We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Green bioanalysis: an innovative and eco-friendly approach for analyzing drugs in biological matrices

    Siva Nageswara Rao Gajula

    Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India

    ,
    Nathani Tanaaz Navin

    Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India

    ,
    Sasikala Talari

    Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India

    ,
    Chinmayee Shende

    Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India

    &
    Rajesh Sonti

    *Author for correspondence: Tel.: +91 917 727 3849;

    E-mail Address: rajesh.sonti@niperhyd.ac.in

    Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India

    Published Online:https://doi.org/10.4155/bio-2022-0095

    Green bioanalytical techniques aim to reduce or eliminate the hazardous waste produced by bioanalytical technologies. A well-organized and practical approach towards bioanalytical method development has an enormous contribution to the green analysis. The selection of the appropriate sample extraction process, organic mobile phase components and separation technique makes the bioanalytical method green. UHPLC-MS is the best option, whereas supercritical fluid chromatography is one of the most effective green bioanalytical procedures. Nevertheless, there remains excellent scope for further research on green bioanalytical methods. This review details the various sample preparation techniques that follow green analytical chemistry principles. Furthermore, it presents green solvents as a replacement for conventional organic solvents and highlights the strategies to convert modern analytical techniques to green methods.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Ghosh C. Green bioanalysis: some innovative ideas towards green analytical techniques. Bioanalysis 4(11), 1377–1391 (2012). • Provided the detaied information about green bioanalysis.
    • 2. Silveira GdO, Pego AMF, Pereira e Silva J, Yonamine M. Green sample preparations for the bioanalysis of drugs of abuse in complex matrices. Bioanalysis 11(04), 295–312 (2019). • Provided the detaied information about green sample preparation.
    • 3. Cacciola F, Maimone M, Dugo P, Mondello L. Green sample-preparation techniques in comprehensive two-dimensional chromatography. In: Comprehensive Analytical Chemistry. Elsevier, 601–623 (2017).
    • 4. Vaghela A, Patel A, Patel A, Vyas A, Patel N. Sample preparation in bioanalysis: a review. Int. J. Sci. Technol. Res. 5(5), (2016).
    • 5. Popat R, Adhao V, Thenge R, Ajmire P, Barde L, Mahajan N. Green bioanalytical chemistry: a review. Int. J. Curr. Pharm. Res. 6(2), 1809 (2016).
    • 6. Hsieh Y. Supercritical fluids and green bioanalysis. Bioanalysis 2(1), 1–4 (2010).
    • 7. Filippou O, Bitas D, Samanidou V. Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis. J. Chromatogr. B 1043, 44–62 (2017).
    • 8. Shaaban H. Green, eco-friendly bio-analytical techniques for pharmaceutical analysis. J. Clin. Bioanal. Chem. 1(1), 3–4 (2017).
    • 9. Moein MM, El Beqqali A, Abdel-Rehim M. Bioanalytical method development and validation: critical concepts and strategies. J. Chromatogr. B 1043, 3–11 (2017).
    • 10. Gajula SNR, Nadimpalli N, Sonti R. Drug metabolic stability in early drug discovery to develop potential lead compounds. Drug Metab. Rev. 53(3), 459–477 (2021).
    • 11. Rao Gajula SN, Pillai MS, Samanthula G, Sonti R. Cytochrome P450 enzymes: a review on drug metabolizing enzyme inhibition studies in drug discovery and development. Bioanalysis 13(17), 1355–1378 (2021).
    • 12. Gajula SNR, Bale DNJ, Nanjappan SK. Analytical and omics approaches in the identification of oxidative stress-induced cancer biomarkers. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects 1–24 (2020).
    • 13. Gajula SNR, Nanjappan S. Metabolomics: a recent advanced omics technology in herbal medicine research. In: Medicinal and Aromatic Plants. Elsevier, 97–117 (2021).
    • 14. Shankar VK, Wang M, Ajjarapu S et al. Analysis of docosanol using GC/MS: Method development, validation, and application to ex vivo human skin permeation studies. J. Pharm. Anal. 12(2), 287–292 (2022).
    • 15. Bylda C, Thiele R, Kobold U, Volmer DA. Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst 139(10), 2265–2276 (2014).
    • 16. Chang MS, Ji Q, Zhang J, El-Shourbagy TA. Historical review of sample preparation for chromatographic bioanalysis: pros and cons. Drug Dev. Res. 68(3), 107–133 (2007).
    • 17. Kolimi P, Shankar VK, Shettar A, Rangappa S, Repka MA, Murthy SN. Development and validation of HPLC method for efinaconazole: application to human nail permeation studies. AAPS PharmSciTech 23(1), 1–7 (2022).
    • 18. Abdulra'uf LB, Hammed WA, Tan GH. SPME fibers for the analysis of pesticide residues in fruits and vegetables: a review. Crit. Rev. Anal. Chem. 42(2), 152–161 (2012).
    • 19. Jalili V, Barkhordari A, Ghiasvand A. A comprehensive look at solid-phase microextraction technique: a review of reviews. Microchem. J. 152, 104319 (2020).
    • 20. Godage NH, Gionfriddo E. Use of natural sorbents as alternative and green extractive materials: a critical review. Anal. Chim. Acta 1125, 187–200 (2020).
    • 21. Huang S, Chen G, Ye N et al. Solid-phase microextraction: an appealing alternative for the determination of endogenous substances – a review. Anal. Chim. Acta 1077, 67–86 (2019).
    • 22. Augusto F, Valente ALP. Applications of solid-phase microextraction to chemical analysis of live biological samples. TrAC - Trends Anal. Chem. 21(6–7), 428–438 (2002).
    • 23. Kechagia M, Kissoudi M, Samanidou VF. Stir-bar sorptive extraction for sample preparation in LC-MS bioanalysis. Sample Preparation in LC-MS Bioanalysis 152–162 (2019).
    • 24. Ochiai N, Sasamoto K, David F, Sandra P. Solvent-assisted stir bar sorptive extraction by using swollen polydimethylsiloxane for enhanced recovery of polar solutes in aqueous samples: application to aroma compounds in beer and pesticides in wine. J. Chromatogr. A 1455, 45–56 (2016).
    • 25. Bader N. Stir bar sorptive extraction as a sample preparation technique for chromatographic analysis: an overview. Asian J. Nanosci. Mater. 1, 56–62 (2018).
