We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Cancer-targeted delivery systems based on peptides

    Theodora Chatzisideri

    Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece

    ,
    George Leonidis

    Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece

    &
    Vasiliki Sarli

    *Author for correspondence:

    E-mail Address: sarli@chem.auth.gr

    Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece

    Published Online:https://doi.org/10.4155/fmc-2018-0174

    There is a growing interest for the discovery of new cancer-targeted delivery systems for drug delivery and diagnosis. A synopsis of the bibliographic data will be presented on bombesin, neurotensin, octreotide, Arg-Gly-Asp, luteinizing hormone-releasing hormone and other peptides. Many of them have reached the clinics for therapeutic or diagnostic purposes, and have been utilized as carriers of known cytotoxic agents such as doxorubicin, paclitaxel, cisplatin, methotrexate or dyes and radioisotopes. In our article, recent advances in the development of peptides as carriers of cytotoxic drugs or radiometals will be analyzed.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Bray F, Jemal A, Grey N et al. Global cancer transitions according to the Human Development Index (2008-2030): a population-based study. Lancet Oncol. 13(8), 790–801 (2012).
    • 2 Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv. Rev. 59(8), 748–758 (2007).
    • 3 Varkouhi AK, Scholte M, Storm G et al. Endosomal escape pathways for delivery of biologicals. J. Control. Rel. 151(3), 220–228 (2011).
    • 4 Wong PT, Choi SK. Mechanisms of drug release in nanotherapeutic delivery systems. Chem. Rev. 115(9), 3388–3432 (2015). • Provides an overview of the different linkers employed in targeted drug delivery.
    • 5 Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep. 35, e00225 (2015).
    • 6 Chalouni C, Doll S. Fate of antibody-drug conjugates in cancer cells. J. Exp. Clin. Cancer Res. 37(1), 20 (2018). •• Provides an overview of antibody-drug conjugates in cancer cells.
    • 7 Firer MA, Gellerman G. Targeted drug delivery for cancer therapy: the other side of antibodies. J. Hematol. Oncol. 5(1), 70 (2012).
    • 8 Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55(6), 1179–1188 (1988).
    • 9 Lau JL, Dunn MK. Therapeutic peptides: historical perspectives current development trends, and future directions. Bioorg. Med. Chem. 26(10), 2700–2707 (2018).
    • 10 Okarvi SM. Peptide-based radiopharmaceuticals: future tools for diagnostic imaging of cancers and other diseases. Med. Res. Rev. 24(3), 357–397 (2004).
    • 11 Funke SA, Willbold D. Peptides for therapy and diagnosis of Alzheimer's disease. Curr. Pharm. Des. 18(6), 755–767 (2012).
    • 12 Xiao YF, Jie MM, Li BS et al. Peptide-based treatment: a promising cancer therapy. J. Immunol. Res. 2015, 1–13 (2015).
    • 13 Recio C, Maione F, Iqbal AJ et al. The potential therapeutic application of peptides and peptidomimetics in cardiovascular disease. Front. Pharmacol. 7, 526 (2016).
    • 14 Di L. Strategic approaches to optimizing peptide ADME Properties. AAPS J. 17(1), 134–143 (2015).
    • 15 Hynes RO. Integrins: bidirectional allosteric signaling machines. Cell 110(6), 673–687 (2002).
    • 16 Ulmer TS. Structural basis of transmembrane domain interactions in integrin signaling. Cell Adh. Migr. 4(2), 243–248 (2010).
    • 17 Rippa AL, Vorotelyak EA, Vasiliev AV et al. The role of integrins in the development and homeostasis of the epidermis and skin appendages. Acta Naturae 5(4), 22–33 (2013).
    • 18 Felding-Habermann B, O'Toole TE, Smith JW et al. Integrin activation controls metastasis in human breast cancer. Proc. Natl Acad. Sci. USA 98(4), 1853–1858 (2001).
    • 19 Partheen K, Levan K, Österberg L et al. External validation suggests integrin beta 3 as prognostic biomarker in serous ovarian adenocarcinomas. BMC Cancer 9, 336 (2009).
    • 20 Gruber G, Hess J, Stiefel C et al. Correlation between the tumoral expression of beta3-integrin and outcome in cervical cancer patients who had undergone radiotherapy. Br. J. Cancer 92(1), 41–46 (2005).
    • 21 Pontes J, Reis ST, De Oliveira LCN et al. Association between integrin expression and prognosis in localized prostate cancer. Prostate 70(11), 1189–1195 (2010).
