We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Recent advances in the application of hydrophilic interaction chromatography for the analysis of biological matrices

    Stijn Hendrickx

    KU Leuven, Department of Pharmaceutical & Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium

    ,
    Erwin Adams

    KU Leuven, Department of Pharmaceutical & Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium

    &
    Deirdre Cabooter

    *Author for correspondence:

    E-mail Address: deirdre.cabooter@pharm.kuleuven.be

    KU Leuven, Department of Pharmaceutical & Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, 3000 Leuven, Belgium

    Published Online:https://doi.org/10.4155/bio.15.200

    Hydrophilic interaction chromatography (HILIC) is being increasingly used for the analysis of hydrophilic compounds in biological matrices. The complexity of biological samples demands adequate sample preparation procedures, specifically adjusted for HILIC analyses. Currently, most bioanalytical assays are performed on bare silica and ZIC-HILIC columns. Trends in HILIC for bioanalysis include smaller particle sizes and miniaturization of the analytical column. For complex biological samples, multidimensional techniques can separate and identify more compounds than 1D separations. The high volatility of the mobile phase, the added separation power and high sensitivity make MS the detection method of choice for bioanalysis using HILIC, although other detectors such as evaporative light scattering detection, charged aerosol detection and nuclear magnetic resonance have been reported.

    References

    • 1 Schapperer E, Daumann H, Lamouche S, Thyroff-Friesinger U, Viel F, Weitschies W. Bioequivalence of Sandoz methylphenidate osmotic-controlled release tablet with Concerta ® (Janssen-Cilag). Pharmacol. Res. Perspect. 3(1), 1–8 (2015).
    • 2 Pellowska M, Stein C, Pohland M et al. Pharmacokinetic properties of MH84, a γ-secretase modulator with PPARγ agonistic activity. J. Pharm. Biomed. Anal. 102, 417–424 (2015).
    • 3 Mach AJ, Adeyiga OB, Di Carlo D. Microfluidic sample preparation for diagnostic cytopathology. Lab Chip. 13(6), 1011–1026 (2013).
    • 4 Montesano C, Simeoni MC, Curini R, Sergi M, Lo Sterzo C, Compagnone D. Determination of illicit drugs and metabolites in oral fluid by microextraction on packed sorbent coupled with LC–MS/MS. Anal. Bioanal. Chem. 407(13), 3647–3658 (2015).
    • 5 Balcells G, Pozo OJ, Esquivel A et al. Screening for anabolic steroids in sports: analytical strategy based on the detection of phase I and phase II intact urinary metabolites by liquid chromatography tandem mass spectrometry. J. Chromatogr. A. 1389, 65–75 (2015).
    • 6 Linden JC, Lawhead CL. Liquid chromatography of saccharides. J. Chromatogr. A. 105, 125–133 (1975).
    • 7 Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. 499, 177–196 (1990).
    • 8 Buszewski B, Noga S. Hydrophilic interaction liquid chromatography (HILIC)-a powerful separation technique. Anal. Bioanal. Chem. 402(1), 231–247 (2012).
    • 9 Hsieh Y, Chen J. Simultaneous determination of nicotinic acid and its metabolites using hydrophilic interaction chromatography with tandem mass spectrometry. Rapid Commun. Mass Spectrom. 19(21), 3031–3036 (2005).
    • 10 Olsen BA. Hydrophilic interaction chromatography using amino and silica columns for the determination of polar pharmaceuticals and impurities. J. Chromatogr. A. 913(1–2), 113–122 (2001).
    • 11 Tao Y, Chen D, Yu H et al. Simultaneous determination of 15 aminoglycoside(s) residues in animal derived foods by automated solid-phase extraction and liquid chromatography-tandem mass spectrometry. Food Chem. 135(2), 676–683 (2012).
    • 12 D'Avila FB, Pereira AG, Salazar FR et al. Determination of cocaine/crack biomarkers in colostrum by LC–MS following protein precipitation. J. Pharm. Biomed. Anal. 103, 67–72 (2015).
    • 13 Langrock T, Czihal P, Hoffmann R. Amino acid analysis by hydrophilic interaction chromatography coupled on-line to electrospray ionization mass spectrometry. Amino Acids 30(3), 291–297 (2006).
    • 14 Boersema PJ, Divecha N, Heck AJR, Mohammed S. Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J. Proteome Res. 6(3), 937–946 (2007).
    • 15 Bernal J, Ares AM, Pól J, Wiedmer SK. Hydrophilic interaction liquid chromatography in food analysis. J. Chromatogr. A. 1218(42), 7438–7452 (2011).
    • 16 Mountain RD. Molecular dynamics simulation of water-acetonitrile mixtures in a silica slit. J. Phys. Chem. C. 117(8), 3923–3929 (2013).
