We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Antitumoral activity of 1,2-diaminocyclohexane derivatives in breast, colon and skin human cancer cells

    Fátima Morales

    Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Granada 18071, Spain

    ,
    Alberto Ramírez

    Instituto de Biopatología y Medicina Regenerativa (IBIMER), Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Granada 18071, Spain

    Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales y de la Salud, Jaén 23071, Spain

    ,
    Cynthia Morata-Tarifa

    Instituto de Biopatología y Medicina Regenerativa (IBIMER), Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Granada 18071, Spain

    Instituto Biosanitario de Granada (ibs.GRANADA), Hospitales Universitarios de Granada-Universidad de Granada, Granada 18071, Spain

    ,
    Saúl A Navarro

    Instituto de Biopatología y Medicina Regenerativa (IBIMER), Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Granada 18071, Spain

    Instituto Biosanitario de Granada (ibs.GRANADA), Hospitales Universitarios de Granada-Universidad de Granada, Granada 18071, Spain

    ,
    Juan A Marchal

    Instituto de Biopatología y Medicina Regenerativa (IBIMER), Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Granada 18071, Spain

    Instituto Biosanitario de Granada (ibs.GRANADA), Hospitales Universitarios de Granada-Universidad de Granada, Granada 18071, Spain

    ,
    Joaquín M Campos

    Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Granada 18071, Spain

    Instituto Biosanitario de Granada (ibs.GRANADA), Hospitales Universitarios de Granada-Universidad de Granada, Granada 18071, Spain

    Authors contributed equally

    Search for more papers by this author

    &
    Ana Conejo-García

    *Author for correspondence:

    E-mail Address: aconejo@ugr.es

    Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Granada 18071, Spain

    Instituto Biosanitario de Granada (ibs.GRANADA), Hospitales Universitarios de Granada-Universidad de Granada, Granada 18071, Spain

    Authors contributed equally

    Search for more papers by this author

    Published Online:https://doi.org/10.4155/fmc-2016-0212

    Aim: Cancer is among the leading causes of death worldwide. Medical interest has focused on macrocyclic polyamines because of their properties as antitumor agents. Results/Methodology: We have designed and synthesized a series of 1,2-diaminocyclohexane derivatives with notable in vitro antiproliferative activities against the MCF-7, HCT-116 and A375 cancer cell lines. Cell cycle and apoptosis analyses were also carried out. Our results show that all the compounds are potent cytotoxic agents, especially against the A375 cell line. Conclusion: The selective activity of the macrocyclic derivative against A375, via apoptosis, supposes a great advantage for future therapeutic use. This exemplifies the potential of 1,2-diaminocyclohexane derivatives to qualify as lead structures for future anticancer drug development due to their easy syntheses and noteworthy bioactivity.