    • 22 Steiger K, Schlitter AM, Weichert W et al. Perspective of αvβ6-integrin imaging for clinical management of pancreatic carcinoma and its precursor lesions. Mol. Imaging doi: 10.1177/1536012117709384 (2017) (Epub ahead of print).
    • 23 Bartolazzi A, Cerboni C, Flamini G et al. Expression of α3β1 integrin receptor and its ligands in human lung tumors, Lung Cancer 14(1), 156 (1996).
    • 24 Niu J, Dorahy DJ, Gu X et al. Integrin expression in colon cancer cells is regulated by the cytoplasmic domain of the beta6 integrin subunit. Int. J. Cancer 99(4), 529–537 (2002).
    • 25 Lathia JD, Gallagher J, Heddleston JM et al. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6(5), 421–432 (2010).
    • 26 Mitjans F, Meyer T, Fittschen C et al. In vivo therapy of malignant melanoma by means of antagonists of alphav integrins, Int. J. Cancer 87(5), 716–723 (2000).
    • 27 Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 238(4826), 491–497 (1987). • Breakthrough paper about the role of Arg-Gly-Asp (RGD) tripeptide in cell adhesion.
    • 28 Dechantsreiter MA, Planker E, Matha B et al. N-methylated cyclic RGD peptides as highly active and selective avb3 integrin antagonists. J. Med. Chem. 42(16), 3033–3040 (1999).
    • 29 Katsamakas S, Chatzisideri T, Thysiadis S et al. RGD-mediated delivery of small-molecule drugs. Future Med. Chem. 9(6), 579–604 (2017). •• A comprehensive review about RGD-mediated delivery of small-molecule drugs.
    • 30 Thysiadis S, Katsamakas S, Dalezis P et al. Novel c(RGDyK)-based conjugates of POPAM and 5-fluorouracil for integrin-targeted cancer therapy. Future Med. Chem. 9(18), 2181–2196 (2017).
    • 31 Chatzisideri T, Thysiadis S, Katsamakas S et al. Synthesis and biological evaluation of a platinum(II)-c(RGDyK) conjugate for integrin-targeted photodynamic therapy. Eur. J. Med. Chem. 141, 221–231 (2017).
    • 32 Zhu H, Cheng P, Chen P, Pu K. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater. Sci. 6(4), 746–765 (2018).
    • 33 Weller M, Nabors LB, Gorlia T et al. Cilengitide in newly diagnosed glioblastoma: biomarker expression and outcome. Oncotarget 7(12), 15018–15032 (2016).
    • 34 Sartori A, Portioli E, Battistini L et al. Synthesis of novel c(AmpRGD)-sunitinib dual conjugates as molecular tools targeting the αvβ3 integrin/VEGFR2 couple and impairing tumor-associated angiogenesis. J. Med. Chem. 60(1), 248–262 (2017).
    • 35 Redko B, Tuchinsky H, Segal T et al. Toward the development of a novel non-RGD cyclic peptide drug conjugate for treatment of human metastatic melanoma. Oncotarget 8(1), 757–768 (2017).
    • 36 Reynolds AR, Hart IR, Watson AR et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat. Med. 15(4), 392–400 (2009).
    • 37 Arosio D, Casagrande C. Advancement in integrin facilitated drug delivery. Adv. Drug Deliv. Rev. 97, 111–143 (2016). • A comprehensive review about RGD-mediated delivery of cytotoxic drugs.
    • 38 Duro-Castano A, Gallon E, Decker C et al. Modulating angiogenesis with integrin-targeted nanomedicines, Adv. Drug Deliv. Rev. 119, 101–119 (2017).
    • 39 Guo Z, Zhou X, Xu M et al. Dimeric camptothecin-loaded RGD-modified targeted cationic polypeptide-based micelles with high drug loading capacity and redox-responsive drug release capability. Biomater. Sci. 5(12), 2501–2510 (2017).
    • 40 Rocas P, Fernández Y, García-Aranda N et al. Improved pharmacokinetic profile of lipophilic anti-cancer drugs using ανβ3-targeted polyurethane-polyurea nanoparticles. Nanomedicine 14(2), 257–267 (2018).
    • 41 Babu A, Amreddy N, Muralidharan R et al. Chemodrug delivery using integrin-targeted PLGA-chitosan nanoparticle for lung cancer therapy. Sci. Rep. 7(1), 14674. (2017).
    • 42 Luo W, Wen G, Yang L et al. Dual-targeted and pH-sensitive doxorubicin prodrug-microbubble complex with ultrasound for tumor treatment. Theranostics 7(2), 452–465 (2017).
