We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

High-resolution mass spectrometry for glycoproteomics

    Siyue Bo

    Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China

    ,
    Rumeng Zhang

    Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China

    ,
    Lingbo Zhao

    Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China

    ,
    Shuang Yang

    *Author for correspondence:

    E-mail Address: yangs2020@suda.edu.cn

    Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China

    ,
    Zhaohui Lu

    **Author for correspondence:

    E-mail Address: luzhdoc@163.com

    Health Examination Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China

    &
    Perry G Wang

    ***Author for correspondence:

    E-mail Address: wanggperry@gmail.com

    Center for Food Safety & Applied Nutrition, US Food & Drug Administration, College Park, MD 20740, USA

    Published Online:https://doi.org/10.4155/bio-2023-0027

    Tweetable abstract

    Bottom-up glycoproteomics combined with top-down strategy allows direct analysis of glycoform-mapped glycosylation and its glycans by high-resolution mass spectrometry.

    References

    • 1. Solá RJ, Griebenow K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs 24(1), 9–21 (2010).
    • 2. Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr. Opin. Biotechnol. 22(6), 868–876 (2011).
    • 3. Pan S, Chen R, Aebersold R, Brentnall TA. Mass spectrometry based glycoproteomics – from a proteomics perspective. Mol. Cell. Proteomics 10(1), R110.003251 (2011).
    • 4. Bagdonaite I, Malaker SA, Polasky DA et al. Glycoproteomics. Nat. Rev. Methods Primers 2(1), 48 (2022).
    • 5. Chen S-Y, Dong M, Yang G et al. Glycans, glycosite, and intact glycopeptide analysis of n-linked glycoproteins using liquid handling systems. Anal. Chem.. 92(2), 1680–1686 (2020).
    • 6. Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR 3rd. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 113(4), 2343–2394 (2013).
    • 7. Mechref Y. Use of CID/ETD mass spectrometry to analyze glycopeptides. Curr. Protoc. Protein Sci. 68(1), 12.11.1–12.11.11 (2012).
    • 8. Quaranta A, Spasova M, Passarini E et al. N-Glycosylation profiling of intact target proteins by high-resolution mass spectrometry (MS) and glycan analysis using ion mobility-MS/MS. Analyst 145(5), 1737–1748 (2020).
    • 9. Hackett WE, Zaia J. Calculating glycoprotein similarities from mass spectrometric data. Mol. Cell. Proteomics 20, 100028 (2021).
    • 10. Good DM, Wirtala M, McAlister GC, Coon JJ. Performance characteristics of electron transfer dissociation mass spectrometry. Mol. Cell. Proteomics 6(11), 1942–1951 (2007).
    • 11. Ren D, Pipes GD, Liu D et al. An improved trypsin digestion method minimizes digestion-induced modifications on proteins. Anal. Biochem. 392(1), 12–21 (2009).
    • 12. Hanisch F-G. O-Glycoproteomics: site-specific O-glycoprotein analysis by CID/ETD electrospray ionization tandem mass spectrometry and top-down glycoprotein sequencing by in-source decay MALDI mass spectrometry. Methods Mol. Biol. 842, 179–189 (2012).
    • 13. Wohlschlager T, Scheffler K, Forstenlehner IC et al. Native mass spectrometry combined with enzymatic dissection unravels glycoform heterogeneity of biopharmaceuticals. Nat. Commun. 9(1), 1713 (2018).
    • 14. Toby TK, Fornelli L, Kelleher NL. Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. 9(1), 499 (2016).
    • 15. Zubarev RA, Makarov A. Orbitrap mass spectrometry. Anal. Chem. 85(11), 5288–5296 (2013).
    • 16. Shajahan A, Heiss C, Ishihara M, Azadi P. Glycomic and glycoproteomic analysis of glycoproteins-a tutorial. Anal. Bioanal. Chem. 409(19), 4483–4505 (2017).