    • 17 Melnikov SM, Höltzel A, Seidel-Morgenstern A, Tallarek U. A molecular dynamics study on the partitioning mechanism in hydrophilic interaction chromatography. Angew. Chemie. Int. Ed. Engl. 51(25), 6251–6254 (2012).
    • 18 Hemström P, Irgum K. Hydrophilic interaction chromatography. J. Sep. Sci. 29(12), 1784–1821 (2006).
    • 19 Jandera P. Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal. Chim. Acta 692(1–2), 1–25 (2011).
    • 20 Guo Y, Gaiki S. Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J. Chromatogr. A. 1218(35), 5920–5938 (2011).
    • 21 Gritti F, Höltzel A, Tallarek U, Guiochon G. The relative importance of the adsorption and partitioning mechanisms in hydrophilic interaction liquid chromatography. J. Chromatogr. A. 1376, 112–25 (2015).
    • 22 Shou WZ, Chen YL, Eerkes A et al. Ultrafast liquid chromatography/tandem mass spectrometry bioanalysis of polar analytes using packed silica columns. Rapid Commun. Mass Spectrom. 16(17), 1613–1621 (2002).
    • 23 Kahsay G, Song H, Van Schepdael A, Cabooter D, Adams E. Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics. J. Pharm. Biomed. Anal. 87, 142–154 (2014).
    • 24 McCalley DV. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds? J. Chromatogr. A. 1171(1–2), 46–55 (2007).
    • 25 Jin Y, Liang T, Fu Q et al. Fingerprint analysis of Ligusticum chuanxiong using hydrophilic interaction chromatography and reversed-phase liquid chromatography. J Chromatogr. A. 1216, 2136–2141 (2009).
    • 26 Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-dimensional liquid chromatography. Anal. Chem. 77(19), 6426–6434 (2005).
    • 27 Simon R, Enjalbert Q, Biarc J, Lemoine J, Salvador A. Evaluation of hydrophilic interaction chromatography (HILIC) versus C18 reversed-phase chromatography for targeted quantification of peptides by mass spectrometry. J. Chromatogr. A. 1264, 31–39 (2012).
    • 28 Periat A, Boccard J, Veuthey J-L, Rudaz S, Guillarme D. Systematic comparison of sensitivity between hydrophilic interaction liquid chromatography and reversed phase liquid chromatography coupled with mass spectrometry. J. Chromatogr. A. 1312, 49–57 (2013).
    • 29 Jian W, Edom RW, Xu Y, Weng N. Recent advances in application of hydrophilic interaction chromatography for quantitative bioanalysis. J. Sep. Sci. 33(6–7), 681–697 (2010).
    • 30 Xu RN, Fan L, Rieser MJ, El-Shourbagy TA. Recent advances in high-throughput quantitative bioanalysis by LC–MS/MS. J. Pharm. Biomed. Anal. 44(2), 342–355 (2007).
    • 31 Ruta J, Rudaz S, McCalley DV, Veuthey J-L, Guillarme D. A systematic investigation of the effect of sample diluent on peak shape in hydrophilic interaction liquid chromatography. J. Chromatogr. A. 1217(52), 8230–8240 (2010).
    • 32 Marclay F, Grata E, Perrenoud L, Saugy M. A one-year monitoring of nicotine use in sport: frontier between potential performance enhancement and addiction issues. Forensic Sci. Int. 213(1–3), 73–84 (2011).
    • 33 Heinig K, Wirz T, Yuan M, Tingler M, Mylott W. An improved LC–MS/MS method for the determination of taspoglutide in plasma and urine using orthogonal HILIC-RP column switching, ultra-performance LC separation and “wrong-way-round” electrospray ionization. Biomed. Chromatogr. 25(11), 1215–1221 (2011).
    • 34 Vilhena RDO, Pontes FLD, Marson BM et al. A new HILIC-MS/MS method for the simultaneous analysis of carbidopa, levodopa, and its metabolites in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 967, 41–49 (2014).
    • 35 Zhou Z, Wu X, Wei Q et al. Development and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the simultaneous determination of five first-line antituberculosis drugs in plasma. Anal. Bioanal. Chem. 405(19), 6323–6335 (2013).
    • 36 Falta T, Koellensperger G, Standler A, Buchberger W, Mader RM, Hann S. Quantification of cisplatin, carboplatin and oxaliplatin in spiked human plasma samples by ICP-SFMS and hydrophilic interaction liquid chromatography (HILIC) combined with ICP-MS detection. J. Anal. At. Spectrom. 24(10), 1336–1342 (2009).
    • 37 Cho HE, Ahn SY, Son IS et al. Determination and validation of tetrodotoxin in human whole blood using hydrophilic interaction liquid chromatography-tandem mass spectroscopy and its application. Forensic Sci. Int. 217(1–3), 76–80 (2012).
