10% 
jump in performance by incorporating an extra 1% 
of the original data. We also note that adding CPIs 
to the random picker to reach v = 0.8 still resulted in 
lower performance than that of the curiosity picker at 
v = 1.0 in all datasets (Table 3), so even a much larger 
dataset selected at random might not be competitive 
with actively selected, smaller sets. In a follow-up, a 
Welch t-test between the curious and random pick-
ing methods at a fixed iteration of 2500 verified a sig-

Box 4. Semantics of decision trees and random forests.

•	 Decision trees are a data processing method which works by an analogy of human reasoning. Given a task, 
a decision tree examines particular features of data to see if there are threshold values of those features 
which, when iteratively considered, can separate the data into its different classes. In essence, a decision tree 
builds a set of ‘if-then’ rules (e.g., “if the number of hydrogen bond donors is greater than 3 then check X, 
else check Y.”). At a ‘leaf’ layer in the decision tree, an if-then rule has the consequence of assigning a label 
(e.g. “this compound is toxic,” to the object in question). After ‘training’ a decision tree, it can be used for 
examining new incoming cases of data and making predictions. This is analogous to a clinician who has gained 
experience in his specialty after examining many patients, and has mentally created a rough set of rules for 
diagnosing the causes of illnesses

•	 A random forest is then a collection of decision trees, where subsets of features to be considered for rule 
derivation are randomly selected for each tree in the forest. In this article, random forests are employed to 
evaluate subsets of the compound and protein descriptors, and to identify statistical patterns (decisions) that 
explain strong bioactivity or lack of bioactivity of compounds against different proteins
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nificant difference between the MCC performance 
of the two methods (p = 3.8 × 10-20, 1.6 × 10-19 and 
6.9 × 10-15 respectively for GLASS, GPCR SARfari 
and Kinase SARfari, ECFP/di peptide descriptors).

We questioned reproducibility by asking if the per-
method results across different executions are nor-
mally distributed. Using the mean iteration values in 
Table 3 for slope v = 0.8, we extracted the MCC values 

Box 5. Semantics of chemogenomic active learning compound–protein interaction picking strategies.

The key step to chemogenomic active learning is the compound–protein interaction (CPI) selection 
function that occurs at each iteration of modeling and update. We have employed random sampling as 
a baseline, which is uniform sampling from the input pool of CPIs. More interestingly, we have created 
two methods based on common strategies in computational decision making. In the ‘greedy’ strategy, 
the CPI that yields the highest score from the forest of decision trees is selected. Semantically, this means 
that ‘greedy’ stresses selection of interactions over noninteractions and picks a CPI which appears most 
likely to constitute a true interaction. In the ‘curiosity’ strategy, we select the CPI in which there is the 
least consensus among the decision trees when classifying the CPI. In other words, the random forest lacks 
understanding about the CPI because its constituent trees cannot come to a definitive conclusion about its 
interaction status, and therefore that the CPI warrants special attention during learning

CPI: Compound–protein interaction.

Table 2. Chemogenomic active learning evaluation aspects.

Number Aspect Location in this article

1 Effect of CPI picking strategy Figure 2 
’Results’, ‘Additional Results’, ‘Discussion & Conclusion’

2 Ratio of actives to inactives selected Figure 3 
’Results’, ‘Discussion & Conclusion’

3 Compound and protein space explored Figure 4, 
Supplementary Figure 3 
’Results’, ‘Additional results’, ‘Discussion & Conclusion’

4 Individual target prediction performance Figure 5, 
Supplementary Figure 4 
’Results’, ‘Additional results’

5 Performance saturation (stopping criteria) Table 3 
’Results’, ‘Additional results’, ‘Discussion & Conclusion’

6 Result distribution for reproducibility Table 4 
’Results’, ‘Discussion & Conclusion’

7 Number of flagged compounds selected Main text 
’Additional results’

8 Effect of molecule descriptors on performance Supplementary Figure 5 
’Results’, ‘Additional results’, ‘Discussion & Conclusion’

