We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Sample treatment based on extraction techniques in biological matrices

    Nadia Y Ashri

    Najd Consulting Hospital, PO Box 123251, Riyadh, Kingdom of Saudi Arabia

    &
    Mohamed Abdel-Rehim

    † Author for correspondence

    Clinical Pharmacology & DMPK, AstraZeneca R&D Södertälje, SE-151 85 Södertälje, Sweden.

    Department of Chemistry & Biomedical Sciences, Karlstad University, SE-65188 Karlstad, Sweden

    Department of Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden

    Published Online:https://doi.org/10.4155/bio.11.201

    The importance of sample preparation methods as the first stage in bioanalysis is described. In this article, the sample preparation concept and strategies will be discussed, along with the requirements for good sample preparation. The most widely used sample preparation methods in the pharmaceutical industry are presented; for example, the need for same-day rotation of results from large numbers of biological samples in pharmaceutical industry makes high throughput bioanalysis more essential. In this article, high-throughput sample preparation techniques are presented; examples are given of the extraction and concentration of analytes from biological matrices, including protein precipitation, solid-phase extraction, liquid–liquid extraction and microextraction-related techniques. Finally, the potential role of selective extraction methods, including molecular imprinted phases, is considered.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Annesley TM. Ion suppression in mass spectrometry. Clin. Chem.49,1041–1044 (2003).▪ Discusses materials that cause ion suppression, including salts, ion-pairing agents, endogenous compounds, drugs, metabolites and proteins. Gives experimental protocols for examining ion suppression.
    • Taylor PJ. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray-tandem mass spectrometry. Clin. Biochem.38,328–334 (2005).
    • Weaver R, Riley RJ. Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400. Rapid Commun. Mass Spectrom.20,2559–2564 (2006).
    • Poole CF. New trends in solid-phase extraction. Trends Anal. Chem.22(6),362–373 (2003).
    • Hennion MC. Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J. Chromatogr. A856,3–54 (1999).▪ SPE practice and theory aspects. Discusses SPE format, characteristics of some common silica sorbents including performance and limitations for silica and polymer sorbents.
    • Wells DA. High Throughput Bioanalytical Sample Preparation. Elsevier, Amsterdam, The Netherlands (2003).▪▪ Offers crucial information for high-throughput sample preparation (SPE, liquid–liquid extraction, protein precipitation or ultrafiltration) in the field of drug development. Covers a wide range of topics from the fundamental principles of various sample preparation techniques to strategies for method development and automation.
    • Mitra S. Sample Preparation Techniques in Analytical Chemistry. Wiley, NY, USA (2003).
    • Sample Preparation For Trace Element Analysis. Mester Z, Sturgeon R (Eds). Elsevier, Amsterdam, The Netherlands (2003).
    • Trends in Sample Preparation. Arruda MAZ (Ed.). Nova Science Publishers, Hauppauge, NY, USA (2007).
    • 10  Sample Preparation for Hyphenated Analytical Techniques. Rosenfeld J (Ed.). Blackwell Publishing, Oxford, UK (2004).
    • 11  Chang MS, Ji Q, Zhang J, El-Shourbagy TA. Historical review of sample preparation for chromatographic bioanalysis: pros and cons. Drug Develop. Res.68,107–133 (2007).
    • 12  Sampling and Sample Preparation for Pield and Laboratory. Pawliszyn J (Ed.). Elsevier, Amsterdam, The Netherlands (2003).
    • 13  Koohpaei AR, Shahtaheri SJ, Ganjalic MR, Rahimi Forushanie A, Golbabaei F. Optimization of solid-phase extraction using developed modern sorbent for trace determination of ametryn in environmental matrices. J. Anal. Chem.65(7),694–698 (2010).
    • 14  Andersson LI. Molecular imprinting for drug bioanalysis. A review on the application of imprinted polymers to solid-phase extraction and binding assay. J. Chromatogr. B739,163–171 (2000).