    • 38 Holder BR, McNaney CA, Luchetti D, Schaeffer E, Drexler DM. Bioanalysis of acetylcarnitine in cerebrospinal fluid by HILIC-mass spectrometry. Biomed. Chromatogr. 29, 1375–1379 (2015).
    • 39 Liu A, Coleman SP. Determination of metformin in human plasma using hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877(29), 3695–3700 (2009).
    • 40 Baughman TM, Wright WL, Hutton KA. Determination of zanamivir in rat and monkey plasma by positive ion hydrophilic interaction chromatography (HILIC)/tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 852(1–2), 505–511 (2007).
    • 41 Zeng W, Xu Y, Constanzer M, Woolf EJ. Determination of sitagliptinin human plasma using protein precipitation and tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 878(21), 1817–1823 (2010).
    • 42 Apostolou C, Kousoulos C, Dotsikas Y, Loukas Y. Comparison of hydrophilic interaction and reversed-phase liquid chromatography coupled with tandem mass spectrometric detection for the determination of three pharmaceuticals in human plasma. Biomed. Chromatogr. 22(10), 1139–1402 (2008).
    • 43 Stack BC, Ye J, Willis R, Hubbard M, Hendrickson HP. Determination of oral bioavailability of fusaric acid in male Sprague-Dawley rats. Drugs R. D. 14(2), 139–145 (2014).
    • 44 Ahmad Shafeeque, Kalra Harsh, Gupta Amit, Raut Bharat, Hussain Arshad, Rahman MA. HybridSPE: a novel technique to reduce phospholipid-based matrix effect in LC-ESI-MS Bioanalysis. J. Pharm. Bioallied Sci. 4(4), 267–275 (2012).
    • 45 Eerkes A, Shou WZ, Naidong W. Liquid/liquid extraction using 96-well plate format in conjunction with hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the analysis of fluconazole in human plasma. J. Pharm. Biomed. Anal. 31(5), 917–928 (2003).
    • 46 Song Q, Naidong W. Analysis of omeprazole and 5-OH omeprazole in human plasma using hydrophilic interaction chromatography with tandem mass spectrometry (HILIC-MS/MS) - Eliminating evaporation and reconstitution steps in 96-well liquid/liquid extraction. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 830(1), 135–142 (2006).
    • 47 Xue YJ, Liu J, Unger S. A 96-well single-pot liquid-liquid extraction, hydrophilic interaction liquid chromatography-mass spectrometry method for the determination of muraglitazar in human plasma. J. Pharm. Biomed. Anal. 41(3), 979–988 (2006).
    • 48 Johnson CR, Zhang B, Fantauzzi P, Hocker M, Yager KM. Libraries of N-alkylaminoheterocycles from nucleophilic aromatic substitution with purification by solid supported liquid extraction. Tetrahedron 54(16), 4097–4106 (1998).
    • 49 Pan J, Jiang X, Chen YL. Automatic supported liquid extraction (SLE) coupled with HILIC-MS/MS: an application to method development and validation of erlotinib in human plasma. Pharmaceutics 2(2), 105–118 (2010).
    • 50 Ramesh B, Manjula N, Ramakrishna S, Devi PS. Direct injection HILIC–MS/MS analysis of darunavir in rat plasma applying supported liquid extraction. J. Pharm. Anal. 5(1), 43–50 (2015).
    • 51 Novakova L. UHPLC in modern bioanalysis. In: UHPLC in Life Sciences. Guillarme D, Veuthey JL (Eds). Royal Society of Chemistry, Cambridge, UK, 237–277 (2012).
    • 52 Roen BT, Sellevag SR, Lundanes E. Quantification of nerve agent biomarkers in human serum and urine. Anal. Chem. 86, 11833–11840 (2014).
    • 53 Petteys BJ, Graham KS, Parnás ML, Holt C, Frank EL. Performance characteristics of an LC–MS/MS method for the determination of plasma metanephrines. Clin. Chim. Acta 413(19–20), 1459–1465 (2012).
    • 54 Song Q, Junga H, Tang Y et al. Automated 96-well solid phase extraction and hydrophilic interaction liquid chromatography–tandem mass spectrometric method for the analysis of cetirizine (ZYRTEC) in human plasma - With emphasis on method ruggedness. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 814(1), 105–114 (2005).
    • 55 Lindegårdh N, Hanpithakpong W, Wattanagoon Y, Singhasivanon P, White NJ, Day NPJ. Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of oseltamivir and its metabolite oseltamivir carboxylate in plasma, saliva and urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 859(1), 74–83 (2007).
    • 56 Cohen S, Lhuillier F, Mouloua Y, Vignal B, Favetta P, Guitton J. Quantitative measurement of propofol and in main glucuroconjugate metabolites in human plasma using solid phase extraction-liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 854(1–2), 165–172 (2007).