    Graphical Abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 World Health Organization. Cancer. Fact sheet N. 297. www.who.int/mediacentre/factsheets/fs297/en/.
    • 2 Ferlay J, Soerjomataram I, Dikshit R et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in globocan 2012. Int. J. Cancer 136, 359–386 (2015).
    • 3 World Health Organization. Breast cancer: prevention and control. www.who.int/cancer/detection/breastcancer/en/.
    • 4 Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breat Cancer Res. Treat. 83, 249–289 (2004).
    • 5 Catalano S, Campana A, Giordano C et al. Expression and function of phosphodiesterase type 5 in human breast cancer cell lines and tissues: implications for targeted therapy. Clin. Cancer Res. 22(9), 2271–2282 (2016).
    • 6 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 65(2), 87–108 (2015).
    • 7 Bhattacharyya NP, Skandalis A, Ganesh A, Groden J, Meuth M. Mutator phenotypes in human colorectal carcinoma cell lines. Proc. Natl Acad. Sci. USA 91, 6319–6323 (1994).
    • 8 Ferreira HJ, Heyn H, Moutinho C, Esteller M. CpG island hypermethylation-associated silencing of small nucleolar RNAs in human cancer. RNA Biology 9(6), 881–890 (2012).
    • 9 World Health Organization. Ultraviolet radiation and the INTERSUN Programme. www.who.int/uv/faq/skincancer/en/index1.html.
    • 10 Nahar VK, Allison Ford M, Brodell RT et al. Skin cancer prevention practices among malignant melanoma survivors: a systematic review. J. Cancer Res. Clin. Oncol. 142(6), 1273–1283 (2016).
    • 11 Su DM, Zhang Q, Wang X et al. Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy. Mol. Cancer Ther. 8, 1292–1304 (2009).
    • 12 Paulitschke V, Haudek-Prinz V, Griss J et al. Functional classification of cellular proteome profiles support the identification of drug resistance signatures in melanoma cells. J. Proteome Res. 12, 3264–3276 (2013).
    • 13 Dinesh NVS, Bhupathiraju K, Grac M, Vicente H. Synthesis of carborane-containing porphyrin derivatives for the boron neutron capture therapy of tumors. Top. Heterocycl. Chem. 34, 31–52 (2015).
    • 14 Foss MH, Pou S, Davidson PM et al. Diphenylether-modified 1,2-diamines with improved drug properties for development against mycobacterium tuberculosis. ACS Infect. Dis. 2(7), 500–508 (2016).
    • 15 Kim H, So SM, Chin J. Preparation of chiral diamines by the diaza-cope rearrangement (DCR). Aldrichimica ACTA 41, 77–88 (2008).
    • 16 Gao J, Liu YG, Zhou Y. Chiral salicyl diamines. ChemMedChem 2, 1723–1729 (2007). • An interesting research article regarding diamine open compounds’ synthesis.
    • 17 Gao J, Liu YG, Zingaro RA. Cytotoxic activities, celular uptake, gene regulation, and optical imaging of novel platinum (II) complexes. Chem. Res. Toxicol. 22, 1705–1712 (2009). • An interesting research article regarding diamine open compounds’ biological effect.
    • 18 O'Connell KM, Beckmann HS, Laraia L et al. A two-directional strategy for the diversity-oriented synthesis of macrocyclic scaffolds. Org. Biomol. Chem. 10, 7545–7551 (2012).
    • 19 Collins S, Bartlett S, Nie F et al. Diversity-oriented synthesis of macrocycle libraries for drug discovery and chemical biology. Synthesis 48(10), 1457–1473 (2016). • Interesting review regarding the role of macrocycles in drug discovery.
    • 20 Balderas-Rentería R, González-Barranco P, García A, Banik BK, Rivera G. Anticancer drug design using scaffolds of β-lactams, sulfonamides, quinoline, quinoxaline and natural products. Drug advances in clinical trials. Curr. Med. Chem. 19, 4377–4398 (2012).
    • 21 Conejo-García A, Campos JM, Sánchez-Martín RM, Gallo MA, Espinosa A. Bispyridinium cyclophanes: novel templates for human choline kinase inhibitors. J. Med. Chem. 46, 3754–3757 (2003). • Published work by us, related to macrocycle research.
    • 22 Trousil S, Kaliszczak M, Schug Z et al. The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth. Oncotarget 7(24), 37103–37120 (2016).
    • 23 Rubio-Ruiz B, Figuerola-Conchas A, Ramos-Torrecillas J et al. Discovery of a New binding site on human choline kinase α 1: design, synthesis, crystallographic studies, and biological evaluation of asymmetrical bispyridinium derivative. J. Med. Chem. 57, 507–515 (2014).
    • 24 Schiaffino-Ortega S, Baglioni E, Mariotto E et al. Design, synthesis, crystallization and biological evaluation of new symmetrical biscationic compounds as selective inhibitors of human Choline Kinase α1 (ChoKα1). Sci. Rep. 6, 23793 (2016).