9 Effect of metric used for evaluation Supplementary Figure 6 
’Additional results’

10 Effect of y-scrambling endpoints Supplementary Figure 7 
’Additional results’

11 Number of ligands per target during model evolution Supplementary Figure 8 
’Additional results’

12 Speed of covering target space Supplementary Figure 9 
’Additional results’

13 External prediction test Supplementary Figure 10 
’Discussion & Conclusion’

In order to comprehensively characterize chemogenomic active learning in terms of both metric-type performances as well as behavior-type patterns, multiple 
aspects were evaluated.
Locations in single quotation marks list where in the manuscript an aspect/result is discussed.
CPI: Compound–protein interaction.
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at the dataset/picker-specific iteration and applied the 
KS test for normality. The results shown in Table 4 
suggest that performances at stopping criteria are nor-
mally distributed, indicating that one could expect a 
specific range of results if further experiments were 
executed.

Selection ratio of interactions to 
noninteractions
We assessed the selection strategies for their tendencies 
in picking between interactions or noninteractions, 
as shown in Figure 3. Random selection converged 
on the original input distribution, an expected result. 
Greedy selection, while showing less favorable results 
until now in terms of predictive performance, domi-
nantly selected active interactions regardless of the bal-
ance of the original dataset. For the curiosity selection 
method, a balanced selection of interactions and non-
interactions was achieved, irrespective of whether the 
original dataset was balanced or not. This is notable 
for the highly imbalanced GLASS dataset containing 
approximately 70,000 CPIs in which 70% of them are 
interactions. Given the consistency of these findings 
in all datasets, we may attribute them as properties 
as sociated with respective pickers.

Compound & protein space exploration
To better understand the trajectories of the active learn-
ing strategies in chemical as well as biological space, we 
assessed similarities of the compounds and proteins for 
the CPIs selected during active learning (Figure 4).

First we considered the curiosity and random pick-
ers for comparison of a selected compound compared 
with the previous iteration. Consecutive iterations 
predominantly selected dissimilar compounds in 
both methods. However, when we next considered 
the pickers for similarity between a selected com-
pound versus all previously selected compounds, a 
difference in the methods emerged. We found that 

the random picker results in continuous selection of 
dissimilar chemical space, while the curiosity picker 
appeared to return to pockets of chemical space that 
were selected in prior iterations, as demonstrated by 
the higher compound similarities in the one-vs-all 
panels of Figure 4.

In terms of targets selected, curiosity and random 
methods demonstrated selection of the target family 
spaces (each containing ∼100 targets) within 1000 
iterations. However, the actual per-iteration movement 
in protein space shows that the curiosity selection can 
remain in a family subspace over multiple iterations 
more frequently than random selection, as evidenced 
by the deeper colored distribution at the high end 
of similarity values in Figure 4, and the expansion of 
Figure 4 to all executions, Supplementary Figure 3.

Predictive performance on the level of 
individual targets
We sought to further clarify how the iterative predic-
tive improvement of the models through the picking 
strategies translates into improvement of predictive 
performance on the level of individual targets. Figure 5 
compares ‘target trees’ for the three selection methods, 
where each leaf of a tree represents a single target, and 
the heatmap attached to each leaf reflects the time 
course of prediction performance (MCC) specifically 
with respect to that protein.

Per-target predictive performance on the Kinase 
SARfari dataset was good for the random and curiosity 
methods. For GPCRs, the results were less favorable for 
the random selection method. For the targets that are 
predictable, more iterations were needed compared to 
the curiosity picker. Particularly in the case of the larger 
GLASS dataset, the difference in target prediction per-
formance is clear. Based on Table 3, we examined target 
trees by considering the per-target performance after only 
3000 iterations of active learning. Here, the merit of curi-
osity selection is uncontested (inner curves of Figure 5).

Box 6. Prediction outcome types and Matthews’ correlation coefficient.