    • 15  Cassiano NM, Lima VV, Oliveira RV, Pietro AC, Cass QB. Development of restricted-access media supports and their application to the direct analysis of biological fluid samples via high-performance liquid chromatography. Anal. Bioanal. Chem.384,1462–1469 (2006).
    • 16  Souverain S, Rudaz S, Veuthey JL. Restricted-access materials and large particle supports for online sample preparation: an attractive approach for biological fluids analysis. J. Chromatogr. B801,141–156 (2004).
    • 17  Desilets CP, Rounds MA, Regnier FE. Semipermeable-surface reversed phase media for high-performance liquid chromatography. J. Chromatogr.544,25–39 (1991).
    • 18  Hagestam H, Pinterton TC. Production of ‘internal surface reversed phase’ supports: the hydrolysis of selected substrates from silica using chymotrypsin. J. Chromatogr.368,77–84 (1986).
    • 19  de Jong WH, Graham KS, van der Molen JC et al. Plasma free metanephrine measurement using automated online solid-phase extraction HPLC tandem mass spectrometry. Clin. Chem.53,1684–1693 (2007).
    • 20  de Jong WH, Wilkens MH, de Vries EG, Kema IP. Automated mass spectrometric analysis of urinary and plasma serotonin. Anal. Bioanal. Chem.396,2609–2613 (2010).
    • 21  Dunér K, Bäckström J, Magnell N, Svennberg H, Ahnoff M, Logren U. Determination of ximelagatran, melagatran and two intermediary metabolites in plasma by mixed-mode solid phase extraction and LC–MS/MS. J. Chromatogr. B852,317–324 (2007).
    • 22  Remane D, Meyer MR, Peters FT, Wissenbach DK, Maurer HH. Fast and simple procedure for liquid–liquid extraction of 136 analytes from different drug classes for development of a liquid chromatographic–tandem mass spectrometric quantification method in human blood plasma. Anal. Bioanal. Chem.397,2303–2314 (2010).
    • 23  Højskov CS, Heickendorff L, Møller HJ. High-throughput liquid–liquid extraction and LC–MS/MS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine clinical laboratory. Anal. Chim. Acta411(1–2),114–116 (2010).
    • 24  Han D, Chen C, Zhang C, Zhang Y, Tang X. Determination of mangiferin in rat plasma by liquid-liquid extraction with UPLC–MS/MS. J. Pharm. Biomed. Anal.51,260–263 (2010).
    • 25  Ling G, Sun J, Tang J, Xu X, Sun Y, He Z. Liquid chromatography–electrospray ionization mass spectrometric method for determination of gliclazide in human plasma. Analytical Letters39(7),1381–1391 (2006).
    • 26  Quintela O, Cruz A, De Castro A, Concheiro M, Lopez-Rivadulla M. Liquid chromatography–electrospray ionisation mass spectrometry for the determination of nine selected benzodiazepines in human plasma and oral fluid. J. Chromatogr. B825,63–71 (2005).
    • 27  Hoizey G, Lamiable D, Trenque T et al. Identification and quantification of 8 sulfonylureas with clinical toxicology interest by liquid chromatography–ion-trap tandem mass spectrometry and library searching. Clin. Chem.51,1666–1672 (2005).
    • 28  Paterson S, Cordero R, Burlinson S. Screening and semi-quantitative analysis of post mortem blood for basic drugs using gas chromatography/ion trap mass spectrometry. J. Chromatogr. B813,323–330 (2004).
    • 29  Pragst F, Herzler M, Erxleben BT. Systematic toxicological analysis by high-performance liquid chromatography with diode array detection (HPLC–DAD). Clin. Chem. Lab. Med.42,1325–1340 (2004).
    • 30  Kratzsch C, Tenberken O, Peters FT, Weber AA, Kraemer T, Maurer HH. Screening, library-assisted identification and validated quantification of 23 benzodiazepines, flumazenil, zaleplone, zolpidem and zopiclone in plasma by liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization. J. Mass Spectrom.39,856–872 (2004).