    • 57 Rogeberg M, Malerod H, Roberg-Larsen H, Aass C, Wilson SR. On-line solid phase extraction-liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems. J. Pharm. Biomed. Anal. 87, 120–129 (2014).
    • 58 Mihailova A, Malerød H, Wilson SR et al. Improving the resolution of neuropeptides in rat brain with on-line HILIC-RP compared with on-line SCX-RP. J. Sep. Sci. 31(3), 459–467 (2008).
    • 59 Álvarez-Sánchez B, Priego-Capote F, Mata-Granados JM, Luque de Castro MD. Automated determination of folate catabolites in human biofluids (urine, breast milk and serum) by on-line SPE-HILIC-MS/MS. J. Chromatogr. A. 1217(28), 4688–4695 (2010).
    • 60 Kopp EK, Sieber M, Kellert M, Dekant W. Rapid and sensitive HILIC-ESI-MS/MS quantitation of polar metabolites of acrylamide in human urine using column switching with an online trap column. J. Agric. Food Chem. 56(21), 9828–9834 (2008).
    • 61 Johnsen E, Leknes S, Wilson SR, Lundanes E. Liquid chromatography-mass spectrometry platform for both small neurotransmitters and neuropeptides in blood, with automatic and robust solid phase extraction. Sci. Rep. 5, 9308 (2015).
    • 62 Vlčková H, Janák J, Gottvald T, Trejtnar F, Solich P, Nováková L. How to address the sample preparation of hydrophilic compounds: determination of entecavir in plasma and plasma ultrafiltrate with novel extraction sorbents. J. Pharm. Biomed. Anal. 88, 377–344 (2014).
    • 63 Abdel-Rehim M. Recent advances in microextraction by packed sorbent for bioanalysis. J. Chromatogr. A. 1217(16), 2569–2580 (2010).
    • 64 Altun Z, Abdel-Rehim M, Blomberg LG. New trends in sample preparation: on-line microextraction in packed syringe (MEPS) for LC and GC applications: part III: determination and validation of local anaesthetics in human plasma samples using a cation-exchange sorbent, and MEPS-LC–MS-MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 813(1–2), 129–135 (2004).
    • 65 Magiera S, Baranowski J. Determination of carnitine and acylcarnitines in human urine by means of microextraction in packed sorbent and hydrophilic interaction chromatography–ultra-high-performance liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 109, 171–176 (2015).
    • 66 Vuckovic D, Pawliszyn J. Systematic evaluation of solid-phase microextraction coatings for untargeted metabolomic profiling of biological fluids by liquid chromatography-mass spectrometry. Anal. Chem. 83(6), 1944–1954 (2011).
    • 67 Yeung JCY, de Lannoy I, Gien B et al. Semi-automated in vivo solid-phase microextraction sampling and the diffusion-based interface calibration model to determine the pharmacokinetics of methoxyfenoterol and fenoterol in rats. Anal. Chim. Acta 742, 37–44 (2012).
    • 68 Miller IV JH, Poston PA, Karnes HT. Direct analysis of dried blood spots by in-line desorption combined with high-resolution chromatography and mass spectrometry for quantification of maple syrup urine disease biomarkers leucine and isoleucine. Anal. Bioanal. Chem. 400(1), 237–244 (2011).
    • 69 Zheng MM, Zhang MY, Feng YQ. Polymer monolith microextraction online coupled to hydrophilic interaction chromatography/mass spectrometry for analysis of β2-agonist in human urine. J. Sep. Sci. 32(11), 1965–1974 (2009).
    • 70 Rao RN, Maurya PK, Khalid S. Development of a molecularly imprinted polymer for selective extraction followed by liquid chromatographic determination of sitagliptin in rat plasma and urine. Talanta 85(2), 950–957 (2011).
    • 71 Quintela O, Lendoiro E, Cruz A et al. Hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) determination of cocaine and its metabolites benzoylecgonine, ecgonine methyl ester, and cocaethylene in hair samples. Anal. Bioanal. Chem. 396(5), 1703–1712 (2010).
    • 72 Kloos DP, Lingeman H, Niessen WMA, Deelder AM, Giera M, Mayboroda OA. Evaluation of different column chemistries for fast urinary metabolic profiling. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 927, 90–96 (2013).
    • 73 Pucci V, Giuliano C, Zhang R et al. HILIC LC–MS for the determination of 2′-C-methyl-cytidine-triphosphate in rat liver. J. Sep. Sci. 32(9), 1275–1283 (2009).
    • 74 Kanamori T, Isokawa M, Funatsu T, Tsunoda M. Development of analytical method for catechol compounds in mouse urine using hydrophilic interaction liquid chromatography with fluorescence detection. J. Chromatogr. B. 985, 142–148 (2015).