•	 In two-class data modeling, we can arrive at four types of results: TPs, FPs, TNs and FNs. In chemogenomic 
modeling:

 – TPs represent interactions correctly predicted to be interactions
 – FPs represent noninteractions falsely predicted to be interactions
 – TNs represent noninteractions correctly predicted to be noninteractions, and
 – FNs represent interactions falsely predicted to be noninteractions

•	 FPs and FNs are respectively known as Type-I and Type-II errors in statistics. In a number of prediction 
assessment metrics such as the true positive rate, only one type of error is included in the calculation, which 
can yield deceptively high performance. In contrast to this, the Matthews correlation coefficient is a metric 
which includes all four types of prediction results into a single metric, and can handle biased or unbalanced 
data (see Equation 3 in the main text). The range of the Matthews correlation coefficient is between -1 and 1, 

where values greater than 0 indicate more correct predictions than combined Type-I and Type-II errors

FN: False negative; FP: False positive; TN: True negative; TP: True positive.
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Figure 2. Picking strategy comparison. The evolution of active learning MCC on the input datasets is evaluated for 
10,000 iterations. n = 10 executions are used to statistically assess performance for different picking strategies. 
Raw results are lightly colored, the mean MCC per iteration is strongly colored using a bold line, and the standard 
deviation of performance is shown using transparent areas.  
MCC: Matthews correlation coefficient.
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Using greedy selection, a clear pattern emerges 
that a small cluster of targets is well predicted from 
early in the active learning, with no improvement 
on the remaining targets. Across multiple executions 
(Supplementary Figure 4), we find that certain target 
clusters are repeatedly predicted moderate to well, 
which suggests that the greedy selection is a local 
subfamily optimization method. This behavior was 
observed even when looking at target trees only up to 
3000 iterations.

Impact of descriptor combination
To investigate whether the curiosity picker’s perfor-
mance can be achieved with different descriptions of 
ligands and proteins, we executed an evaluation of 
it on all combinations of ECFP/MACCS compound 
descriptors crossed with PROFEAT/dipeptide pro-
tein descriptors. As shown in Supplementary Figure 5, 

curiosity picking using any combination of one com-
pound descriptor and one protein descriptor yielded 
similar results, with all selection strategies achiev-
ing similar MCC values at the 10,000 CPI cutoff. 
However, the MCC development within that span 
is different between the various description meth-
ods, with less pronounced initial MCC gains for 
MACCS+PROFEAT. This finding was consistent 
across all three investigated datasets. In all except 
this case, the initial learning behavior of any descrip-
tor combination driven by curiosity picking clearly 
outperformed random selection as well as greedy 
selection (Figure 2 & Supplementary Figure 5). Curi-
osity-based experiments using tripeptide frequency 
were retrospectively executed, and predictive perfor-
mance compared with dipeptide frequency was iden-
tical with respect to iterative MCC values (data not 
shown).

Table 3. Estimation of stopping iteration for compound–protein interaction instance selection 
methodologies.

Data: picking strategy 
 

Solving dMCC/dIter = 1.0 Solving dMCC/dIter = 0.8

 
 

Mean ± std MCC 
95% CI 
(2.5, 97.5)-%ile

Mean ± std 
iteration

Mean ± std MCC 
95% CI 
(2.5, 97.5)-%ile

Mean ± std 
iteration

GLASS: random 0.33 ± 0.03 
CI: 0.31–0.35 
(0.28, 0.36)

1537 ± 272 0.39 ± 0.02 
CI: 0.38–0.41 
(0.36, 0.41)

2266 ± 211

GLASS: curiosity 0.56 ± 0.05 
CI: 0.52–0.59 
(0.45, 0.60)

2297 ± 479 0.61 ± 0.05 
CI: 0.57–0.64 
(0.50, 0.65)

2790 ± 549

GS3: random 0.45 ± 0.02 
CI: 0.43–0.47 
(0.41, 0.48)

1975 ± 240 0.51 ± 0.02 
CI: 0.50–0.53 
(0.48, 0.53)

2642 ± 177

GS3: curiosity 0.81 ± 0.01 
CI: 0.81–0.81 
(0.80, 0.82)