    • 31  Rivera HM, Walker GS, Sims DN, Stockham PC. Application of liquid chromatography–tandem mass spectrometry to the analysis of benzodiazepines in blood. Eur. J. Mass Spectrom.9,599–607 (2003).
    • 32  Goeringer KE, Raymon L, Christian GD, Logan BK. Postmortem forensic toxicology of selective serotonin reuptake inhibitors: a review of pharmacology and report of 168 cases. J. Forensic Sci.45,633–648 (2000).
    • 33  Drummer OH, Gerostamoulos J. Postmortem drug analysis: analytical and toxicological aspects. Ther. Drug Monit.24,199–209 (2002).
    • 34  Whelpton R. Pharmaceutical analysis/sample preparation. In: Encyclopaedia of Analytical Science (Second Ed.). Elsevier Ltd, 107–116 (2005).
    • 35  Blanchard J, Boyle JO, Wagenen SV. Determination of the partition coefficients, acid dissociation constants and instrinsic solubility of carbenoxolone. J. Pharm. Sci.77,548–552 (1988).
    • 36  Englard S, Seifter S. Precipitation techniques. Methods Enzymol.182,285–306 (1990).
    • 37  Tama CI, Shen JX, Schiller JE, Hayes RN, Clement RP. Determination of a novel thrombin receptor antagonist (SCH 530348) in human plasma: evaluation of ultra performance liquid chromatography tandem mass spectrometry for routine bioanalytical analysis. J. Pharm. Biomed. Anal.55,349–359 (2011).
    • 38  Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography–tandem mass spectrometry. J. Chromatogr. B785,263–275 (2003).
    • 39  Bueters K, Dahlström J, Kvalvågnaes K, Betnér I, Briem S. High-throughput analysis of standardized pharmacokinetic studies in the rat using sample pooling and UPLC–MS/MS. J. Pharm. Biomed. Anal.55,1120–1126 (2011).
    • 40  Biddlecombe RA, Pleasance S. Automated protein precipitation by filtration in the 96-well format. J. Chromatogr. B785,263–275 (1999).
    • 41  Souverain S, Rudaz S, Veuthey J-L. Protein precipitation for the analysis of a drug cocktail in plasma by LC–ESI–MS. J. Pharm. Biomed. Anal.35,913–920 (2004).
    • 42  Ali I, Gupta VK, Aboul-Enein HY, Hussain A. Hyphenation in sample preparation: advancement from the micro to the nano world. J. Sep. Sci.31,2040–2053 (2008).
    • 43  Wille SMR, Lambert WEE. Recent developments in extraction procedures relevant to analytical toxicology. Anal. Bioanal. Chem.388,1381–1391 (2007).
    • 44  Vogeser M, Kirchhoff F. Progress in automation of LC–MS in laboratory medicine. Clin. Biochem.1,4–13 (2011).
    • 45  Raynie DE. Modern extraction techniques. Anal. Chem.78,3997–4003 (2007).
    • 46  Delaunay-Bertoncini N, Hennion MC. Immunoaffinity solid-phase extraction for pharmaceutical and biomedical trace-analysis-coupling with HPLC and CE-perspectives. J. Pharm. Biomed. Anal.34,717–736 (2004).
    • 47  Stevenson D. Immunoaffinity solid-phase extraction. J. Chromatogr. B745,39–48 (2000).
    • 48  Mullett WM. Determination of drugs in biological fluids by direct injection of samples for liquid-chromatographic analysis. J. Biochem. Biophys. Methods70,263–273 (2007).
    • 49  Kataoka H. Recent advances in solid-phase microextraction and related techniques for pharmaceutical and biomedical analysis. Curr. Pharmaceut. Anal.1,65–84 (2005).
    • 50  Henion J, Brewer E, Rule G. Sample preparation for LC–MS/MS: analyzing biological and environmental samples. Anal. Chem.70,650A–656A (1998).
    • 51  Thurman EM, Snavelly K. Advances in solid-phase extraction disks for environmental chemistry. Trends Anal. Chem.19,18 (2000).