    • 43 Liu S. Radiolabeled Cyclic RGD peptide bioconjugates as radiotracers targeting multiple integrins, Bioconjug. Chem. 26(8), 1413–1438 (2015).
    • 44 Shao G, Gu W, Guo M et al. Clinical study of 99mTc-3P-RGD2 peptide imaging in osteolytic bone metastasis. Oncotarget 8(43), 75587–75596 (2017).
    • 45 Zhang J, Niu G, Lang L et al. Clinical translation of a dual integrin αvβ3- and gastrin-releasing peptide receptor-targeting PET radiotracer, 68Ga-BBN-RGD. J. Nucl. Med. F58(2), 228–234 (2017).
    • 46 Haubner R, Maschauer S, Prante O. PET radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. Biomed. Res. Int. 2014, 871609 (2014).
    • 47 Chen X, Plasencia C, Hou Y et al. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J. Med. Chem. 48(4), 1098–1106 (2005).
    • 48 Cao Q, Li ZB, Chen K et al. Evaluation of biodistribution and anti-tumor effect of a dimeric RGD peptide-paclitaxel conjugate in mice with breast cancer. Eur. J. Nucl. Med. Mol. Imaging 35(8), 1489–1498 (2008).
    • 49 Colombo R, Mingozzi M, Belvisi L et al. Synthesis and biological evaluation (in vitro and in vivo) of cyclic arginine-glycine-aspartate (RGD) peptidomimetic-paclitaxel conjugates targeting integrin αVβ3. J. Med. Chem. 55(23), 10460–10474 (2012).
    • 50 Pilkington-Miksa M, Arosio D, Battistini L et al. Design, synthesis, and biological evaluation of novel cRGD-paclitaxel conjugates for integrin-assisted drug delivery. Bioconjug. Chem. 23(8), 1610–1622 (2012).
    • 51 Dal Corso A, Caruso M, Belvisi L et al. Synthesis and biological evaluation of RGD peptidomimetic-paclitaxel conjugates bearing lysosomally cleavable linkers. Chemistry 21(18), 6921–6929 (2015).
    • 52 De Groot FM, Broxterman HJ, Adams HP et al. Design, synthesis, and biological evaluation of a dual tumor-specific motive containing integrin-targeted plasmin-cleavable doxorubicin prodrug. Mol. Cancer Ther. 1(11), 901–911 (2002).
    • 53 Kim JW, Lee HS. Tumor targeting by doxorubicin-RGD-4C peptide conjugate in an orthotopic mouse hepatoma model. Int. J. Mol. Med. 14(4), 529–535 (2004).
    • 54 Ryppa C, Mann-Steinberg H, Fichtner I et al. In vitro and in vivo evaluation of doxorubicin conjugates with the divalent peptide E-[c (RGDfK) 2] that targets integrin αvβ3, Bioconjug. Chem. 19(7), 1414–1422 (2008).
    • 55 Burkhart DJ, Kalet BT, Coleman MP et al. Doxorubicin-formaldehyde conjugates targeting alphavbeta3 integrin. Mol. Cancer Ther. 3, 1593–1604 (2004).
    • 56 Mukhopadhyay S, Barnés CM, Haskel A et al. Conjugated platinum (IV)-peptide complexes for targeting angiogenic tumor vasculature. Bioconjug. Chem. 19, 39–49 (2008).
    • 57 Gandioso E, Shaili A, Massaguer G et al. An integrin-targeted photoactivatable Pt(iv) complex as a selective anticancer pro-drug: synthesis and photoactivation studies. Chem. Commun. 51(44), 9169–9172 (2015).
    • 58 Massaguer A, González-Cantó A, Escribano E et al. Integrin-targeted delivery into cancer cells of a Pt(iv) pro-drug through conjugation to RGD-containing peptides. Dalt. Trans. 44(1), 202–212 (2015).
    • 59 Yuan Y, Zhang CJ, Liu B. A platinum prodrug conjugated with a photosensitizer with aggregation-induced emission (AIE) characteristics for drug activation monitoring and combinatorial photodynamic–chemotherapy against cisplatin resistant cancer cells. Chem. Commun. 51(41), 8626–8629 (2015).
    • 60 Yuan Y, Kwok RTK, Zhang R et al. Targeted theranostic prodrugs based on an aggregation-induced emission (AIE) luminogen for real-time dual-drug tracking. Chem. Commun. 50(78), 11465–11468 (2014).