2294 ± 52 0.84 ± 0.01 
CI: 0.83–0.84 
(0.83, 0.84)

2591 ± 62

KS5: random 0.66 ± 0.02 
CI: 0.64–0.67 
(0.63, 0.68)

1974 ± 81 0.69 ± 0.014 
CI: 0.68–0.70 
(0.67, 0.71)

2377 ± 59

KS5: curiosity 0.83 ± 0.01 
CI: 0.82–0.84 
(0.81, 0.84)

2189 ± 78 0.86 ± 0.01 
CI: 0.85–0.86 
(0.84, 0.86)

2474 ± 102

Using the curves generated by calculating the MCC value at each iteration of active learning, we fitted curves to an exponential decay 
function and solved them for two values reflecting expectations about acceptable rates of model improvement. Solutions were analyzed 
for the stopping iteration and resulting MCC. Using the solved MCC values, the 95% CI was calculated by calling stats.t.interval in the SciPy 
package, and the 2.5- and 97.5-percentile values were calculated by the ‘percentile’ function in NumPy [73].
CI: confidence interval; MCC: Matthews correlation coefficient.
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Additional results
Different evaluation metrics & scrambling tests
We considered evaluation of results using other met-
rics such as the true positive rate, where positive 
points were ligands with strong inhibitory activity 
on a target. We found that use of True Positive Rate 
tended to over-estimate model performance [78] (see 
Supplementary Figure 6), particularly for the imbal-
anced GPCR datasets, and therefore emphasis on this 
metric has the possibility to mislead modelers and 
subsequent molecule designs. Instead, we observed 
that the true negative rate (TNR) was considerably 
lower in initial iterations of modeling, and that the 
TNR and MCC were strongly correlated over the 
course of active learning (Supplementary Figure 6). 
However, in many screening exercises, a majority 
of ligands do not bind to receptors, yielding large 
amounts of negative points. In these scenarios, over-
emphasis on the TNR would then also be mislead-
ing. In either scenario of imbalance, the MCC would 
provide a better estimate of overall p rediction per-
formance.

To test if our models were truly uncovering relation-
ships in the ligand–target bioactivity databases, we 
executed an additional experiment in which the (non)
interaction labels were scrambled before modeling. 
Experiments were again run in replicate to remove arti-
facts from any particular scramble. The results, shown 
in Supplementary Figure 7, show largely decreased 
MCC values for modeling on all three scrambled data-
sets. We conclude that results on original data cannot 
be attributed to chance and that the proposed method-
ology is successfully extracting informative CPIs from 
the input datasets to learn meaningful ligand–target 
relationships.

Target selection & space coverage
We questioned how many ligand associations to a 
target were included for modeling at a given itera-
tion, and how these counts differed over the course of 

learning with respect to the picking strategy. As seen 
in Supplementary Figure 8, the number of ligands per 
target is widely distributed across many targets when 
using the random selection, as it simply samples inter-
action space and hence protein space in a uniform 
manner. This resembles the findings from observing 
Figure 4. Greedy selection, on the other hand, imme-
diately fixes on single targets or small sets of targets, 
as the selection function (Equation 1) selects the CPI 
which yielded a maximum number of votes for inter-
action during prediction; hence the same target was 
repeatedly added to the training CPI set, and the per-
formance on that single target grows as was reflected 
in Figure 5.

The evolutionary behavior for the curiosity pick-
ing method (Equation 2) is far more varied. First, we 
note the different behavior taken in different execu-
tions of experiments. For instance, in the GPCR 
SARfari dataset, two of the executions demonstrate 
an uncertainty about several targets, and construct 
models largely consisting of those targets and their 
ligands in initial iterations. However, using different 
random seeds to begin the learning with a different 
initial CPI, the other two executions demonstrate a 
balanced selection of ligands per target. This pair of 
patterns is also seen for the GPCR GLASS dataset.