    • 25 Saniger E, Campos JM, Entrena A et al. Neighbouring-group participation as the key step in the reactivity of acyclic and cyclic salicyl-derived O, O-acetals with 5-fluorouracil. Antiproliferative activity, cell cycle dysregulation and apoptotic induction of new O, N-acetals against breast cancer cells. Tetrahedron 59, 8017–8026 (2003).
    • 26 López-Cara LC, Conejo-García A, Marchal JA et al. New (RS)-benzoxazepinpurines with anti-tumour activity: the chiral switch from (RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine. Eur. J. Med. Chem. 46, 249–258 (2011).
    • 27 Marchal JA, Carrasco E, Ramírez A et al. Bozepinib, a novel small antitumor agent, induces PKR-mediated apoptosis and synergizes with IFNα triggering apoptosis, autophagy and senescence. Drug Des. Devel. Ther. 7, 1301–1313 (2013).
    • 28 Ramírez A, Boulaiz H, Morata-Tarifa C et al. HER2-signaling pathway, JNK and ERKs kinases, and cancer stem-like cells are targets of Bozepinib small compound. Oncotarget 5, 3590–3606 (2014).
    • 29 Powell WH, Weissbach O. Phane nomenclature. Part I: Phane parent names (IUPAC Recommendations 1998). Pure Appl. Chem. 70, 1513–1545 (1998).
    • 30 Favre HA, Hellwinkel D, Powell WH, Smith HA. Phane nomenclature. Part II: modification of the degree of hydrogenation and substitution derivatives of phane parent hydrides (IUPAC recommendations 2002). Pure Appl. Chem. 74, 809–834 (2002).
    • 31 Simion C, Simion A, Mitoma Y et al. Synthesis of new dihydroxy-dioxygenated ortho-[2,x] cyclophanes. Heterocycles 53, 2459–2470 (2000). •• An interesting research article regarding macrocycle compound's synthesis.
    • 32 Fernández-Fernández MC, Bastida de la Calle R, Macías A, Valencia-Matarranz L, Pérez-Lourido P. Co(II), Ni(II) and Cu(II) complexes of new [1+1] and [2+2] macrocyclic ligands derived from 1,4-bis(2′-formylphenyl)-1,4-dioxabutane and cis-1,2-diaminocyclohexane. Polyhedron 27, 2301–2308 (2008).
    • 33 Correa WH, Scott JL. Synthesis and characterisation of macrocyclic diamino chiral crown ethers. Molecules 9, 513–519 (2004).
    • 34 Soule HD, Vazquez J, Long A, Albert S, Brennan M. A human cell line from a pleural effusion derived from a breast carcinoma. J. Natl Cancer Inst. 51(5), 1409–1416 (1973).
    • 35 Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE. Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res. 41(5), 1751–1756 (1981).
    • 36 Giard DJ, Aaronson SA, Todaro GT et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51, 1417–1423 (1973).
    • 37 Liua F, Zhoua Z, Gou S, Jian Zhaoab J, Chenab F. Synthesis and antiproliferative activity of (1R,2R)-N1-(2-butyl)-1,2-cyclohexanediamine platinum(II) complexes with malonate derivatives. J. Coord. Chem. 67(17), 2858–2866 (2014).
    • 38 Chen P, Lee NV, Hu W et al. Spectrum and degree of CDK drug interactions predicts clinical performance. Mol. Cancer Ther. 15(10), 2273–2281 (2016).
    • 39 Flaherty KT, Lorusso PM, Demichele A et al. Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin. Cancer Res. 18, 568–576 (2012).
    • 40 Roberts PJ, Bisi JE, Strum JC et al. Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. J. Natl Cancer Inst. 104, 476–487 (2012).
    • 41 Kubo M, Kanaya N, Petrossian K et al. Inhibition of the proliferation of acquired aromatase inhibitor-resistant breast cancer cells by histone deacetylase inhibitor LBH589 (panobinostat). Breast Cancer Res. Treat. 137, 93–107 (2013).
    • 42 Tate CR, Rhodes LV, Segar HC et al. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res. 14, R79 (2012). •• Highlights the mechanism of the antitumor effect of panobinostat, a histone deacetylase inhibitor that provokes cell cycle G2/M arrest, as (±)-trans-1.
    • 43 Fortunati N, Catalano MG, Marano F et al. The pan-DAC inhibitor LBH589 is a multi-functional agent in breast cancer cells: cytotoxic drug and inducer of sodium-iodide symporter (NIS). Breast Cancer Res. Treat. 124, 667–675 (2010).
    • 44 Marchal JA, Boulaiz H, Suárez I et al. Growth inhibition, G1-arrest, and apoptosis in MCF-7 human breast cancer cells by novel highly lipophilic 5-fluorouracil derivatives. Invest. New Drug 22, 379–389 (2004).
    • 45 Kamil Rudolf K, Emil Rudolf E. Antiproliferative effects of α-tomatine are associated with different cell death modalities in human colon cancer cells. J. Funct. Foods 27, 491–502 (2016).
    • 46 Kurita M, Hanada S, Ichimaru Y et al. Indirubin 3′-epoxide induces caspase-independent cell death in human neuroblastoma. Biol. Pharm. Bull. 39, 993–999 (2016).
    • 47 Nicolaoua KA, Liapisb V, Evdokioub A et al. Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells. Biochem. Biophys. Res. Commun. 425(1), 76–82 (2012).