    • 52  van Hout MWJ, de Zeeuw RA, de Jong GJ. Coupling device for desorption of drugs from solid-phase extraction-pipette tips and online gas chromatographic analysis. J. Chromatogr. A858,117 (1999).
    • 53  Blomberg L. Two new techniques for sample preparation in bioanalysis: microextraction in packed sorbent (MEPS) and use of a bonded monolith as sorbent for sample preparation in polypropylene tips for 96-well plates. Anal. Bioanal. Chem.393,797–807 (2009).
    • 54  Altun Z. New techniques for sample preparation in analytical chemistry – microextraction in packed syringe (MEPS) and methacrylate based monolithic pipette tips. PhD-Thesis, Karlstad University Press, 4, Karlstad, Sweden (2008).
    • 55  Kitchen CJ, Musson DG, Fisher AL. Column-switching technique for the sensitive determination of ertapenem in human cerebrospinal fluid using liquid chromatography and ultraviolet absorbance detection. J. Chromatogr. B799,9–14 (2004).
    • 56  Amin N, Crescenzi C. Feasibility of an online restricted access material/liquid chromatography/tandem mass spectrometry method in the rapid and sensitive determination of organophosphorus triesters in human blood plasma. J. Chromatogr. B795,245–256 (2003).
    • 57  Holm A, Molander P, Lundanes E, Øvrebø S, Greibrokk T. Fast and sensitive determination of urinary 1-hydroxypyrene by packed capillary column switching liquid chromatography coupled to micro-electrospray time-of-flight mass spectrometry. J. Chromatogr. B794,178–183 (2003).
    • 58  Yu Z, Westerlund D, Boos KS. Determination of methotrexate and its metabolite 7-hydroxymethotrexate by direct injection of human plasma into a column-switching liquid chromatographic system using post-column photochemical reaction with fluorimetric detection. J. Chromatogr. B704,53–62 (1997).
    • 59  Dunn DA, Feygin I. Challenges and solutions to ultra-high-throughput screening assay miniaturization: submicroliter fluid handling. Drug Discov. Today5,84 (2000).
    • 60  Eisert R, Pawliszyn J. Design of automated solid-phase microextraction for trace analysis of organic compounds in aqueous samples. J. Chromatogr. A776,293–303 (1997).
    • 61  Abdel-Rehim M, Andersson M, Portelius E, Norsten-Höög C, Blomberg L. Determination of ropivacaine and its metabolites in human plasma using solid phase microextraction (SPME) and GC–NPD/GC–MS. J. Microcol. Sep.13(8),313–321 (2001).
    • 62  Abdel-Rehim M, Hassan Z, Blomberg L, Hassan M. Determination of busulphan in plasma samples by gas chromatography–mass spectrometry (GC–MS) using online derivatization utilizing solid-phase microextraction (SPME). Therap. Drug Monit.25,400–406 (2003).
    • 63  Zhang Xu, Es-haghi A, Musteata FM, Ouyang G, Pawliszyn J. Quantitative in vivo microsampling for pharmacokinetic studies based on an integrated solid-phase microextraction system. Anal. Chem.79(12),4507–4513 (2007).
    • 64  Vuckovic D, Cudjoe E, Musteata FM, Pawliszyn J. Automated solid-phase microextraction and thin-film microextraction for high-throughput analysis of biological fluids and ligand-receptor binding studies. Nature Protocols5(1),140–161 (2010).
    • 65  Risticevic S, Chen Y, Kudlejova L et al. Protocol for the development of automated high-throughput SPME–GC methods for the analysis of volatile and semivolatile constituents in wine samples. Nature Protocols5(1),162–176 (2010).
    • 66  Lipinski J. Automated solid phase dynamic extraction – extraction of organics using a wall coated syringe needle. Fresenius J. Anal. Chem.369,57–62 (2001).
    • 67  Lachenmeier DW, Kroener L, Musshoff F, Madea B. Application of tandem mass spectrometry combined with gas chromatography and headspace solid-phase dynamic extraction for the determination of drugs of abuse in hair samples. Rapid Commun. Mass Spectrom.5,472–478 (2003).