    • 17. Denisov E. Damoc E Lange O Makarov A Orbitrap mass spectrometry with resolving powers above 1,000,000. International Journal of Mass Spectrometry. 325–327, 80–85 (2012).
    • 18. Gutierrez-Reyes CD, Jiang P, Atashi M et al. Advances in mass spectrometry-based glycoproteomics: an update covering the period 2017–2021. Electrophoresis 43(1–2), 370–387 (2022).
    • 19. Ceroni A, Maass K, Geyer H et al. GlycoWorkbench: A Tool for the Computer-Assisted Annotation of Mass Spectra of Glycans. J. Proteome Res. 7(4), 1650–1659 (2008).
    • 20. Hanisch F-G. Top-down sequencing of O-glycoproteins by in-source decay matrix-assisted laser desorption ionization mass spectrometry for glycosylation site analysis. Anal Chem. 83(12), 4829–4837 (2011).
    • 21. Roberts DS, Mann M, Melby JA et al. Structural o-glycoform heterogeneity of the SARS-CoV-2 spike protein receptor-binding domain revealed by top-down mass spectrometry. J. Am. Chem. Soc. 143(31), 12014–12024 (2021).
    • 22. Krusemark CJ, Frey BL, Belshaw PJ, Smith LM. Modifying the charge state distribution of proteins in electrospray ionization mass spectrometry by chemical derivatization. J. Am. Soc. Mass Spectrom. 20, 1617–1625 (2009).
    • 23. Bern M, Kil YJ, Becker C. Byonic: Advanced Peptide and Protein Identification Software. Curr. Protoc. 1–13 (2012).
    • 24. Solntsev SK, Shortreed MR Frey BL, Smith LM. Enhanced Global Post-translational Modification Discovery with MetaMorpheus. J Proteome Res 17, 1844–1851 (2018).
    • 25. Zeng W-F, Cao W-Q, Liu M-Q, He S-M, Yang P-Y. Precise, fast and comprehensive analysis of intact glycopeptides and modified glycans with pGlyco3. Nat. Methods 18(12), 1515–1523 (2021).
    • 26. Avtonomov DM, Polasky DA, Ruotolo BT, Nesvizhskii AI. IMTBX and Grppr: software for top-down proteomics utilizing ion mobility-mass spectrometry. Anal. Chem. 90(3), 2369–2375 (2018).
    • 27. Kawahara R, Chernykh A, Alagesan K et al. Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat. Methods 18(11), 1304–1316 (2021).
    • 28. Yang Y, Liu F, Franc V, Halim LA, Schellekens H, Heck A. Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity. Nat. Commun. 7, 13397 (2016).
    • 29. Crutchfield CA, Thomas SN, Sokoll LJ, Chan DW. Advances in mass spectrometry-based clinical biomarker discovery. Clin. Proteomics 13(1), 1 (2016).
    • 30. Xu M, Yang A, Xia J et al. Protein glycosylation in urine as a biomarker of diseases. Transl. Res. 253, 95–107 (2022).
    • 31. Xu M, Hu W, Liu Z et al. Glycoproteomic bioanalysis of exosomes by LC–MS for early diagnosis of pancreatic cancer. Bioanalysis 13(11), 861–864 (2021).
    • 32. Zhang Y, Jiao J, Yang P, Lu H. Mass spectrometry-based n-glycoproteomics for cancer biomarker discovery. Clin. Proteomics 11(1), 1–14 (2014).
    • 33. Alharbi RA. Proteomics approach and techniques in identification of reliable biomarkers for diseases. Saudi J. Biol. Sci. 27(3), 968–974 (2020).
    • 34. Gao Z, Wu Z, Han Y et al. Aberrant fucosylation of saliva glycoprotein defining lung adenocarcinomas malignancy. ACS Omega 7(21), 17894–17906 (2022).
    • 35. Llop E, Guerrero PE, Duran A et al. Glycoprotein biomarkers for the detection of pancreatic ductal adenocarcinoma. World J. Gastroenterol. 24(24), 2537 (2018).
    • 36. Chen I-H, Aguilar HA, Paez Paez JS et al. Analytical pipeline for discovery and verification of glycoproteins from plasma-derived extracellular vesicles as breast cancer biomarkers. Anal. Chem. 90(10), 6307–6313 (2018).
    • 37. Tabarés G, Radcliffe CM, Barrabés S et al. Different glycan structures in prostate-specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiology. 16(2), 132–145 (2006).
    • 38. Scott E, Munkley J. Glycans as biomarkers in prostate cancer. Int. J. Mol. Sci. 20(6), 1389 (2019).