    • 75 Nováková L, Gottvald T, Vlčková H, Trejtnar F, Mandíková J, Solich P. Highly sensitive fast determination of entecavir in rat urine by means of hydrophilic interaction chromatography-ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 1259, 237–243 (2012).
    • 76 Teleki A, Sánchez-Kopper A, Takors R. Alkaline conditions in hydrophilic interaction liquid chromatography for intracellular metabolite quantification using tandem mass spectrometry. Anal. Biochem. 475, 4–13 (2015).
    • 77 Tomšíková H, Solich P, Nováková L. Sample preparation and UHPLC-FD analysis of pteridines in human urine. J. Pharm. Biomed. Anal. 95, 265–272 (2014).
    • 78 McCalley DV, Neue UD. Estimation of the extent of the water-rich layer associated with the silica surface in hydrophilic interaction chromatography. J. Chromatogr. A. 1192(2), 225–229 (2008).
    • 79 Mercier T, Tissot F, Gardiol C et al. High-throughput hydrophilic interaction chromatography coupled to tandem mass spectrometry for the optimized quantification of the anti-Gram-negatives antibiotic colistin A/B and its pro-drug colistimethate. J. Chromatogr. A. 1369, 52–63 (2014).
    • 80 Nováková L, Havlíková L, Vlčková H. Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC. TrAC Trends Anal. Chem. 63, 55–64 (2014).
    • 81 Zhang G, Walker AD, Lin Z et al. Strategies for quantitation of endogenous adenine nucleotides in human plasma using novel ion-pair hydrophilic interaction chromatography coupled with tandem mass spectrometry. J. Chromatogr. A. 1325, 129–136 (2014).
    • 82 Siakkou E, Wilbanks SM, Jameson GNL. Simplified cysteine dioxygenase activity assay allows simultaneous quantitation of both substrate and product. Anal. Biochem. 405(1), 127–131 (2010).
    • 83 Van Damme T, Lachová M, Lynen F, Szucs R, Sandra P. Solid-phase extraction based on hydrophilic interaction liquid chromatography with acetone as eluent for eliminating matrix effects in the analysis of biological fluids by LC–MS. Anal. Bioanal. Chem. 406(2), 401–407 (2014).
    • 84 Ismaiel OA, Zhang T, Jenkins RG, Karnes HT. Investigation of endogenous blood plasma phospholipids, cholesterol and glycerides that contribute to matrix effects in bioanalysis by liquid chromatography/mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 878(31), 3303–3316 (2010).
    • 85 Chauve B, Guillarme D, Cléon P, Veuthey JL. Evaluation of various HILIC materials for the fast separation of polar compounds. J. Sep. Sci. 33(6–7), 752–764 (2010).
    • 86 Liu J, Wang L, Hu W, Chen X, Zhong D. Development of a UHPLC–MS/MS method for the determination of plasma histamine in various mammalian species. J. Chromatogr. B. 971, 35–42 (2014).
    • 87 Wang S, Wu H, Huang X et al. Determination of N-methylcytisine in rat plasma by UPLC–MS/MS and its application to pharmacokinetic study. J. Chromatogr. B. 990, 118–124 (2015).
    • 88 Kahsay G, Broeckhoven K, Adams E, Desmet G, Cabooter D. Kinetic performance comparison of fully and superficially porous particles with a particle size of 5 μm: Intrinsic evaluation and application to the impurity analysis of griseofulvin. Talanta 122, 122–129 (2014).
    • 89 Jaisson S, Gorisse L, Pietrement C, Gillery P. Quantification of plasma homocitrulline using hydrophilic interaction liquid chromatography (HILIC) coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 402(4), 1635–1641 (2012).
    • 90 Peng M, Liu L, Jiang M et al. Measurement of free carnitine and acylcarnitines in plasma by HILIC-ESI-MS/MS without derivatization. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 932, 12–18 (2013).
    • 91 Kong N, Yi R, Zhao S et al. Development and validation of a hydrophilic interaction liquid chromatography with tandem mass spectrometry method for the simultaneous detection and quantification of etilefrine and oxilofrine in equine blood plasma and urine. J. Sep. Sci. 37(21), 3015–3023 (2014).
    • 92 Sneekens EJ, Rieux L, Swart R. Nano LC: principles, evolution, and state-of-the-art of the technique. LCGC North America 29(10), 926e34 (2011).
    • 93 Mechref Y, Novotny MV. Miniaturized separation techniques in glycomic investigations. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 841(1–2), 65–78 (2006).
    • 94 De Mello AJ, Beard N. Dealing with real samples: sample pre-treatment in microfluidic systems. Lab Chip 3(1), 11–19 (2003).