    • 61 Huang B, Desai A, Tang S et al. The synthesis of a c(RGDyK) targeted SN38 prodrug with an indolequinone structure for bioreductive drug release. Org. Lett. 12(7), 1384–1387 (2010).
    • 62 Dal Pozzo A, Esposito E, Ni M et al. Conjugates of a novel 7-substituted camptothecin with RGD-peptides as αvβ3 integrin ligands: an approach to tumor-targeted therapy. Bioconjug. Chem. 21(11), 1956–1967 (2010).
    • 63 Dal Pozzo A, Ni MH, Esposito E et al. Novel tumor-targeted RGD peptide-camptothecin conjugates: synthesis and biological evaluation. Bioorg. Med. Chem. 18(1), 64–72 (2010).
    • 64 Gilad Y, Noy E, Senderowitz H et al. Synthesis, biological studies and molecular dynamics of new anticancer RGD-based peptide conjugates for targeted drug delivery. Bioorg. Med Chem. 24(2), 294–303 (2016).
    • 65 Gilad Y, Noy E, Senderowitz H et al. Dual-drug RGD conjugates provide enhanced cytotoxicity to melanoma and non-small lung cancer cells. Biopolymers 106(2), 160–171 (2015).
    • 66 Lee MH, Kim JY, Han JH. Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug. J. Am. Chem. Soc. 134(30), 12668–12674 (2012).
    • 67 Mingozzi M, Manzoni L, Arosio D et al. Synthesis and biological evaluation of dual action cyclo-RGD/SMAC mimetic conjugates targeting α(v)β(3)/α(v)β(5) integrins and IAP proteins. Org. Biomol. Chem. 12(20), 3288–3302 (2014).
    • 68 Zanella S, Mingozzi M, Dal Corso A et al. Synthesis, characterization, and biological evaluation of a dual-action ligand targeting αvβ3 integrin and VEGF receptors. ChemistryOpen 4(5), 633–641 (2015).
    • 69 Li X, Hou J, Wang C, Liu X et al. Synthesis and biological evaluation of RGD-conjugated MEK1/2 kinase inhibitors for integrin-targeted cancer therapy. Molecules 18(11), 13957–13978 (2013).
    • 70 Hou J, Diao Y, Li W et al. RGD peptide conjugation results in enhanced antitumor activity of PD0325901 against glioblastoma by both tumor-targeting delivery and combination therapy. Int. J. Pharm. 505(1-2), 329–340 (2016).
    • 71 Nahrwold M, Weiß C, Bogner T et al. Conjugates of modified cryptophycins and RGD-peptides enter target cells by endocytosis. J. Med. Chem. 56(5), 1853–1864 (2013).
    • 72 Crisp JL, Savariar EN, Glasgow HL et al. Dual targeting of integrin αvβ3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery. Mol. Cancer Ther. 13(6), 1514–1525 (2014).
    • 73 Sartori A, Portioli E, Battistini L et al. Synthesis of novel c(AmpRGD)-sunitinib dual conjugates as molecular tools targeting the αvβ3 Integrin/VEGFR2 couple and impairing tumor-associated angiogenesis. J. Med. Chem. 60(1), 248–262 (2017).
    • 74 Wang C, Chen B, Zou M. Cyclic RGD-modified chitosan/graphene oxide polymers for drug delivery and cellular imaging. Colloids Surf. B Biointerfaces 122, 332–340 (2014).
    • 75 Guo Y, Xu H, Li Y et al. Hyaluronic acid and Arg-Gly-Asp peptide modified graphene oxide with dual receptor-targeting function for cancer therapy. J. Biomater. Appl. 32(1), 54–65 (2017).
    • 76 Dong J, Wang K, Sun L et al. Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sens. Actuators B Chem. 256, 616–623 (2018).
    • 77 Pan L, Liu J, He Q et al. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv. Mater. 26(39), 6742–6748 (2014).
    • 78 Chen H, Zhen Z, Tang W et al. Label-free luminescent mesoporous silica nanoparticles for imaging and drug delivery. Theranostics 3(9), 650–657 (2013).
    • 79 Liao YT, Wu KCW, Yu J. Synthesis of mesoporous silica nanoparticle-encapsulated alginate microparticles for sustained release and targeting therapy. J. Biomed. Mater. Res. Part B Appl. Biomater. 102(2), 293–302 (2014).
    • 80 Wu K, Liao YT, Liu CH et al. Liver cancer cells: targeting and prolonged-release drug carriers consisting of mesoporous silica nanoparticles and alginate microspheres. Int. J. Nanomedicine 9(1), 2767–2778 (2014).