    • 68  Kataoka H. Recent developments and applications of microextraction techniques in drug analysis. Anal. Bioanal. Chem.396,339–364 (2010).
    • 69  Lenz D, Kröner L, Rothschild MA. Determination of γ-hydroxybutyric acid in serum and urine by headspace solid-phase dynamic extraction combined with gas chromatography–positive chemical ionization mass spectrometry. J. Chromatogr. A1216,4090–4096 (2009).
    • 70  Baltussen B, Sandra P, David F, Cramers C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. J. Microcol. Sep.11,737–747 (1999).
    • 71  Tienpont B, David F, Desmet K, Sandra P. Stir bar sorptive extraction-thermal desorption-capillary GC–MS applied to biological fluids. Anal. Bioanal. Chem.373,46–55 (2002).
    • 72  Meloa LP, Nogueirab AM, Lançasb FM, Queiroz MEC. Polydimethylsiloxane/polypyrrole stir bar sorptive extraction and liquid chromatography (SBSE/LC–UV) analysis of antidepressants in plasma samples. Anal. Chim. Acta633,57–64 (2009).
    • 73  Huang X, Yuan D, Huang B. Determination of steroid sex hormones in urine matrix by stir bar sorptive extraction based on monolithic material and liquid chromatography with diode array detection. Talanta75,172–177 (2008).
    • 74  Prieto A, Basauri O, Rodil R et al. Stir-bar sorptive extraction: a view on method optimisation, novel applications, limitations and potential solutions. J. Chromatogr. A1217,2642–2666 (2010).
    • 75  Abdel-Rehim M. New trend in sample-preparation: online microextraction in packed syringe (MEPS) for LC and GC applications. Part I: determination of local anaesthetics in human plasma samples using MEPS online with GC–MS/MS. J. Chromatogr. B.801,317–321 (2004).
    • 76  Abdel-Rehim M, Altun Z, Blomberg L. New trend in sample-preparation: online microextraction in packed syringe (MEPS) for LC and GC applications. Part II: determination of ropivacaine and its metabolites in human plasma samples using MEPS online with LC–MS/MS. J. Mass Spectr.39,1488–1493 (2004).
    • 77  Altun Z, Abdel-Rehim M, Blomberg L. New trends in sample preparation: on- line microextraction in packed syringe (MEPS) for LC and GC applications. Part III: determination and validation of local anaesthetics in human plasma samples using a cation-exchange sorbent, and MEPS-LC–MS-MS. J. Chromatogr. B813,129–135 (2004).
    • 78  Vita M, Skansen P, Hassan M, Abdel-Rehim M. Development and validation of a liquid chromatography and tandem mass spectrometry method for determination of roscovitine in plasma and urine samples utilizing online sample preparation. J. Chromatogr. B817,303–307 (2005).
    • 79  Abdel-Rehim M, Skansen P, Vita M, Hassan Z, Blomberg L, Hassan M. Microextraction in packed syringe/liquid chromatography/electrospray tandem mass spectrometry (MEPS–LC–MS/MS) for quantification of olomoucine in human plasma samples. Anal. Chim. Acta539,35–39 (2005).
    • 80  El-Beqqali A, Abdel-Rehim M. Determination of methadone in humane urine samples by gas chromatography–mass spectrometry (GC–MS) utilizing microextraction in packed syringe (MEPS) as online sample preparation method. J. Sep. Sci.30,2501–2505 (2007).
    • 81  El-Beqqali A, Kussak A, Abdel-Rehim M. Microextraction in packed syringe/liquid chromatography/electrospray tandem mass spectrometry for quantification of acebutolol and metoprolol in human plasma and urine samples. JLC&RT30,575–586 (2007).