    • 95 Vyawahare S, Griffiths AD, Merten CA. Miniaturization and parallelization of biological and chemical assays in microfluidic devices. Chem. Biol. 17(10), 1052–1065 (2010).
    • 96 Soltani S, Jouyban S. Biological sample preparation: attempts on productivity increasing in bioanalysis. Bioanalysis 6(12), 1691–1710 (2014).
    • 97 Aturki Z, D'Orazio G, Rocco A, Si-Ahmed K, Fanali S. Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode. Anal. Chim. Acta 685(1), 103–110 (2011).
    • 98 Wuhrer M, Deelder AM. Negative-mode MALDI-TOF/TOF-MS of oligosaccharides labeled with 2-aminobenzamide. Anal. Chem. 77(21), 6954–6959 (2005).
    • 99 Mauko L, Pelzing M, Dolman S et al. Zwitterionic-type hydrophilic interaction nano-liquid chromatography of complex and high mannose glycans coupled with electrospray ionisation high resolution time of flight mass spectrometry. J. Chromatogr. A. 1218(37), 6419–6425 (2011).
    • 100 Zauner G, Deelder AM, Wuhrer M. Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis 32(24), 3456–3466 (2011).
    • 101 Wuhrer M, de Boer AR, Deelder AM. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom. Rev. 28, 192–206 (2009).
    • 102 Tousi F, Bones J, Hancock WS, Hincapie M. Differential chemical derivatization integrated with chromatographic separation for analysis of isomeric sialylated N-glycans: a nano-hydrophilic interaction liquid chromatography-MS platform. Anal. Chem. 85(17), 8421–8428 (2013).
    • 103 Luo Q, Rejtar T, Wu SL, Karger BL. Hydrophilic interaction 10 μm I.D. porous layer open tubular columns for ultratrace glycan analysis by liquid chromatography-mass spectrometry. J. Chromatogr. A. 1216(8), 1223–1231 (2009).
    • 104 Ríos Á, Zougagh M, Avila M. Miniaturization through lab-on-a-chip: utopia or reality for routine laboratories? A review. Anal. Chim. Acta 740, 1–11 (2012).
    • 105 Zhao C, Wu Z, Xue G et al. Ultra-high capacity liquid chromatography chip/quadrupole time-of-flight mass spectrometry for pharmaceutical analysis. J. Chromatogr. A. 1218(23), 3669–3674 (2011).
    • 106 Andrews GL, Simons BL, Young JB, Hawkridge AM, Muddiman DC. Performance characteristics of a new hybrid triple quadrupole time-of-flight tandem mass spectrometry. Anal. Chem. 83(13), 5442–5446 (2011).
    • 107 Staples GO, Bowman MJ, Costello CE et al. A chip-based amide-HILIC LC/MS platform for glycosaminoglycan glycomics profiling. Proteomics 9(3), 686–695 (2009).
    • 108 Staples GO, Naimy H, Yin H et al. Improved hydrophilic interaction chromatography LC/MS of heparinoids using a chip with postcolumn makeup flow. Anal. Chem. 82(2), 516–522 (2010).
    • 109 Huang Y, Shi X, Yu X et al. Improved liquid chromatography-MS/MS of heparan sulfate oligosaccharides via chip-based pulsed makeup flow. Anal. Chem. 83(21), 8222–8229 (2011).
    • 110 Yin H, Killeen K. The fundamental aspects and applications of Agilent HPLC-Chip. J. Sep. Sci. 30(10), 1427–1434 (2007).
    • 111 Lísa M, Cífková E, Holčapek M. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A. 1218(31), 5146–5156 (2011).
    • 112 Wang S, Li J, Shi X, Qiao L, Lu X, Xu G. A novel stop-flow two-dimensional liquid chromatography-mass spectrometry method for lipid analysis. J. Chromatogr. A. 1321, 65–72 (2013).
    • 113 Ling YS, Liang HJ, Lin MH et al. Two-dimensional LC–MS/MS to enhance ceramide and phosphatidylcholine species profiling in mouse liver. Biomed. Chromatogr. 28(9), 1284–1293 (2014).
    • 114 Gilar M, Yu Y-Q, Ahn J et al. Characterization of glycoprotein digests with hydrophilic interaction chromatography and mass spectrometry. Anal. Biochem. 417(1), 80–88 (2011).
    • 115 Di Palma S, Boersema PJ, Heck AJR, Mohammed S. Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis. Anal. Chem. 83(9), 3440–3447 (2011).
    • 116 Di Palma S, Mohammed S, Heck AJR. ZIC-cHILIC as a fractionation method for sensitive and powerful shotgun proteomics. Nat. Protoc. 7(11), 2041–2055 (2012).