    • 26. Chisvert A, Cárdenas S, Lucena R. Dispersive micro-solid-phase extraction. TrAC – Trends Anal. Chem. 112, 226–233 (2019).
    • 27. Ghorbani M, Aghamohammadhassan M, Chamsaz M, Akhlaghi H, Pedramrad T. Dispersive solid phase microextraction. TrAC - Trends Anal. Chem. 118, 793–809 (2019).
    • 28. Jayasinghe G, Moreda-Piñeiro A. Molecularly imprinted polymers for dispersive (micro) solid-phase extraction: a review. Separations 8(7), 99 (2021).
    • 29. Khezeli T, Daneshfar A. Development of dispersive micro-solid-phase extraction based on micro and nano sorbents. TrAC - Trends Anal. Chem. 89, 99–118 (2017).
    • 30. Grau J, Benedé JL, Chisvert A. Use of nanomaterial-based (micro) extraction techniques for the determination of cosmetic-related compounds. Molecules 25(11), 2586 (2020).
    • 31. Tang S, Lee HK. Application of dissolvable layered double hydroxides as sorbent in dispersive solid-phase extraction and extraction by co-precipitation for the determination of aromatic acid anions. Anal. Chem. 85(15), 7426–7433 (2013).
    • 32. Rocío-Bautista P, González-Hernández P, Pino V, Pasán J, Afonso AM. Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. TrAC - Trends Anal. Chem. 90, 114–134 (2017).
    • 33. Vasconcelos I, Fernandes C. Magnetic solid-phase extraction for determination of drugs in biological matrices. TrAC - Trends Anal. Chem. 89, 41–52 (2017).
    • 34. Fresco-Cala B, López-Lorente ÁI, Soriano ML, Lucena R, Cárdenas S. Recent Nanomaterials-Based Separation Processes. John Wiley & Sons, Chichester, UK (2019).
    • 35. Sulaiman KO, Sajid M, Alhooshani K. Application of porous membrane bag enclosed alkaline treated Y-Zeolite for removal of heavy metal ions from water. Microchem. J. 152, 104289 (2020).
    • 36. Seidi S, Tajik M, Baharfar M, Rezazadeh M. Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: miniaturized concepts for chromatographic analysis. TrAC - Trends Anal. Chem. 118, 810–827 (2019).
    • 37. Pereira J, Câmara JS, Colmsjö A, Abdel-Rehim M. Microextraction by packed sorbent: an emerging, selective and high-throughput extraction technique in bioanalysis. Biomed. Chromatogr. 28(6), 839–847 (2014).
    • 38. Abdel-Rehim M. Recent advances in microextraction by packed sorbent for bioanalysis. J. Chromatogr. A 1217(16), 2569–2580 (2010).
    • 39. Aly AA, Górecki T. Green approaches to sample preparation based on extraction techniques. Molecules 25(7), 1719 (2020).
    • 40. Kabir A, Furton KG, Malik A. Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. TrAC - Trends Anal. Chem. 45, 197–218 (2013).
    • 41. Kabir A, Furton KG. Fabric phase sorptive extractors. Google Patents (2016).
    • 42. Kabir A, Mesa R, Jurmain J, Furton KG. Fabric phase sorptive extraction explained. Separations 4(2), 21 (2017).
    • 43. Kabir A, Samanidou V. Fabric phase sorptive extraction: a paradigm shift approach in analytical and bioanalytical sample preparation. Molecules 26(4), 865 (2021).
    • 44. Zilfidou E, Kabir A, Furton KG, Samanidou V. Fabric phase sorptive extraction: current state of the art and future perspectives. Separations 5(3), 40 (2018).
    • 45. Lucena R. Extraction and stirring integrated techniques: examples and recent advances. Anal. Bioanal. Chem. 403(8), 2213–2223 (2012).
    • 46. Kabir A, Furton KG. Novel sol-gel sorbents in sorptive microextraction. Bentham Science Publishers, FL, USA, 28–69 (2017).
    • 47. Zilfidou E, Kabir A, Furton KG, Samanidou V. An improved fabric phase sorptive extraction method for the determination of five selected antidepressant drug residues in human blood serum prior to high performance liquid chromatography with diode array detection. J. Chromatogr. B 1125, 121720 (2019).
    • 48. Mazaraki K, Kabir A, Furton KG, Fytianos K, Samanidou VF, Zacharis CK. Fast fabric phase sorptive extraction of selected β-blockers from human serum and urine followed by UHPLC-ESI-MS/MS analysis. J. Pharm. Biomed. Anal. 199, 114053 (2021).
    • 49. Locatelli M, Tartaglia A, Ulusoy HI et al. Fabric-phase sorptive membrane array as a noninvasive in vivo sampling device for human exposure to different compounds. Anal. Chem. 93(4), 1957–1961 (2021). •• Provided the innovative application of fabric-phase sorptive extraction (FPSE) technique.
    • 50. Riccio D, Wood DC, Miller JM. Using single drop microextraction for headspace analysis with gas chromatography. J. Chem. Educ. 85(7), 965 (2008).
    • 51. Psillakis E, Kalogerakis N. Developments in single-drop microextraction. TrAC – Trends Anal. Chem. 21(1), 54–64 (2002).
    • 52. Tang S, Qi T, Ansah PD et al. Single-drop microextraction. TrAC – Trends Anal. Chem. 108, 306–313 (2018).
    • 53. Prosen H. Applications of liquid-phase microextraction in the sample preparation of environmental solid samples. Molecules 19(5), 6776–6808 (2014).
    • 54. Barahona F, Díaz-Álvarez M, Turiel E, Martín-Esteban A. Molecularly imprinted polymer-coated hollow fiber membrane for the microextraction of triazines directly from environmental waters. J. Chromatogr. A 1442, 12–18 (2016).
    • 55. Spietelun A, Marcinkowski Ł, de la Guardia M, Namieśnik J. Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta 119, 34–45 (2014).
    • 56. Drouin N, Rudaz S, Schappler J. New supported liquid membrane for electromembrane extraction of polar basic endogenous metabolites. J. Pharm. Biomed. Anal. 159, 53–59 (2018).
    • 57. Chrzanowska AM, Díaz-Álvarez M, Wieczorek PP, Poliwoda A, Martín-Esteban A. The application of the supported liquid membrane and molecularly imprinted polymers as solid acceptor phase for selective extraction of biochanin A from urine. J. Chromatogr. A 1599, 9–16 (2019).