After considering the MCC trees shown in 
Figure 5, we retrospectively analyzed how fast the 
target space was covered in each dataset, where 
coverage of a target means that the target has been 
selected at least once among all iterations of a par-
ticular execution. Although the rapid improvement 
of model performance in terms of MCC values for 
all targets might suggest that the curiosity picker 
would cover the target space the quickest, this was 
not the case (Supplementary Figure 9). Both curios-
ity and random selection always covered target space, 
but the iterations required to do so were different. 
In all executions, the iterations required by random 
selection were lower (p = 0.003, 0.024 and 0.001 for 

Table 4. Testing for Gaussian distribution of Matthews correlation coefficient results.

Data: picking strategy Stopping iteration Mean ± Std MCC KS statistic KS p-value

GLASS: random 2266 0.40 ± 0.01 0.14 0.99

GLASS: curiosity 2790 0.61 ± 0.01 0.14 0.99

GS3: random 2642 0.51 ± 0.02 0.20 0.84

GS3: curiosity 2591 0.81 ± 0.01 0.15 0.98

KS5: random 2377 0.69 ± 0.02 0.17 0.93

KS5: curiosity 2474 0.84 ± 0.01 0.27 0.40

Using the mean stopping iteration estimated by solving for dMCC/dIter = 0.8 (Table 3), raw MCC values were extracted and tested for 
normality by the KS test. High p-values signal that we cannot reject the null hypothesis that results are normally distributed.
KS: Kolmogorov–Smirnov; MCC: Matthews correlation coefficient.
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the GLASS, GPCR SARfari and Kinase SARfari 
datasets respectively, ECFP/dipeptide descriptors, 
t-test). At the iterations (number of CPIs) derived 
in Table 3, the target spaces are largely covered by 
both strategies. For greedy selection, the target space 
was rarely fully covered, and when fully covered, the 
iteration at which all targets were included into the 
model was consistently at iteration 9000 or above. 
The greedy selection focuses strongly on individual 
targets to exploit the knowledge acquired about 
actives. This was visible in the target trees (Figure 5 
& Supplementary Figure 4).

If we consider coverage of target space at iteration 
2000 (Supplementary Figure 9), results are nearly iden-
tical for the curiosity and random pickers, yet there is 
a significant quantitative difference in prediction per-
formance (Figure 2, Table 3 and t-test values). There-
fore, since target space coverage is the same, it stands 
to reason that the chemical space being covered might 
be responsible for the difference in performance of the 
selection strategies.

Diversity & properties of selected compounds
The diversity of compounds included in a che-
mogenomic model will directly affect the amount 
of scaffold hopping achievable for prospective 
applications [36,79]. Figure 4 (2D histograms) and 
Supplementary Figure 3 demonstrate that the chemical 
space explored was dependent on the picking strategy. 
Curiosity selection drove the learning process to stay 
in the same region of compound space over more itera-
tions than by random selection, yet the region could 
be left when a particularly challenging example was 
encountered in another region or when the region was 
sufficiently better understood than the remaining SAR 
data.

Given the difference in prediction performance 
after 1000 iterations of learning, particularly for the 
GPCR SARfari example (Figure 2), and given the dif-
ference in selection distribution at 1000 iterations 
(Figure 4), where target space coverage was mostly 
equivalent (see previous section), we attribute the 
performance difference in downstream iterations 
to the difference in compound selection. The dif-
ference in performance was smaller for the Kinase 
SARfari dataset (Figure 2), and interestingly, we see 
more of a resemblance in the histogram distributions 
(Supplementary Figure 3). Importantly, high MCC 
values, in particular for random picking, suggest that 
the Kinase SARfari set was relatively easier to model, 
which can potentially be explained by recurring 
binding motifs in the ligands that make binding and 
nonbinding easier to discriminate compared with 
GPCRs. However, we were not required to explicitly 

inject macro-level mechanistic perspectives in order 
to build predictive models.