    • 117 Liu A, Tweed J, Wujcik CE. Investigation of an on-line two-dimensional chromatographic approach for peptide analysis in plasma by LC–MS-MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877(20–21), 1873–1881 (2009).
    • 118 Zhao Y, Kong RPW, Li G et al. Fully automatable two-dimensional hydrophilic interaction liquid chromatography-reversed phase liquid chromatography with online tandem mass spectrometry for shotgun proteomics. J. Sep. Sci. 35(14), 1755–1763 (2012).
    • 119 Appiah-Amponsah E, Owusu-Sarfo K, Ye T, Gowda GAN, Raftery D. Combining hydrophilic interaction chromatography (HILIC) and isotope tagging for off-Line LC-NMR applications in metabolite analysis. Metabolites 3(3), 575–591 (2013).
    • 120 Fairchild JN, Horvath K, Gooding JR, Campagna SR, Guiochon G. Two-dimensional liquid chromatography/mass spectrometry/mass spectrometry separation of water-soluble metabolites. J. Chromatogr. A. 1217(52), 8161–8166 (2010).
    • 121 García-Gómez D, Rodríguez-Gonzalo E, Carabias-Martínez R. Design and development of a two-dimensional system based on hydrophilic and reversed-phase liquid chromatography with on-line sample treatment for the simultaneous separation of excreted xenobiotics and endogenous metabolites in urine. Biomed. Chromatogr. 29(8), 1190–1196 (2015).
    • 122 Cabooter D, Choikhet K, Lestremau F, Dittmann M, Desmet G. Towards a generic variable column length method development strategy for samples with a large variety in polarity. J. Chromatogr. A. 1372, 174–186 (2014).
    • 123 Boersema PJ, Mohammed S, Heck AJR. Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Anal. Bioanal. Chem. 391(1), 151–159 (2008).
    • 124 Cífková E, Holčapek M, Lísa M. Nontargeted lipidomic characterization of porcine organs using hydrophilic interaction liquid chromatography and off-line two-dimensional liquid chromatography-electrospray ionization mass spectrometry. Lipids 48(9), 915–928 (2013).
    • 125 Ismaiel OA, Jenkins RG. Development and optimization of on-line 2-dimensional chromatographic approaches for eliminating matrix effects and improving bioanalysis of peptides in human plasma using UHPLC–MS/MS. Drug Test. Anal. 6(5), 415–425 (2014).
    • 126 Simon R, Passeron S, Lemoine J, Salvador A. Hydrophilic interaction liquid chromatography as second dimension in multidimensional chromatography with an anionic trapping strategy: application to prostate-specific antigen quantification. J. Chromatogr. A. 1354, 75–84 (2014).
    • 127 Thomas A, Déglon J, Steimer T, Mangin P, Daali Y, Staub C. On-line desorption of dried blood spots coupled to hydrophilic interaction/reversed-phase LC/MS/MS system for the simultaneous analysis of drugs and their polar metabolites. J. Sep. Sci. 33(6–7), 873–879 (2010).
    • 128 D'Attoma A, Grivel C, Heinisch S. On-line comprehensive two-dimensional separations of charged compounds using reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography. Part I: orthogonality and practical peak capacity considerations. J. Chromatogr. A. 1262, 148–159 (2012).
    • 129 Eeltink S, Dolman S, Vivo-Truyols G et al. Selection of column dimensions and gradient conditions to maximize the peak-production rate in comprehensive off-line two-dimensional liquid chromatography using monolithic columns. Anal. Chem. 82(16), 7015–7020 (2010).
    • 130 Dugo P, Fawzy N, Cichello F, Cacciola F, Donato P, Mondello L. Stop-flow comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection for phospholipid analysis. J. Chromatogr. A. 1278, 46–53 (2013).
    • 131 Naidong W. Bioanalytical liquid chromatography tandem mass spectrometry methods on underivatized silica columns with aqueous/organic mobile phases. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 796(2), 209–224 (2003).
    • 132 Xu RN, Rieser MJ, El-Shourbagy TA. Bioanalytical hydrophilic interaction chromatography: recent challenges, solutions and applications. Bioanalysis 1(1), 239–253 (2009).
    • 133 Feng S, Zhao Q, Jiang J, Hu P. Determination of phenylephrine in human plasma using ultra-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 915–916, 28–32 (2013).
    • 134 Tsikas D, Schmidt M, Böhmer A, Zoerner AA, Gutzki FM, Jordan J. UPLC–MS/MS measurement of S-nitrosoglutathione (GSNO) in human plasma solves the S-nitrosothiol concentration enigma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 927, 147–157 (2013).
    • 135 Isaguirre AC, Olsina RA, Martinez LD, Lapierre AV, Cerutti S. Rapid and sensitive HILIC-MS/MS analysis of carnitine and acetylcarnitine in biological fluids. Anal. Bioanal. Chem. 405(23), 7397–7404 (2013).