    • 58. Pantůčková P, Kubáň P. In-line coupling of supported liquid membrane extraction to capillary electrophoresis for simultaneous analysis of basic and acidic drugs in urine. J. Chromatogr. A 1519, 137–144 (2017).
    • 59. Zhao G, Liu J-f, Nyman M, Jönsson JÅ. Determination of short-chain fatty acids in serum by hollow fiber supported liquid membrane extraction coupled with gas chromatography. J. Chromatogr. B 846(1), 202–208 (2007).
    • 60. Strieglerová L, Kubáň P, Boček P. Rapid and simple pretreatment of human body fluids using electromembrane extraction across supported liquid membrane for capillary electrophoretic determination of lithium. Electrophoresis 32(10), 1182–1189 (2011).
    • 61. Soko L, Cukrowska E, Chimuka L. Extraction and preconcentration of Cr(VI) from urine using supported liquid membrane. Anal. Chim. Acta 474(1), 59–68 (2002).
    • 62. González JL, Pell A, López-Mesas M, Valiente M. Hollow fiber supported liquid membrane extraction for BTEX metabolites analysis in human teeth as biomarkers. Sci. Total Environ. 630, 323–330 (2018).
    • 63. Sapkale G, Patil S, Surwase U, Bhatbhage P. Supercritical fluid extraction. Int. J. Chem. Sci 8(2), 729–743 (2010).
    • 64. Fahmy SM. Solubility of fluorinated polymers in supercritical carbon dioxide. (Ed.). Aachen, Techn. Hochsch. Diss. (2005).
    • 65. Camel V. Recent extraction techniques for solid matrices—supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls. Analyst 126(7), 1182–1193 (2001).
    • 66. Huerga A, Lavilla I, Bendicho CJAca. Speciation of the immediately mobilisable As (III), As (V), MMA and DMA in river sediments by high performance liquid chromatography–hydride generation–atomic fluorescence spectrometry following ultrasonic extraction. Anal. Chim. Acta 534(1), 121–128 (2005).
    • 67. Lavilla I, Vilas P, Bendicho CJFC. Fast determination of arsenic, selenium, nickel and vanadium in fish and shellfish by electrothermal atomic absorption spectrometry following ultrasound-assisted extraction. Food Chem. 106(1), 403–409 (2008).
    • 68. Kazi TG, Jamali MK, Siddiqui A, Kazi G, Arain M, Afridi HJC. An ultrasonic assisted extraction method to release heavy metals from untreated sewage sludge samples. Chemosphere 63(3), 411–420 (2006).
    • 69. Arabi M, Ghaedi M, Ostovan A, Tashkhourian J, Asadallahzadeh H. Synthesis and application of molecularly imprinted nanoparticles combined ultrasonic assisted for highly selective solid-phase extraction trace amount of celecoxib from human plasma samples using design expert (DXB) software. Ultrason. Sonochem. 33, 67–76 (2016).
    • 70. Xia Q, Yang Y, Liu M. Aluminium sensitized spectrofluorimetric determination of fluoroquinolones in milk samples coupled with salting-out assisted liquid–liquid ultrasonic extraction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 358–364 (2012).
    • 71. Asfaram A, Ghaedi M, Dashtian K. Ultrasound assisted combined molecularly imprinted polymer for selective extraction of nicotinamide in human urine and milk samples: Spectrophotometric determination and optimization study. Ultrason. Sonochem. 34, 640–650 (2017).
    • 72. Hoff RB, Pizzolato TM, Peralba MdCR, Díaz-Cruz MS, Barceló D. Determination of sulfonamide antibiotics and metabolites in liver, muscle and kidney samples by pressurized liquid extraction or ultrasound-assisted extraction followed by liquid chromatography–quadrupole linear ion trap-tandem mass spectrometry (HPLC–QqLIT-MS/MS). Talanta 134, 768–778 (2015).
    • 73. Bermejo-Barrera P, Muñiz-Naveiro O, Moreda-Piñeiro A, Bermejo-Barrera A. Experimental designs in the optimisation of ultrasonic bath–acid-leaching procedures for the determination of trace elements in human hair samples by atomic absorption spectrometry. Forensic Sci. Int. 107(1), 105–120 (2000).
    • 74. Jiménez-Díaz I, Vela-Soria F, Zafra-Gómez A et al. A new liquid chromatography–tandem mass spectrometry method for determination of parabens in human placental tissue samples. Talanta 84(3), 702–709 (2011).
    • 75. Meng L, Zhang W, Meng P, Zhu B, Zheng K. Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid–liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography–mass spectrometry. J. Chromatogr. B 989, 46–53 (2015).
    • 76. Shirkhanloo H, Karamzadeh Z, Rakhtshah J, Kazemi NM. A novel biostructure sorbent based on CysSB/MetSB@MWCNTs for separation of nickel and cobalt in biological samples by ultrasound assisted-dispersive ionic liquid-suspension solid phase micro extraction. J. Pharm. Biomed. Anal. 172, 285–294 (2019).
    • 77. Ganzler K, Salgó A, Valkó KJJocA. Microwave extraction: a novel sample preparation method for chromatography. J. Chromatogr. A 371, 299–306 (1986).
    • 78. Eskilsson CS, Björklund EJJocA. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 902(1), 227–250 (2000).
    • 79. Teo CC, Chong WPK, Ho YSJM. Development and application of microwave-assisted extraction technique in biological sample preparation for small molecule analysis. Metabolomics 9(5), 1109–1128 (2013).
    • 80. Moret S, Conchione C, Srbinovska A, Lucci PJF. Microwave-based technique for fast and reliable extraction of organic contaminants from food, with a special focus on hydrocarbon contaminants. Foods 8(10), 503 (2019).
    • 81. Sanchez-Prado L, Garcia-Jares C, Dagnac T, Llompart M. Microwave-assisted extraction of emerging pollutants in environmental and biological samples before chromatographic determination. TrAC – Trends Anal. Chem. 71, 119–143 (2015).
    • 82. Woźniakiewicz M, Wietecha-Posłuszny R, Garbacik A, Kościelniak P. Microwave-assisted extraction of tricyclic antidepressants from human serum followed by high performance liquid chromatography determination. J. Chromatogr. A 1190(1), 52–56 (2008).