    • 81 Ferris DP, Lu J, Gothard C et al. Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 7(13), 1816–1826 (2011).
    • 82 Rieter WJ, Pott KM, Taylor KML et al. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc. 130(35), 11584–11585 (2008).
    • 83 Taylor-Pashow KML, Della Rocca J, Xie Z et al. Postsynthetic modifications of iron-carboxylate nanoscale metal−organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 131(40), 14261–14263 (2009).
    • 84 Lv PP, Ma YF, Yu R et al. Targeted delivery of insoluble cargo (paclitaxel) by PEGylated chitosan nanoparticles grafted with Arg-Gly-Asp (RGD). Mol. Pharm. 9(6), 1736–1747 (2012).
    • 85 Ge L, You X, Huang K et al. Screening of novel RGD peptides to modify nanoparticles for targeted cancer therapy. Biomater. Sci. 6(1), 125–135 (2018).
    • 86 Cai LL, Liu P, Li X et al. RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells. Int. J. Nanomedicine 6, 3499–3508 (2011).
    • 87 Xiong XB, Lavasanifar A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano 5(6), 5202–5213 (2011).
    • 88 Liu J, Liu J, Xu H et al. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int. J. Nanomedicine 9(1), 197–214 (2014).
    • 89 Lai Y, Zhao P, Zhang Z et al. An effective peptide cargo carrier for the delivery of cisplatin in ovarian cancer cells. Dye Pigment. 143, 342–347 (2017).
    • 90 Yang X, Hong H, Grailer JJ et al. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32(17), 4151–4160 (2011).
    • 91 Li F, Zhao Y, Mao C et al. RGD-modified albumin nanoconjugates for targeted delivery of a porphyrin photosensitizer. Mol. Pharm. 14(8), 2793–2804 (2017).
    • 92 Song Z, Lin Y, Zhang X et al. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int. J. Nanomedicine 12, 1941–1958 (2017).
    • 93 Kangarlou S, Ramezanpour S, Balalaie S et al. Curcumin-loaded nanoliposomes linked to homing peptides for integrin targeting and neuropilin-1- mediated internalization. Pharm. Biol. 55(1), 277–285 (2017).
    • 94 Belhadj Z, Ying M, Cao X et al. Design of Y-shaped targeting material for liposome-based multifunctional glioblastoma-targeted drug delivery. J. Control. Rel. 255, 132–141 (2017).
    • 95 Shu C, Sabi-Mouka EMB, Wang X et al. Self-assembly hydrogels as multifunctional drug delivery of paclitaxel for synergistic tumour-targeting and biocompatibility in vitro and in vivo. J. Pharm. Pharmacol. 69(8), 967–977 (2017).
    • 96 Brazeau P, Vale W, Burgus R et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179(4068), 77–79 (1973).
    • 97 Reisine T, Bell GI. Molecular biology of somatostatin receptors. Endocr. Rev. 16(4), 427–442 (1995).
    • 98 Reubi JC, Laissue J, Krenning E et al. Somatostatin receptors in human cancer: incidence, characteristics, functional correlates and clinical implications. J. Steroid Biochem. Mol. Biol. 43(1-3), 27–35 (1992).
    • 99 Rai U, Thrimawithana TR, Valery C, Young SA. Therapeutic uses of somatostatin and its analogues: current view and potential applications. Pharmacol. Ther. 152, 98–110 (2015).
    • 100 Modlin IM, Pavel M, Kidd M et al. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment Pharmacol. Ther. 31(2), 169–188 (2010).
    • 101 Sun LC, Coy DH. Somatostatin receptor-targeted anti-cancer therapy. Curr. Drug Deliv. 8(1), 2–10 (2011).
    • 102 Huang CM, Wu YT, Chen ST. Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis. Chem. Biol. 7(7), 453–461 (2000).
    • 103 Shen H, Hu D, Du J et al. Paclitaxel-octreotide conjugates in tumor growth inhibition of A549 human non-small cell lung cancer xenografted into nude mice. Eur. J. Pharmacol. 601(1-3), 23–29 (2008).
    • 104 Huo M, Zhu Q, Wu Q et al. Somatostatin receptor-mediated specific delivery of paclitaxel prodrugs for efficient cancer therapy. J. Pharm. Sci. 104(6), 2018–2028 (2015).
    • 105 Nagy A, Schally AV, Halmos G et al. Synthesis and biological evaluation of cytotoxic analogs of somatostatin containing doxorubicin or its intensely potent derivative, 2-pyrrolinodoxorubicin. Proc. Natl Acad. Sci. USA 95, 1794–1799 (1998). • Breakthrough paper about doxorubicin-RC121 conjugate.