    • 136 Gray N, Heaton J, Musenga A, Cowan DA, Plumb RS, Smith NW. Comparison of reversed-phase and hydrophilic interaction liquid chromatography for the quantification of ephedrines using medium-resolution accurate mass spectrometry. J. Chromatogr. A. 1289, 37–46 (2013).
    • 137 Kolmonen M, Leinonen A, Kuuranne T, Pelander A, Ojanperä I. Hydrophilic interaction liquid chromatography and accurate mass measurement for quantification and confirmation of morphine, codeine and their glucuronide conjugates in human urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 878(29), 2959–2966 (2010).
    • 138 Horie K, Kamakura T, Ikegami T et al. Hydrophilic interaction chromatography using a metre-scale monolithic silica capillary column for proteomics LC–MS. Anal. Chem. 86, 3817–3824 (2014).
    • 139 Cifkova E, Holcapek M, Lisa M et al. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal Chem. 84(22), 10064–10070 (2012).
    • 140 Losito I, Patruno R, Conte E, Cataldi TRI, Megli FM, Palmisano F. Phospholipidomics of human blood microparticles. Anal. Chem. 85(13), 6405–6413 (2013).
    • 141 Giménez E, Balmaña M, Figueras J et al. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis. Anal. Chim. Acta 866, 59–68 (2015).
    • 142 Shi Y, Xu X, Fang M et al. Quantitative hydrophilic interaction chromatography–mass spectrometry analysis of N-acetylneuraminic acid and N-acetylmannosamine in human plasma. J. Chromatogr. B. 1000, 105–111 (2015).
    • 143 Wang PG, He W. Hydrophilic Interacion Liquid Chromatography (HILIC) and Advanced Applications. CRC Press, Boca Raton, FL, USA, 477–485 (2011).
    • 144 Godoy-Ramos R, Novoa-Gundel P, Jara-Vasquez P, Lamperti-Fernandez L, Gomez-Gaete C. NP/HILIC-ELSD separation of phospholipid classes and application to preliminary analysis of plasma low density lipoproteins. J. Liq. Chromatogr. Relat. Technol. 38(2), 243–250 (2014).
    • 145 Mitchell CR, Bao Y, Benz NJ, Zhang S. Comparison of the sensitivity of evaporative universal detectors and LC/MS in the HILIC and the reversed-phase HPLC modes. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877(32), 4133–4139 (2009).
    • 146 Jia S, Park JH, Lee J, Kwon SW. Comparison of two aerosol-based detectors for the analysis of gabapentin in pharmaceutical formulations by hydrophilic interaction chromatography. Talanta 85(5), 2301–2306 (2011).
    • 147 Almeling S, Ilko D, Holzgrabe U. Charged aerosol detection in pharmaceutical analysis. J. Pharm. Biomed. Anal. 69, 50–63 (2012).
    • 148 Kumar A, Hart JP, McCalley DV. Determination of catecholamines in urine using hydrophilic interaction chromatography with electrochemical detection. J. Chromatogr. A. 1218(25), 3854–3861 (2011).
    • 149 Bergeron A, Garofolo F. Importance of matrix effects in LC–MS/MS bioanalysis. Bioanalysis. 5(19), 2331–2332 (2013).
    • 150 Hsieh Y. Potential of HILIC-MS in quantitative bioanalysis of drugs and drug metabolites. J. Sep. Sci. 31(9), 1481–1491 (2008).
    • 151 Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Anal. Chem. 75(13), 3019–3030 (2003).
    • 152 Bonfiglio R, Bonfiglio R, King R et al. The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun. Mass Spectrom. 13(12), 1175–1185 (1999).
    • 153 Hsieh Y, Chintala M, Mei H et al. Quantitative screening and matrix effect studies of drug discovery compounds in monkey plasma using fastgradient liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 15(24), 2481–2487 (2001).
    • 154 Ekdahl A, Johansson MC, Ahnoff M. Tracing and separating plasma components causing matrix effects in hydrophilic interaction chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 923–924, 83–91 (2013).
    • 155 Mess J-N, Côté C, Bergeron A, Furtado M, Garofolo F. Selection of HILIC columns to handle matrix effect due to phospholipids. Bioanalysis 1(1), 57–62 (2009).
    • 156 Tan B, Negahban A, McDonald T, Zhang Y, Holliman C. Utilization of hydrophilic-interaction LC to minimize matrix effects caused by phospholipids. Bioanalysis 4(16), 2049–2058 (2012).
    • 157 Vigliano M, Bianchera A. Determination of hyaluronic acid in a chitosan-based formulation by RP C18 and HILIC LC – ESI-MS: an evaluation of matrix effect. Chromatographia 76(23–24), 1761–1766 (2013).