    • 83. Fernández P, Vázquez C, Lorenzo RA, Carro AM, Álvarez I, Cabarcos P. Experimental design for optimization of microwave-assisted extraction of benzodiazepines in human plasma. Anal. Bioanal. Chem. 397(2), 677–685 (2010).
    • 84. Fernández P, Lago M, Lorenzo RA, Carro AM, Bermejo AM, Tabernero MJ. Optimization of a rapid microwave-assisted extraction method for the simultaneous determination of opiates, cocaine and their metabolites in human hair. J. Chromatogr. B 877(18), 1743–1750 (2009).
    • 85. Fernández P, Lago M, Lorenzo RA, Carro AM, Bermejo AM, Tabernero MJ. Microwave assisted extraction of drugs of abuse from human urine. J. Appl. Toxicol. 27(4), 373–379 (2007).
    • 86. Fernández P, Seoane S, Vázquez C, Bermejo AM, Carro AM, Lorenzo RA. A rapid analytical method based on microwave-assisted extraction for the determination of drugs of abuse in vitreous humor. Anal. Bioanal. Chem. 401(7), 2177 (2011).
    • 87. Pedersen-Bjergaard S, Rasmussen KEJJoCA. Electrokinetic migration across artificial liquid membranes: new concept for rapid sample preparation of biological fluids. J. Chromatogr. A 1109(2), 183–190 (2006).
    • 88. Tabani H, Khodaei K, Varanusupakul P, Alexovič M. Gel electromembrane extraction: study of various gel types and compositions toward diminishing the electroendosmosis flow. Microchem. J. 153, 104520 (2020).
    • 89. Tabani H, Asadi S, Nojavan S, Parsa MJJoCA. Introduction of agarose gel as a green membrane in electromembrane extraction: an efficient procedure for the extraction of basic drugs with a wide range of polarities. J. Chromatogr. A 1497, 47–55 (2017).
    • 90. Sedehi S, Tabani H, Nojavan S. Electro-driven extraction of polar compounds using agarose gel as a new membrane: Determination of amino acids in fruit juice and human plasma samples. Talanta 179, 318–325 (2018).
    • 91. Rahimi A, Nojavan S, Tabani H. Inside gel electromembrane extraction: a novel green methodology for the extraction of morphine and codeine from human biological fluids. J. Pharm. Biomed. Anal. 184, 113175 (2020).
    • 92. Zeraatkar Moghaddam A, Goharjoo M, Ghiamati E, Khodaei K, Tabani H. Gel electro-membrane extraction of propranolol and atenolol from blood serum samples: Effect of graphene-based nanomaterials on extraction efficiency of gel membrane. Talanta 222, 121557 (2021).
    • 93. Behpour M, Tabani H, Nojavan S. Gel electromembrane extraction using rotating electrode: a new strategy for mass transfer enhancement of basic drugs from real human urine samples. J. Chromatogr. B 1152, 122258 (2020).
    • 94. Pourahadi A, Nojavan S, Hosseiny Davarani SS. Gel-electromembrane extraction of peptides: determination of five hypothalamic agents in human plasma samples. Talanta 217, 121025 (2020).
    • 95. Asadi S, Tabani H, Nojavan S. Application of polyacrylamide gel as a new membrane in electromembrane extraction for the quantification of basic drugs in breast milk and wastewater samples. J. Pharm. Biomed. Anal. 151, 178–185 (2018).
    • 96. Chaurasia CSJBC. In vivo microdialysis sampling: theory and applications. Biomed. Chromatogr. 13(5), 317–332 (1999).
    • 97. Qiao F, Sun H, Yan H, Row KH. Molecularly imprinted polymers for solid-phase extraction. Chromatographia 64(11), 625–634 (2006).
    • 98. Li G, Row KH. Recent applications of molecularly imprinted polymers (MIPs) on micro-extraction techniques. Sep. Purif. Rev. 47(1), 1–18 (2018).
    • 99. Sellergren B. Direct drug determination by selective sample enrichment on an imprinted polymer. Anal. Chem. 66(9), 1578–1582 (1994).
    • 100. Koster EH, Crescenzi C, den Hoedt W, Ensing K, de Jong GJ. Fibers coated with molecularly imprinted polymers for solid-phase microextraction. Anal. Chem. 73(13), 3140–3145 (2001).
    • 101. Xu Z, Hu Y, Hu Y, Li G. Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of β2-agonists in complex samples. J. Chromatogr. A 1217(22), 3612–3618 (2010).
    • 102. Daryanavard SM, Jeppsson-Dadoun A, Andersson LI, Hashemi M, Colmsjö A, Abdel-Rehim M. Molecularly imprinted polymer in microextraction by packed sorbent for the simultaneous determination of local anesthetics: lidocaine, ropivacaine, mepivacaine and bupivacaine in plasma and urine samples. Biomed. Chromatogr. 27(11), 1481–1488 (2013).
    • 103. Xing R, Wen Y, He H, Guo Z, Liu Z. Recent progress in the combination of molecularly imprinted polymer-based affinity extraction and mass spectrometry for targeted proteomic analysis. TrAC – Trends Anal. Chem. 110, 417–428 (2019).
    • 104. Abdel-Rehim M, Pedersen-Bjergaard S, Abdel-Rehim A et al. Microextraction approaches for bioanalytical applications: an overview. J. Chromatogr. A 1616, 460790 (2020).
    • 105. Arabi M, Ostovan A, Bagheri AR et al. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC – Trends Anal. Chem. 128, 115923 (2020).
    • 106. Armenta S, Esteve-Turrillas FA, Garrigues S, de la Guardia M. Smart materials for sample preparation in bioanalysis: a green overview. Sustain. Chem. Pharm. 21, 100411 (2021).
    • 107. Sitko R, Zawisza B, Malicka E. Graphene as a new sorbent in analytical chemistry. TrAC – Trends Anal. Chem. 51, 33–43 (2013).
    • 108. Liu Q, Shi J, Sun J, Wang T, Zeng L, Jiang G. Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angew. Chem. 123(26), 6035–6039 (2011).
    • 109. Manousi N, Plastiras O-E, Deliyanni EA, Zachariadis GA. Green bioanalytical applications of graphene oxide for the extraction of small organic molecules. Molecules 26(9), 2790 (2021).
    • 110. Khalilian F, Hanzaki SA, Yousefi M. Synthesis of a graphene-based nanocomposite for the dispersive solid-phase extraction of vancomycin from biological samples. J. Sep. Sci. 38(6), 975–981 (2015).