As explained in the ‘Methods’ section and Box 3, var-
ious heuristics are available for suggesting when a hit 
compound could in fact be an ‘attrition’ compound. 
Using the Rishton, Hann, PAINS and promiscuity 
false positive flagging heuristics, a subsequent analysis 
of the first 2000 iterations of curiosity learning revealed 
that the compounds selected in these iterations had a 
flagging rate equal to that of the background input 
distribution (Table 1) regardless of picking strategy. 
This is reasonable given that Equations 1 & 2 are not 
equipped with any sort of chemical filters. Learning 
does not appear to be influenced implicitly through the 
potentially broad bioactivity profiles of these suggested 
‘attrition’ compounds.

Discussion & conclusion
Model size & parameters
When Figure 2 and Table 3 are analyzed in tandem, 
replicate experiment has shown that curiosity selection 
of 1500 interactions and noninteractions each is suf-
ficient for a moderately (MCC = 0.6) to highly (MCC 
= 0.8) predictive model of family-wide chemogenomic 
spaces. Curiosity selection was more efficient than ran-
dom selection [54], fully corroborating the power of the 
active learning concept reported previously [46,49,56]. 
While random selection and curiosity-driven selection 
perform similarly in the first few hundred iterations, 
curiosity-based learning performance after 1000–1500 
iterations is superior, and learning is maintained over 
a longer phase as seen when comparing slope values 
(Table 3). Through this, even much smaller, actively-
selected datasets lead to better predictive models com-
pared with models trained on larger, randomly sam-
pled subsets. This performance includes all prediction 
classes in the early phase, and classes I and II in later 
phases (see Box 1), suggesting ligand discovery as at 
least one domain of applicability.

Compared with previous computational chemoge-
nomic work where 100,000 or more interactions 
including presumed negatives were employed for 
model construction [33], the models generated herein 
are orders of magnitude smaller yet equally as efficient. 
A reduced need for experimentation has been identi-
fied as a major breakthrough achieved through active 
learning, with estimates of the required training data 
ranging from as low as 10% [56] to 30% [51] of the 
c omplete training set.

Importantly, while it has previously been pointed 
out that an optimal descriptor pair needs to be evalu-
ated for a specific chemogenomics project [80] and 
cannot simply be inferred from individual descriptor 
performance on independent biological and chemi-
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Figure 3. Interaction to noninteraction ratio evolution. The ratio of interactions to noninteractions selected by 
each picking strategy over the course of active learning. A horizontal black line is placed at the original input 
dataset ratio, on which random selection imminently converged upon. Curiosity learning rapidly approaches 
selection of a balanced active-inactive training set, even in unbalanced datasets. Greedy selection, on the other 
hand, predominantly samples interactions. CPI selection ratio: Red: Curiosity; Blue: Random; Green: Greedy. 
CPI: Compound–protein interaction. 
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cal domains [33], the learning algorithms could select 
subsets of the underlying combination descriptors 
such that each subset yielded similar predictive perfor-
mance. This would suggest that screening groups can 
derive a model that can be interpreted with the descrip-
tor types they are comfortable with or those which 
have been developed for a specific purpose. While the 
speed of learning was influenced in terms of the under-
lying description, model performance at termination 
was similar using all possible combinations of descrip-
tors. In other words, active learning can successfully 
navigate different projections of ligand-receptor spaces. 
Consistent with previous applications of active learn-
ing [58], we could show that family-dependent sequence 
similarities captured by the dipeptide descriptors can 
yield predictive chemogenomics models. However, 
applications that study the subtle pharmacology 
between similar proteins or multiple binding pockets 
might require alternative, more detailed descriptors 
that capture the structure of protein cavities relevant to 
ligand binding. We are undertaking a separate, com-
prehensive investigation of the properties of sequences 
that yield predictive models, and will report our anal-
yses at a future date. On top of different description 
methods, implementations of the chemogenomic active 
learning concept using other modeling techniques are 
likely possible.

The most critical point that must be adhered to, 
however, is the provision of appropriate context for 
the model to drive the chemistry. Particularly in con-
sideration of biological context, potential for com-
pound optimization, as well as complementary 3D 
shape and electrostatics, domain-agnostic statistical 
algorithms will need contextually guiding hands to 
produce practical hit and lead molecules that will be 
tested by medicinal chemists. A joint effort by man 
and machine will likely be necessary to provide solu-
tions to upcoming challenges in the pharmaceutical 
sciences [30,81].