    • 106 Seitz S, Buchholz S, Schally AV et al. Targeting triple-negative breast cancer through the somatostatin receptor with the new cytotoxic somatostatin analogue AN-162 [AEZS-124]. Anticancer Drugs 24(2), 150–157 (2013).
    • 107 Kiaris H, Schally AV, Nagy A et al. Regression of U-87 MG human glioblastomas in nude mice after treatment with a cytotoxic somatostatin analog AN-238. Clin. Cancer Res. 6(2), 709–717 (2000).
    • 108 Lelle M, Kaloyanova S, Freidel C et al. Octreotide-mediated tumor-targeted drug delivery via a cleavable doxorubicin-peptide conjugate. Mol. Pharm. 12(12), 4290–300 (2015).
    • 109 Fuselier JA, Sun L, Woltering SN et al. An adjustable release rate linking strategy for cytotoxin-peptide conjugates. Bioorg. Med. Chem. Lett. 13(5), 799–803 (2003).
    • 110 Sun LC, MacKey LV, Luo J et al. Targeted chemotherapy using a cytotoxic somatostatin conjugate to inhibit tumor growth and metastasis in nude mice. Clin. Med. Oncol. 2, 491–499 (2008).
    • 111 Zhang HY, Xu WQ, Zheng YY et al. Octreotide-periplocymarin conjugate prodrug for improving targetability and anti-tumor efficiency: synthesis, in vitro and in vivo evaluation. Oncotarget 7(52), 86326–86338 (2016).
    • 112 Zhang HY, Xu WQ, Wang YW et al. Tumor targeted delivery of octreotide-periplogenin conjugate: synthesis, in vitro and in vivo evaluation. Int. J. Pharm. 502(1-2), 98–106 (2016).
    • 113 Chen X, Zhang XY, Shen Y et al. Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice. Oncotarget 7(50), 83451–83461 (2016).
    • 114 Krenning E, Breeman W, Kooij P et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet 333, 242–244 (1989).
    • 115 Menda Y, Kahn D. Somatostatin receptor imaging of non-small cell lung cancer with 99mTc depreotide. Semin. Nucl. Med. 32(2), 92–96 (2002). • Breakthrough paper about 99mTc depreotide radiotracer.
    • 116 Kjaer A, Knigge U. Use of radioactive substances in diagnosis and treatment of neuroendocrine tumors. Scand. J. Gastroenterol. 50(6), 740–747 (2015). •• A comprehensive review about radioactive substances in diagnosis and treatment of neuroendocrine tumors.
    • 117 Peng J, Qi X, Chen Y et al. Octreotide-conjugated PAMAM for targeted delivery to somatostatin receptors over-expressed tumor cells. J. Drug Target. 22(5), 428–438 (2014).
    • 118 Zhang Y, Wang X, Wang J et al. Octreotide-modified polymeric micelles as potential carriers for targeted docetaxel delivery to somatostatin receptor overexpressing tumor cells. Pharm. Res. 28(5), 1167–1178 (2011).
    • 119 Zhang Y, Zhang H, Wang X et al. The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 33(2), 679–691 (2012).
    • 120 Zhang J, Jin W, Wang X et al. A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol. Pharm. 7(4), 1159–1168 (2010).
    • 121 Zhang X, Yang C, Zhou J et al. Somatostatin receptor-mediated tumor-targeting nanocarriers based on octreotide-PEG conjugated nanographene oxide for combined chemo and photothermal therapy. Small 12(26), 3578–3590 (2016).
    • 122 Sun M, Wang Y, Shen J et al. Octreotide-modification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumor in vitro and in vivo. Nanotechnology 21(47), 475101 (2010).
    • 123 Jaskula-Sztul R, Xu W, Chen G et al. Thailandepsin A-loaded and octreotide-functionalized unimolecular micelles for targeted neuroendocrine cancer therapy. Biomaterials 91, 1–10 (2016).
    • 124 Jensen RT, Battey JF, Spindel ER et al. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol. Rev. 60(1), 1–42 (2008).
    • 125 Xiao D, Wang J, Hampton LL et al. The human gastrin-releasing peptide receptor gene structure, its tissue expression and promoter. Gene 264(1), 95–103 (2001).
    • 126 Engel JB, Keller G, Schally AV et al. Effective inhibition of experimental human ovarian cancers with a targeted cytotoxic bombesin analogue AN-215. Clin. Cancer Res. 11(6), 2408–2415 (2005).