    • 111. Yang X, Hu Y, Li G, Zhang Z. Acrylamide-functionalized graphene micro-solid-phase extraction coupled to high-performance liquid chromatography for the online analysis of trace monoamine acidic metabolites in biological samples. J. Sep. Sci. 38(8), 1380–1387 (2015).
    • 112. Ghazaghi M, Mousavi HZ, Rashidi AM, Shirkhanloo H, Rahighi R. Innovative separation and preconcentration technique of coagulating homogenous dispersive micro solid-phase extraction exploiting graphene oxide nanosheets. Anal. Chim. Acta 902, 33–42 (2016).
    • 113. Rezaeifar Z, Es’ haghi Z, Rounaghi GH, Chamsaz M. Hyperbranched polyglycerol/graphene oxide nanocomposite reinforced hollow fiber solid/liquid phase microextraction for measurement of ibuprofen and naproxen in hair and waste water samples. J. Chromatogr. B 1029, 81–87 (2016).
    • 114. Cui Y, Li B, He H, Zhou W, Chen B, Qian G. Metal–organic frameworks as platforms for functional materials. Acc. Chem. Res. 49(3), 483–493 (2016).
    • 115. Rocio-Bautista P, Pacheco-Fernández I, Pasán J, Pino V. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? – a review. Anal. Chim. Acta 939, 26–41 (2016).
    • 116. Khezeli T, Daneshfar A. Dispersive micro-solid-phase extraction of dopamine, epinephrine and norepinephrine from biological samples based on green deep eutectic solvents and Fe 3 O 4@ MIL-100 (Fe) core–shell nanoparticles grafted with pyrocatechol. RSC Adv. 5(80), 65264–65273 (2015).
    • 117. Chang N, Gu Z-Y, Wang H-F, Yan X-P. Metal–organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and high-resolution gas chromatographic separation of n-alkanes in complex matrixes. Anal. Chem. 83(18), 7094–7101 (2011).
    • 118. Wu M, Ai Y, Zeng B, Zhao F. In situ solvothermal growth of metal-organic framework–ionic liquid functionalized graphene nanocomposite for highly efficient enrichment of chloramphenicol and thiamphenicol. J. Chromatogr. A 1427, 1–7 (2016).
    • 119. Gu Z-Y, Chen Y-J, Jiang J-Q, Yan X-P. Metal–organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples. ChemComm. 47(16), 4787–4789 (2011).
    • 120. Cote AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. S cience 310(5751), 1166–1170 (2005).
    • 121. Liu Y, Ma Y, Zhao Y et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351(6271), 365–369 (2016).
    • 122. Diercks CS, Yaghi OM. The atom, the molecule, and the covalent organic framework. Science 355(6328), eaal1585 (2017).
    • 123. Kou X, Tong L, Huang S, Chen G, Zhu F, Ouyang G. Recent advances of covalent organic frameworks and their application in sample preparation of biological analysis. TrAC - Trends Anal. Chem. 136, 116182 (2021). • Provided the detailed information about covalent organic frameworks.
    • 124. Liu J-M, Wang X-Z, Zhao C-Y, Hao J-L, Fang G-Z, Wang S. Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix. J. Hazard. Mater. 344, 220–229 (2018).
    • 125. Zhang D, Liu H, Geng W, Wang Y. A dual-function molecularly imprinted optopolymer based on quantum dots-grafted covalent-organic frameworks for the sensitive detection of tyramine in fermented meat products. Food Chem. 277, 639–645 (2019).
    • 126. Lin G, Gao C, Zheng Q et al. Room-temperature synthesis of core–shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins. ChemComm. 53(26), 3649–3652 (2017).
    • 127. Huang S, Kou X, Shen J, Chen G, Ouyang G. “Armor-plating” enzymes with metal–organic frameworks (MOFs). Angew. Chem. Int. Ed. 59(23), 8786–8798 (2020).
    • 128. Chen G, Kou X, Huang S et al. Modulating the biofunctionality of metal–organic-framework-encapsulated enzymes through controllable embedding patterns. Angew. Chem. Int. Ed. 59(7), 2867–2874 (2020).
    • 129. Chen G, Huang S, Kou X, Zhu F, Ouyang G. Embedding functional biomacromolecules within peptide-directed metal–organic framework (MOF) nanoarchitectures enables activity enhancement. Angewandte Chemie 132(33), 14051–14058 (2020).
    • 130. Chen G, Huang S, Kou X et al. A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal–organic frameworks. Angew. Chem. Int. Ed. 58(5), 1463–1467 (2019).
    • 131. Queiroz MEC, Souza ID. Restricted access media. In: Solid-Phase Extraction. Elsevier, 129–149 (2020).
    • 132. Dıaz-Linan MDC, Lasarte-Aragones G, Lopez-Lorente AI, Lucena R, Cardenas S, Curie M. Selectivity-enhanced sorbents 10. Analytical Sample Preparation With Nano-and Other High-Performance Materials 229 (2021).
    • 133. Liu X, Feng J, Li Y. Preparation of carbon-functionalized magnetic graphene/mesoporous silica composites for selective extraction of miglitol and voglibose in rat plasma. Talanta 182, 405–413 (2018).
    • 134. Pinto MAL, de Souza ID, Queiroz MEC. Determination of drugs in plasma samples by disposable pipette extraction with C18-BSA phase and liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 139, 116–124 (2017).
    • 135. Feng J, Liu X, Li Y, Duan G. Microwave-assisted enzymatic hydrolysis followed by extraction with restricted access nanocomposites for rapid analysis of glucocorticoids residues in liver tissue. Talanta 159, 155–162 (2016).
    • 136. Joseph JF, Parr MK. Chapter 5 - Application of SFC for bioanalysis. In: Identification and Quantification of Drugs, Metabolites, Drug Metabolizing Enzymes, and Transporters (Second Edition). Ma SChowdhury SK (Eds). Elsevier, Amsterdam, 151–183 (2020).
    • 137. Harps LC, Joseph JF, Parr MK. SFC for chiral separations in bioanalysis. J. Pharm. Biomed. Anal. 162, 47–59 (2019).
    • 138. Malik MA, Hashim MA, Nabi F. Ionic liquids in supported liquid membrane technology. Chem. Eng. J. 171(1), 242–254 (2011).
    • 139. Escudero LB, Castro Grijalba A, Martinis EM, Wuilloud RG. Bioanalytical separation and preconcentration using ionic liquids. Anal. Bioanal. Chem. 405(24), 7597–7613 (2013).