Balanced selection of interactions  
& noninteractions
We investigated the number of interactions and nonin-
teractions picked by individual strategies. The greedy 
strategy, although not able to learn predictive family-
wide models, sampled interactions 90% of the time. 
Apparently the hunt for actives can still be successful by 
relying on previously discovered actives without extrapo-

lating the molecular patterns needed to understand the 
structure–activity relationship of the entire family inves-
tigated [82]. As expected, the random strategy sampled 
interactions and noninteractions according to the under-
lying class distribution in the dataset. The curiosity-
based picking achieved a balanced selection of the two 
classes irrespective of the original data distribution. This 
result might serve at least in part as an explanation for 
the sustained MCC improvement of curiosity-learned 
models, compared with random picking.

Interestingly, a previous analysis on regression prob-
lems using CDK2 had suggested a more closely related 
sampling behavior of bioactivity between random sam-
pling and curiosity-driven picking [45]. Further analy-
sis will need to investigate whether such relation stems 
from the underlying bioactivity distribution in the uti-
lized CDK2 data or whether this might be an inher-
ent difference between active learning for classification 
v ersus regression problems.

Statistical tractability & external applicability
We have suggested to fit exponential decay functions 
on the learning performances of different selection 
strategies, which allowed us to identify certain stages 
of the learning process, and identify key iterations 
for different selection strategies. In fact thereby, the 
MCC curve slope combined with the number of iter-
ations and the achieved model accuracy provides an 
important parameter to decide when to stop learning, 
and serves as input for automated switching strate-
gies [83]. Other stopping and switching criteria have, 
for example, relied on external test sets [56], estimated 
model quality [83], or predictive uncertainty [84]. By 
statistically estimating achievable MCC values and 
required iterations, an informed decision on project 
development becomes possible for prospective appli-
cations – making active learning not only a competi-
tive option but also a transparent method. The proj-
ect team can use these interpretable metrics to decide 
on directions for model development and applica-
tions, for example to search for their desired intersec-
tion of CPIs and MCC by solving Equations 4 & 5. 
Taken together with the fact that we could show that 
statistical variations observed in learning behavior 
are normally distributed, we conclude that chemoge-
nomic active learning is a statistically tractable and 
interpretable technique that can drive the analysis of 
existing screening library results as well as the design 
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Figure 5. Per-target Matthews correlation coefficient trees. The per-target Matthews correlation coefficient 
(MCC) values (heatmaps; blue: low MCC; red: high MCC) calculated over the course of active learning are affixed 
to the family tree. For rendering purposes, mean MCC values are binned at every 100 iterations of learning. If a 
target contains only interactions, no MCC calculation is possible, and therefore, no heatmap is visualized. Tree 
colors correspond to the same color scheme of Figure 1 (Red: Curiosity; Blue: Random; Green: Greedy). The outer 
heatmaps indicate the MCC performance evolution over all 10,000 iterations, while the inner circle shows the 
development at early learning stages during the first 3000 iterations. 
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of experiments through computational pattern rec-
ognition, yet the framework provides sufficiently 
flexibility to be monitored and adaptively fine-tuned 
by a project team.

An external prediction of the GPCR SARfari data-
set yielded surprisingly satisfactory MCC values that 
were strikingly similar to those achieved during the 
active learning of GLASS (Supplementary Figure 10). 
This suggests an applicability of learned models to 
completely novel compounds that have not been con-
sidered during learning. An additional investigation 
is needed to fully define the domain of applicability 
for purely external prospective applications.