    • 127 Nagy A, Schally AV, Halmos G et al. Synthesis and biological evaluation of cytotoxic analogs of somatostatin containing doxorubicin or its intensely potent derivative, 2-pyrrolinodoxorubicin. Proc. Natl Acad. Sci. USA 95(4), 1794–1799 (1998).
    • 128 Moody TW, Sun LC, Mantey SA et al. In vitro and in vivo antitumor effects of cytotoxic camptothecin-bombesin conjugates are mediated by specific interaction with cellular bombesin receptors. J. Pharmacol. Exp. Ther. 318(3), 1265–1272 (2006).
    • 129 Moody TW, Mantey SA, Pradhan TK et al. Development of high affinity camptothecin-bombesin conjugates that have targeted cytotoxicity for bombesin receptor-containing tumor cells. J. Biol. Chem. 279(22), 23580–23589 (2004).
    • 130 Safavy A, Raisch KP, Matusiak D et al. Single-drug multiligand conjugates: synthesis and preliminary cytotoxicity evaluation of a paclitaxel-dipeptide “scorpion” molecule. Bioconjug. Chem. 17(3), 565–570 (2006).
    • 131 Liu S, Yang H, Wan L et al. Enhancement of cytotoxicity of antimicrobial peptide magainin II in tumor cells by bombesin-targeted delivery. Acta Pharmacol. Sin. 32(1), 79–88 (2011).
    • 132 Maina T, Nock BA. From bench to bed: new gastrin-releasing peptide receptor-directed radioligands and their use in prostate cancer. PET Clin. 12(2), 205–217 (2017). •• A comprehensive review about radioactive substances in diagnosis and treatment of prostate cancer.
    • 133 Ferreira CA, Fuscaldi LL, Townsend DM et al. Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed. Pharmacother. 87, 58–72 (2017).
    • 134 Moreno P, Ramos-Álvarez I, Moody TW et al. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opin. Ther. Targets 20(9), 1055–1073 (2016).
    • 135 Herbst RS. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 59(2 Suppl.), 21–26 (2004).
    • 136 Brand TM, Iida M, Li C et al. The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discov. Med. 12(66), 419–432 (2011).
    • 137 Nicholson RI, Gee JMW, Harper ME. EGFR and cancer prognosis. Eur. J. Cancer 37, S9–S15 (2001).
    • 138 Yamaoka T, Ohba M, Ohmori T. Molecular-targeted therapies for epidermal growth factor receptor and its resistance mechanisms. Int. J. Mol. Sci. 18(11), pii: E2420 (2017).
    • 139 Fan M, Yang D, Liang X et al. Design and biological activity of epidermal growth factor receptor-targeted peptide doxorubicin conjugate. Biomed. Pharmacother. 70, 268–273 (2015).
    • 140 Xu WW, Liu DY, Cao YC et al. GE11 peptide-conjugated nanoliposomes to enhance the combinational therapeutic efficacy of docetaxel and siRNA in laryngeal cancers. Int. J. Nanomedicine 12, 6461–6470 (2017).
    • 141 Yan J, Wang Y, Jia Y et al. Co-delivery of docetaxel and curcumin prodrug via dual-targeted nanoparticles with synergistic antitumor activity against prostate cancer. Biomed. Pharmacother. 88, 374–383 (2017).
    • 142 Jin H, Pi J, Zhao Y et al. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9(42), 16365–16374 (2017).
    • 143 Ren H, Gao C, Zhou L et al. EGFR-targeted poly(ethylene glycol)-distearoylphosphatidylethanolamine micelle loaded with paclitaxel for laryngeal cancer: preparation, characterization and in vitro evaluation. Drug Deliv. 22(6), 785–794 (2015).
    • 144 Pi J, Jiang J, Cai H et al. GE11 peptide conjugated selenium nanoparticles for EGFR targeted oridonin delivery to achieve enhanced anticancer efficacy by inhibiting EGFR-mediated PI3K/AKT and Ras/Raf/MEK/ERK pathways. Drug Deliv. 24(1), 1549–1564 (2017).
    • 145 Geng X, Ye H, Feng Z et al. Synthesis and characterization of cisplatin-loaded, EGFR-targeted biopolymer and in vitro evaluation for targeted delivery. J. Biomed. Mater. Res. A 100(10), 2839–2848 (2012).
    • 146 Kumar SR, Gallazzi FA, Ferdani R et al. In vitro and in vivo evaluation of 64Cu-radiolabeled KCCYSL peptides for targeting epidermal growth factor receptor-2 in breast carcinomas. Cancer Biother. Radiopharm. 25(6), 693–703 (2010).