    • 140. Kailasa SK, Rawat KA, Wu H-F. Ionic liquids in bioanalysis. Bioanalysis 7(17), 2251–2264 (2015).
    • 141. Helalat–Nezhad Z, Ghanemi K, Fallah–Mehrjardi M. Dissolution of biological samples in deep eutectic solvents: an approach for extraction of polycyclic aromatic hydrocarbons followed by liquid chromatography-fluorescence detection. J. Chromatogr. A 1394, 46–53 (2015).
    • 142. Rajabi M, Ghassab N, Hemmati M, Asghari A. Emulsification microextraction of amphetamine and methamphetamine in complex matrices using an up-to-date generation of eco-friendly and relatively hydrophobic deep eutectic solvent. J. Chromatogr. A 1576, 1–9 (2018).
    • 143. Safavi A, Ahmadi R, Ramezani AM. Vortex-assisted liquid-liquid microextraction based on hydrophobic deep eutectic solvent for determination of malondialdehyde and formaldehyde by HPLC-UV approach. Microchem. J. 143, 166–174 (2018).
    • 144. Ferretti R, Zanitti L, Casulli A, Cirilli RJJoSS. Green high-performance liquid chromatography enantioseparation of lansoprazole using a cellulose-based chiral stationary phase under ethanol/water mode. J. Sep. Sci. 39(8), 1418–1424 (2016). •• Demonstrated the green solvents as liquid chromatography (LC) mobile phase to separate enantiomers.
    • 145. Olives AI, Gonzalez-Ruiz V, Martín MA. Sustainable and eco-friendly alternatives for liquid chromatographic analysis. CS Sustain. Chem. Eng. 5(7), 5618–5634 (2017).
    • 146. Aly AA, Górecki T. Green chromatography and related techniques. In: Green Analytical Chemistry. Springer, 241–298 (2019).
    • 147. Elisa Capella-Peiró M, Gil-Agustí M, Martinavarro-Domínguez A, Esteve-Romero J. Determination in serum of some barbiturates using micellar liquid chromatography with direct injection. Anal. Biochem. 309(2), 261–268 (2002).
    • 148. Chin-Chen M-L, Bose D, Esteve-Romero J, Peris-Vicente J, Rambla-Alegre M, Carda-Broch SJTOACJ. Determination of putrescine and tyramine in fish by micellar liquid chromatography with UV detection using direct injection. Open Anal. Chem. J. 5(1), (2011).
    • 149. Carda-Broch S, Gil-Agustí M, Rambla-Alegre M, Monferrer-Pons L, Esteve-Romero JS. Determination of trazodone in urine and pharmaceuticals using micellar liquid chromatography with fluorescence detection. J. Chromatogr. A 1156(1–2), 254–258 (2007).
    • 150. Rambla-Alegre M, Gil-Agustí M, Capella-Peiró M, Carda-Broch S, Esteve-Romero JS. Direct determination of verapamil in urine and serum samples by micellar liquid chromatography and fluorescence detection. J. Chromatogr. B 839(1–2), 89–94 (2006).
    • 151. El-Shaheny RN, El-Maghrabey MH, Belal FF. Micellar liquid chromatography from green analysis perspective. Open Chem. 13(1), 877–892 (2015).
    • 152. Korany MA, Mahgoub H, Haggag RS, Ragab MA, Elmallah OA. Green chemistry: analytical and chromatography. J. Liq. Chromatogr. Relat. Technol. 40(16), 839–852 (2017).
    • 153. Dispas A, Jambo H, André S, Tyteca E, Hubert P. Supercritical fluid chromatography: a promising alternative to current bioanalytical techniques. Bioanalysis 10(2), 107–124 (2018).
    • 154. Niessen W, Tjaden U, Van der Greef J. Bioanalytical applications of supercritical fluid chromatography. J. Chromatogr. B 492, 167–188 (1989).
    • 155. Sadeghi S, Mollahosseini A. Electrospun polydimethylsiloxane/polyacrylonitrile/titanium dioxide nanofibers as a new coating for determination of alpha-linolenic acid in milk by direct immersion-solid phase nanoextraction. J. Chromatogr. B 1073, 43–50 (2018).
    • 156. Mazaraki K, Kabir A, Furton KG, Fytianos K, Samanidou VF, Zacharis CK. Fast fabric phase sorptive extraction of selected β-blockers from human serum and urine followed by UHPLC-ESI-MS/MS analysis. J. Pharm. Biomed. Anal. 199, 114053 (2021).
    • 157. Rosado T, Gonçalves A, Margalho C, Barroso M, Gallardo E. Rapid analysis of cocaine and metabolites in urine using microextraction in packed sorbent and GC/MS. Anal. Bioanal. Chem. 409(8), 2051–2063 (2017).
    • 158. Campestre C, Locatelli M, Guglielmi P et al. Analysis of imidazoles and triazoles in biological samples after microextraction by packed sorbent. J. Enzyme Inhib. Med. Chem. 32(1), 1053–1063 (2017).
    • 159. Bagheri H, Banihashemi S, Zandian FK. Microextraction of antidepressant drugs into syringes packed with a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrrole. Microchim. Acta 183(1), 195–202 (2016).
    • 160. Montesano C, Vannutelli G, Piccirilli V, Sergi M, Compagnone D, Curini R. Application of a rapid μ-SPE clean-up for multiclass quantitative analysis of sixteen new psychoactive substances in whole blood by LC–MS/MS. Talanta 167, 260–267 (2017).
    • 161. Sánchez-González J, García-Carballal S, Cabarcos P, Tabernero MJ, Bermejo-Barrera P, Moreda-Piñeiro A. Determination of cocaine and its metabolites in plasma by porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1451, 15–22 (2016).
    • 162. El-Beqqali A, Andersson LI, Jeppsson AD, Abdel-Rehim M. Molecularly imprinted polymer-sol-gel tablet toward micro-solid-phase extraction: II. Determination of amphetamine in human urine samples by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 1063, 130–135 (2017).
    • 163. He X, Sun T, Wang L, Jiang X. Pipette-tip micro-solid-phase extraction based on melamine-foam@ polydopamine followed by ultra-high-performance liquid chromatography–quadrupole–time-of-flight mass spectrometry for detection of psychotropic drugs in human serum. J. Chromatogr. B 1163, 122499 (2021).