Implications & future directions
The methods and results herein provide a tantalizing 
prospect that chemogenomic models of greatly reduced 
size can be efficiently created for any given CPI database. 
Critically, this will require additional work on larger 
databases, such as STITCH [85], the SARfari superset 
ChEMBL [59] or PubChem [86]. Orthogonally, many 
protein families have yet to be explored, such as the 
nuclear hormone receptor family or proteases. In a dif-
ferent stratification, we might ask how well the curiosity 
method performs for datasets exclusively representing 
different stages of chemical biology or drug discovery, 
namely the levels of screening hits, clinical trials and 
marketed drugs.

Prospective validation studies of reduced-com-
plexity models built by chemogenomic active learn-
ing are critical. As a number of recent studies have 
indeed validated that the computational chemoge-
nomic concept can lead to prospective discovery of 
interactions [36–37,87–88], we anticipate that actively 
learned models will be capable of similar novel dis-

covery [48,49,51]. Given the increasing applicability 
of chemogenomics to uncover untested ligand–tar-
get pairs, many different exciting applications come 
to mind. For example, environmental agencies may 
consider applying computational chemogenomics 
as a way to generate hypotheses about the effect 
of pollutants generated during manufacturing pro-
cesses [89]. In another application, deorphanization 
of natural products used in cancer therapy [90,91] 
can provide the starting CPIs to initiate an actively 
learned chemogenomic model which generates test-
able hypotheses of new drug–target interactions in 
uncharacterized drugs for specif ic cancer cell lines, 
such that the results of tested hypotheses are fed 
back into the model for subsequent hypothesis gen-
eration.

It was previously shown that active learning could 
query separate ligand- or target-based models to aid 
in improving the understanding of polypharmacolog-
ical networks [58]. We have extended this hypothesis 
using chemogenomic modeling to capture the com-
bined ligand–target space and aim at extrapolating 
knowledge from the interaction patterns. Our results 
suggest that equal numbers of ligands per target are 
not required for building chemogenomic models 
when examples are picked such that they benefit the 
understanding of family interaction space as a whole. 
Curiosity selection has shown that in certain cases it 
remains focused on either a specific target or a small 
group of similar targets. It would then appear that in 
certain cases, curiosity selection is building local SAR 
models for specific targets in spurts. The idea of many 
per-target quantitative structure–activity relationship 
models as a chemogenomic model has been explored 
previously [21,92–96]. A key difference between these 
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per-target approaches and the approach explored here 
is that we have removed the requirement to have a suf-
ficient number of ligands per target in the per-target 
models, under the presumption that a sufficient num-
ber of similar ligand–target pairs also have similar 
bioactivity.

Adaptively trained models are expected to be a 
competitive option for driving pharmaceutical hit dis-
covery to identify compounds with desired target pro-
files, and for risk control during development through 
early discovery of off-target interactions [47,97–98]. Put 
another way, the implication of our findings is that 
when models built by chemogenomic active learning 
on existing data are coupled with experimental screen-
ing platforms such that cycles of predicting, experi-
menting and model updating are iteratively performed, 
the potential reduction in experimental labor, time, 
and cost is large [99,100].

Future perspective
Having shown herein that a small subset of a ligand–tar-
get database is sufficient for predicting bioactivity on 
the entire collection, companies and screening centers 
with collections of tens of thousands of compounds 
screened against panels of targets can apply the active 
learning concept in order to extract knowledge about 
the key CPIs necessary for structure–activity relation-
ship (SAR) understanding, and to prospectively screen 
additional libraries against the resulting ensembles of 
reduced-complexity models. Groups equipped with 
the necessary infrastructure will iteratively execute 
cycles of model–predict–experiment–incorporate. 
Beyond the human GPCR and kinase results here, 
groups can test the concept on other key families and 
organisms.
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Executive summary

•	 Modeling of large ligand–receptor bioactivity databases often done using entire database, but benefit of 
extra data not proven.

•	 Intelligent selection of key ligand–receptor pairs can reduce the size of data needed to 5–25% of original 
data.

•	 Reduced selection still yields high predictability on target families and individual targets.
•	 Chemistry selected by intelligent selection is more useful for modeling than chemistry selected by random 

sampling.
•	 Proposed compound–protein selection and model method is statistically tractable and reproducible.
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