    • 82  Abdel-Rehim M, Askemark Y, Norsten-Höög C, Petterson KJ, Halldin M. Quantification of 4-OH-2, 6-xylidine and its conjugate in human urine samples utilising microextraction in packed syringe online with liquid chromatography and electrospray tandem mass spectrometry (MEPS-LC–MS/MS). J. Liq. Chromatogr. Rel. Technol.29(16),2413–2424 (2006).
    • 83  Abdel-Rehim M, Altun Z, Jagerdeo E, Blomberg L. Drug screening using microextraction in packed syringe (MEPS)/LC–MS utilizing monolithic-based sorbent materia. J. Liq. Chromatogr. Rel. Technol.29(6),829–839 (2006).
    • 84  Abdel-Rehim M, Dahlgren M, Blomberg L. Quantification of ropivacaine and its major metabolites in human urine samples utilizing microextraction in packed syringe online with liquid chromatography–tandem mass spectrometry (MEPS–LC–MS/MS). J. Sep. Sci.29,1658–1661 (2006).
    • 85  Vlčková H, Solichová D, Bláha M, Solich P, Nováková L. Microextraction by packed sorbent as sample preparation step for atorvastatin and its metabolites in biological samples – critical evaluation. J. Pharm. Biomed. Anal.55,301–308 (2011).
    • 86  Saracino MA, Lazzara G, Prugnoli B, Raggi MA. Rapid assays of clozapine and its metabolites in dried blood spots by liquid chromatography and microextraction by packed sorbent procedure. J. Chromatogr A1218,2153–2159 (2011).
    • 87  Lafay F, Vulliet E, Flament-Waton M-M. Contribution of microextraction in packed sorbent for the analysis of cotinine in human urine by GC–MS. Anal. Bioanal. Chem.396,937–941 (2010).
    • 88  Morales-Cid G, Ca´rdenas S, Simonet BM Valca´rcel M. Fully automatic sample treatment by integration of microextraction by packed sorbents into commercial capillary electrophoresis mass spectrometry equipment: application to the determination of fluoroquinolones in urine. Anal. Chem.81,3188–3193 (2009).
    • 89  Miyaguchi H, Iwata YT, Kanamori T, Tsujikawa K, Kuwayama K, Inoue H. Rapid identification and quantification of methamphetamine and amphetamine in hair by gas chromatography/mass spectrometry coupled with micropulverized extraction, aqueous acetylation and microextraction by packed sorbent. J. Chromatogr. A1216,4063–4070 (2009).
    • 90  Abdel-Rehim M. Recent advances in microextraction by packed sorbent for bioanalysis. J. Chromatogr. A1217,2569–2580 (2010).▪ The new online microextraction in packed syringe technique and its application in bioanalysis.
    • 91  Abdel-Rehim M, Hassan Z, Skansen P, Hassan M. Simultaneous determination of busulphan in plasma samples by liquid chromatography–electrospray ionization mass spectrometry utilizing microextraction in packed syringe (MEPS) as online sample preparation method. J. Liq. Chromatogr. Relat. Technol.30,3029–3041 (2007).
    • 92  El-Beqqali A, Kussak A, Abdel-Rehim M. Determination of dopamine and serotonin in human urine samples utilizing microextraction online with liquid chromatography/electrospray tandem mass spectrometry. J. Sep. Sci.30,421–424 (2007).
    • 93  Matysik S, Matysik FM. Microextraction by packed sorbent coupled with gas chromatography-mass spectrometry: application to the determination of metabolites of monoterpenes in small volumes of human urine. Microchim Acta166,109–114 (2009).
    • 94  Anizan S, Bichona E, Monteau F, Cesbron N, Antignac J-P, Le Bizec B. A new reliable sample preparation for high throughput focused steroid profiling by gas chromatography–mass spectrometry. J. Chromatogr. A1217,6652–6660 (2010).
    • 95  Saracino MA, Tallarico K, Raggi MA. Liquid chromatographic analysis of oxcarbazepine and its metabolites in plasma and saliva after a novel microextraction by packed sorbent procedure. Anal. Chem. Acta.661,222–228 (2010).