    • 164. Jahed FS, Hamidi S, Ghaffary S, Nejati B. Dispersive micro solid-phase extraction of busulfan from plasma samples using novel mesoporous sorbent prior to determination by HPLC-MS/MS. J. Chromatogr. B 1145, 122091 (2020).
    • 165. Fresco-Cala B, Mompó-Roselló Ó, Simó-Alfonso EF, Cárdenas S, Herrero-Martínez JM. Carbon nanotube-modified monolithic polymethacrylate pipette tips for (micro) solid-phase extraction of antidepressants from urine samples. Microchim. Acta 185(2), 1–7 (2018).
    • 166. Ahmadi F, Mahmoudi-Yamchi T, Azizian H. Super paramagnetic core–shells anchored onto silica grafted with C8/NH2 nano-particles for ultrasound-assisted magnetic solid-phase extraction of imipramine and desipramine from plasma. J. Chromatogr. B 1077, 52–59 (2018).
    • 167. Murtada K, de Andrés F, Ríos A, Zougagh M. Determination of antidepressants in human urine extracted by magnetic multiwalled carbon nanotube poly (styrene-co-divinylbenzene) composites and separation by capillary electrophoresis. Electrophoresis 39(14), 1808–1815 (2018).
    • 168. Niaei N, Samadi A, Hamishehkar H, Ghorbani M. Development of terbium-sensitized fluorescence method for the determination of alendronate in biological samples followed by magnetic solid-phase extraction. Microchem. J. 146, 888–894 (2019).
    • 169. Xiao X, He K, Hou Y-J, Xiang Z, Yang Y. Rapid and sensitive analysis of trace β-blockers by magnetic solid-phase extraction coupled with Fourier transform ion cyclotron resonance mass spectrometry. J. Pharm. Anal. 12(2), 293–300 (2022).
    • 170. Farnoudian-Habibi A, Massoumi B, Jaymand M. A novel strategy for spectrophotometric simultaneous determination of amitriptyline and nortriptyline based on derivation with a quinonoid compound in serum samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 168, 235–243 (2016).
    • 171. Rastbood S, Hadjmohammadi MR. Development of a magnetic dispersive micro-solid-phase extraction method based on a deep eutectic solvent as a carrier for the rapid determination of meloxicam in biological samples. Anal. Methods 12(18), 2331–2337 (2020).
    • 172. Amoli-Diva M, Pourghazi K, Hajjaran S. Dispersive micro-solid-phase extraction using magnetic nanoparticle modified multi-walled carbon nanotubes coupled with surfactant-enhanced spectrofluorimetry for sensitive determination of lomefloxacin and ofloxacin from biological samples. Mater. Sci. Eng. C 60, 30–36 (2016).
    • 173. Fan W, He M, You L, Zhu X, Chen B, Hu B. Water-compatible graphene oxide/molecularly imprinted polymer coated stir bar sorptive extraction of propranolol from urine samples followed by high performance liquid chromatography-ultraviolet detection. J. Chromatogr. A 1443, 1–9 (2016).
    • 174. Ghani M, Ghoreishi SM, Shahin M, Azamati M. Zeolitic imidazole framework templated synthesis of nanoporous carbon as a coating for stir bar sorptive extraction of fluorouracil and phenobarbital in human body fluids. Microchem. J. 146, 798–806 (2019).
    • 175. Mohammadi P, Masrournia M, Es'haghi Z, Pordel M. Hollow fiber coated Fe3O4@ Maleamic acid-functionalized graphene oxide as a sorbent for stir bar sorptive extraction of ibuprofen, aspirin, and venlafaxine in human urine samples before determining by gas chromatography–mass spectrometry. J. Iran. Chem. Soc. 18(9), 2249–2259 (2021).
    • 176. Ghorbani M, Chamsaz M, Rounaghi GH. Glycine functionalized multiwall carbon nanotubes as a novel hollow fiber solid-phase microextraction sorbent for pre-concentration of venlafaxine and o-desmethylvenlafaxine in biological and water samples prior to determination by high-performance liquid chromatography. Anal. Bioanal. Chem. 408(16), 4247–4256 (2016).
    • 177. Mohammadkhani E, Yamini Y, Rezazadeh M, Seidi S. Electromembrane surrounded solid phase microextraction using electrochemically synthesized nanostructured polypyrrole fiber. J. Chromatogr. A 1443, 75–82 (2016).
    • 178. Mirzajani R, Kardani F. Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection. J. Pharm. Biomed. Anal. 122, 98–109 (2016).
    • 179. Calejo I, Moreira N, Araújo AM, Carvalho M, de Lourdes Bastos M, de Pinho PG. Optimisation and validation of a HS-SPME–GC–IT/MS method for analysis of carbonyl volatile compounds as biomarkers in human urine: application in a pilot study to discriminate individuals with smoking habits. Talanta 148, 486–493 (2016).
    • 180. Alsenedi KA, Morrison C. Determination of amphetamine-type stimulants (ATSs) and synthetic cathinones in urine using solid phase micro-extraction fiber tips and gas chromatography-mass spectrometry. Anal. Methods 10(12), 1431–1440 (2018).
    • 181. Wang R, Li W, Chen Z. Solid phase microextraction with poly(deep eutectic solvent) monolithic column online coupled to HPLC for determination of non-steroidal anti-inflammatory drugs. Anal. Chim. Acta 1018, 111–118 (2018).
    • 182. Ma J-B, Qiu H-W, Rui Q-H et al. Fast determination of catecholamines in human plasma using carboxyl-functionalized magnetic-carbon nanotube molecularly imprinted polymer followed by liquid chromatography-tandem quadrupole mass spectrometry. J. Chromatogr. A 1429, 86–96 (2016).
    • 183. Ding J, Zhang F, Zhang X et al. Determination of roxithromycin from human plasma samples based on magnetic surface molecularly imprinted polymers followed by liquid chromatography-tandem mass spectromer. J. Chromatogr. B 1021, 221–228 (2016).
    • 184. Alampanos V, Kabir A, Furton KG, Samanidou V, Papadoyannis I. Fabric phase sorptive extraction for simultaneous observation of four penicillin antibiotics from human blood serum prior to high performance liquid chromatography and photo-diode array detection. Microchem. J. 149, 103964 (2019).
    • 185. Guedes-Alonso R, Ciofi L, Sosa-Ferrera Z et al. Determination of androgens and progestogens in environmental and biological samples using fabric phase sorptive extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1437, 116–126 (2016).
    • 186. Locatelli M, Tinari N, Grassadonia A et al. FPSE-HPLC-DAD method for the quantification of anticancer drugs in human whole blood, plasma, and urine. J. Chromatogr. B 1095, 204–213 (2018).
    • 187. Tartaglia A, Covone S, Rosato E et al. Fabric phase sorptive extraction (FPSE) as an efficient sample preparation platform for the extraction of antidepressant drugs from biological fluids. Adv. Sample Prep. 3, 100022 (2022).
    • 188. Locatelli M, Kabir A, Innosa D, Lopatriello T, Furton KG. A fabric phase sorptive extraction-high performance liquid chromatography-photo diode array detection method for the determination of twelve azole antimicrobial drug residues in human plasma and urine. J. Chromatogr. B 1040, 192–198 (2017).
    • 189. Samanidou V, Kaltzi I, Kabir A, Furton KG. Simplifying sample preparation using fabric phase sorptive extraction technique for the determination of benzodiazepines in blood serum by high-performance liquid chromatography. Biomed. Chromatogr. 30(6), 829–836 (2016).
    • 190. Kabir A, Furton KG, Tinari N et al. Fabric phase sorptive extraction-high performance liquid chromatography-photo diode array detection method for simultaneous monitoring of three inflammatory bowel disease treatment drugs in whole blood, plasma and urine. J. Chromatogr. B 1084, 53–63 (2018).
    • 191. Tartaglia A, Kabir A, D'Ambrosio F et al. Fast off-line FPSE-HPLC-PDA determination of six NSAIDs in saliva samples. J. Chromatogr. B 1144, 122082 (2020).
    • 192. Fernández P, Taboada V, Regenjo M et al. Optimization of ultrasound assisted dispersive liquid-liquid microextraction of six antidepressants in human plasma using experimental design. J. Pharm. Biomed. Anal. 124, 189–197 (2016).
    • 193. Bombana HS, Dos Santos MF, Muñoz DR, Leyton V. Hollow-fiber liquid-phase microextraction and gas chromatography-mass spectrometric determination of amphetamines in whole blood. J. Chromatogr. B 1139, 121973 (2020).
    • 194. Iqbal M, Ezzeldin E, Khalil NY, Alam P, Al-Rashood KA. UPLC-MS/MS determination of suvorexant in urine by a simplified dispersive liquid-liquid micro-extraction followed by ultrasound assisted back extraction from solidified floating organic droplets. J. Pharm. Biomed. Anal. 164, 1–8 (2019).
    • 195. Brahmadhi A, Chen MX, Wang S-Y et al. Determination of fluoroquinolones in dried plasma spots by using microwave-assisted extraction coupled to ultra-high performance liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring. J. Pharm. Biomed. Anal. 195, 113821 (2021).
    • 196. Chen X, Zheng S, Le J et al. Ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the simultaneous determination of 12 new antidepressants and 2 antipsychotics in whole blood by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 142, 19–27 (2017).
    • 197. Guedes-Alonso R, Sosa-Ferrera Z, Santana-Rodríguez JJ. Determination of steroid hormones in fish tissues by microwave-assisted extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry. Food chem. 237, 1012–1020 (2017).
    • 198. Ask KS, Lid M, Øiestad EL, Pedersen-Bjergaard S, Gjelstad A. Liquid-phase microextraction in 96-well plates-calibration and accurate quantification of pharmaceuticals in human plasma samples. J. Chromatogr. A 1602, 117–123 (2019).
    • 199. Carlier J, Scheidweiler KB, Wohlfarth A, Salmeron BD, Baumann MH, Huestis MA. Quantification of [1-(5-fluoropentyl)-1H-indol-3-yl](naphthalene-1-yl) methanone (AM-2201) and 13 metabolites in human and rat plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1451, 97–106 (2016).
    • 200. Purgat K, Olejarz P, Kośka I, Głowacki R, Kubalczyk P. Determination of homocysteine thiolactone in human urine by capillary zone electrophoresis and single drop microextraction. Anal. Biochem. 596, 113640 (2020).
    • 201. Temerdashev A, Dmitrieva E, Azaryan A, Gashimova E. A novel approach to the quantification of urinary aryl-propionamide-derived SARMs by UHPLC–MS/MS. Biomed. Chromatogr. 34(1), e4700 (2020).
    • 202. Golbabanezhadazizi A, Ranjbari E, Hadjmohammadi M, Daneshinejad H. Determination of selective serotonin reuptake inhibitors in biological samples via magnetic stirring-assisted dispersive liquid–liquid microextraction followed by high performance liquid chromatography. RSC Adv. 6(56), 50710–50720 (2016).
    • 203. Samanidou V, Kaltzi I, Kabir A, Furton KG. Simplifying sample preparation using fabric phase sorptive extraction technique for the determination of benzodiazepines in blood serum by high-performance liquid chromatography. Biomed. Chromatogr. 30(6), 829–836 (2016).
    • 204. Zhou G-S, Yuan Y-C, Yin Y et al. Hydrophilic interaction chromatography combined with ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction for determination of underivatized neurotransmitters in dementia patients' urine samples. Anal. Chim. Acta 1107, 74–84 (2020).
    • 205. Lin Z, Li J, Zhang X, Qiu M, Huang Z, Rao Y. Ultrasound-assisted dispersive liquid-liquid microextraction for the determination of seven recreational drugs in human whole blood using gas chromatography–mass spectrometry. J. Chromatogr. B 1046, 177–184 (2017).
    • 206. Hauser B, Schellin M, Popp P. Membrane-assisted solvent extraction of triazines, organochlorine, and organophosphorus compounds in complex samples combined with large-volume injection-gas chromatography/mass spectrometric detection. Anal. Chem. 76(20), 6029–6038 (2004).
    • 207. Desfontaine V, Nováková L, Ponzetto F et al. Liquid chromatography and supercritical fluid chromatography as alternative techniques to gas chromatography for the rapid screening of anabolic agents in urine. J. Chromatogr. A 1451, 145–155 (2016).
    • 208. Hofstetter RK, Schulig L, Bethmann J et al. Supercritical fluid extraction–supercritical fluid chromatography of saliva: Single-quadrupole mass spectrometry monitoring of caffeine for gastric emptying studies. J. Sep. Sci. 44(19), 3700–3716 (2021).