    • 96  Said R, Pohanka A, Andersson M, Beck O, Abdel-Rehim M. Determination of remifentanil in human plasma by liquid chromatography–tandem mass spectrometry utilizing micro extraction incpacked syringe (MEPS) as sample preparation. J. Chromatogr. B879,815–818 (2011).
    • 97  Altun Z, Blomberg L, Abdel-Rehim M. Increasing sample preparation throughput using monolithic methacrylate polymer as packing material for 96-tip robotic device. J. Liq. Chromatogr. Relat. Technol.29(10),1477 (2006).
    • 98  Altun Z, Hjelmström A, Blomberg L, Abdel-Rehim M. Evaluation of monolithic packed 96-tips for solid-phase extraction of local anesthetics from human plasma for quantitation by liquid chromatography tandem mass spectrometry. J. Liq. Chromatogr. Rel. Technol.31,743 (2008).
    • 99  Altun Z, Hjelmström A, Abdel-Rehim M, Blomberg L. Surface modified polypropylene pipette tips packed with a monolithic plug of adsorbent for highthroughput sample preparation. J. Sep. Sci.30,1964–1972 (2007).
    • 100  Abdel-Rehim M, Persson C, Altun Z, Blomberg L. Evaluation of monolithic packed 96-tips and liquid chromatography–tandem mass spectrometry for extraction and quantification of pindolol and metoprolol in human plasma samples. J. Chromatogr. A1196–1197 (2008).
    • 101  Altun Z, Persson C, Abdel-Rehim M. Monolithic packed 96-tips for bioanalysis applications. J. Chromatogr. A1217,2581–2588 (2010).▪ Good facts about the monolithic packed tips as a high-throughput sample preparation technique and its application in bioanalysis.
    • 102  Pedersen-Bjergaard S, Rasmussen KE. Liquid–liquid–liquid microextraction for sample preparation in biological fluids prior to capillary electrophoresis. Anal. Chem.71,2650–2656 (1999).
    • 103  Leinonena A, Vuorensola K, Lepola L-M et al. Liquid-phase microextraction for sample preparation in analysis of unconjugated anabolic steroids in urine. Anal. Chim. Acta559,166–172 (2006).
    • 104  Rasmussen KE, Pedersen-Bjergaard S, Krogh M, Ugland HG, Grønhaug T. Development of a simple in-vial liquid-phase microextraction device for drug analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography. J. Chromatogr. A873,3–11 (2000).
    • 105  Halvorsen TG, Pedersen-Bjergaard S, Rasmussen KE. Liquid-phase microextraction and capillary electrophoresis of citalopram, an antidepressant drug. J. Chromatogr. A909,87–93 (2001).
    • 106  Leinonena A, Kuuranne T, Kotiahoc T, Kostiainen R. Screening of free 17-alkyl substituted anabolic steroids in human urine by liquid chromatography–electrospray ionization tandem mass spectrometry. Steroids69,101–109 (2004).
    • 107  Kuuranne T, Kotiaho T, Pedersen-Bjergaard S, et al. Feasibility of a liquid-phase microextraction sample clean-up and liquid chromatographic/mass spectrometric screening method for selected anabolic steroid glucuronides in biological samples. J. Mass Spectrom.38,16–26 (2003).
    • 108  Zhao G, Liu JF, Nyman M, Jönsson JÅ. Determination of short-chain fatty acids in serum by hollow fiber supported liquid membrane extraction coupled with gas chromatography. J. Chromatogr. B846,2002–2008 (2007).
    • 109  Zhou J, Zeng P, Cheng ZH, Liu J, Wang FQ, Qian RJ. Application of hollow fiber liquid phase microextraction coupled with high-performance liquid chromatography for the study of the osthole pharmacokinetics in cerebral ischemia hypoperfusion rat plasma. J. Chromator. B (In Press) (2011).
    • 110  Sarafraz-Yazdi A, Amiri A. Liquid-phase microextraction. TrAC29,1–14 (2010).▪▪ An excellent review about liquid-phase microextraction, with the focus on extraction principles, historical development and performance.