    • 147 Deutscher SL, Figueroa SD, Kumara SR. 111In-labeled KCCYSL peptide as an imaging probe for ErbB-2-expressing ovarian carcinomas. J. Labelled Comp. Radiopharm. 52(14), 583–590 (2009).
    • 148 Tandon M, Vemula SV, Mittal SK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin. Ther. Targets 15(1), 31–51 (2011).
    • 149 Lodola A, Giorgio C, Incerti M et al. Targeting Eph/ephrin system in cancer therapy. Eur. J. Med. Chem. 142, 152–162 (2017).
    • 150 Koolpe M, Dail M, Pasquale EB. An ephrin mimetic peptide that selectively targets the EphA2 receptor. J. Biol. Chem. 277(49), 46974–46979 (2002). • Breakthrough paper about ephrin mimetic peptides.
    • 151 Wang S, Noberini R, Stebbins JL et al. Targeted delivery of paclitaxel to EphA2-expressing cancer cells. Clin. Cancer Res. 19(1), 128–137 (2013).
    • 152 Wang S, Placzek WJ, Stebbins JL et al. Novel targeted system to deliver chemotherapeutic drugs to EphA2-expressing cancer cells. J. Med. Chem. 55(5), 2427–2436 (2012).
    • 153 Quinn BA, Wang S, Barile E et al. Therapy of pancreatic cancer via an EphA2 receptor-targeted delivery of gemcitabine. Oncotarget 7(13), 17103–17110 (2016).
    • 154 Wu B, Wang S, De SK. Design and characterization of novel EphA2 agonists for targeted delivery of chemotherapy to cancer cells. Chem. Biol. 22(7), 876–887 (2015).
    • 155 Patel AR, Chougule M, Singh M. EphA2 targeting pegylated nanocarrier drug delivery system for treatment of lung cancer. Pharm. Res. 31(10), 2796–2809 (2014).
    • 156 Patel K, Doddapaneni R, Sekar V et al. Combination approach of YSA peptide anchored docetaxel stealth liposomes with oral antifibrotic agent for the treatment of lung cancer. Mol. Pharm. 13(6), 2049–2058 (2016).
    • 157 Haghiralsadat F, Amoabediny G, Naderinezhad S et al. EphA2 targeted doxorubicin-nanoliposomes for osteosarcoma treatment. Pharm. Res. 34(12), 2891–2900 (2017).
    • 158 You J, Zhang R, Xiong C et al. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 72(18), 4777–4786 (2012).
    • 159 Riedl SJ. Pasquale EB. Targeting the Eph system with peptides and peptide conjugates. Curr. Drug Targets 16(10), 1031–1047 (2015). •• A comprehensive review about erythropoietin-producing human hepatocellular receptor targeting with peptides and peptide conjugates.
    • 160 Baba Y, Matsuo H, Schally AV. Structure of the porcine LH- and FSH-releasing hormone. II. Confirmation of the proposed structure by conventional sequential analyses. Biochem. Biophys. Res. Commun. 44(2), 459–463 (1971).
    • 161 Keller G, Schally AV, Gaiser T et al. Receptors for luteinizing hormone releasing hormone (LHRH) expressed in human non-Hodgkin's lymphomas can be targeted for therapy with the cytotoxic LHRH analogue AN-207. Eur. J. Cancer 41(14), 2196–2202 (2005).
    • 162 Gründker C, Ernst J, Reutter M et al. Effective targeted chemotherapy using AEZS-108 (AN-152) for LHRH receptor-positive pancreatic cancers. Oncol. Rep. 26(3), 629–635 (2011).
    • 163 Halmos G, Arencibia JM, Schally AV et al. High incidence of receptors for luteinizing hormone-releasing hormone (LHRH) and LHRH receptor gene expression in human prostate cancers. J. Urol. 63(2), 623–629 (2000).
    • 164 Xu P, Jia Y, Yang Y et al. Photodynamic oncotherapy mediated by gonadotropin-releasing hormone receptors. J. Med. Chem. 60(20), 8667–8672 (2017).
    • 165 Karampelas T, Argyros O, Sayyad N et al. GnRH-Gemcitabine conjugates for the treatment of androgen-independent prostate cancer: pharmacokinetic enhancements combined with targeted drug delivery. Bioconjug. Chem. 25(4), 813–823 (2014).
    • 166 Karampelas T, Skavatsou E, Argyros O et al. Gemcitabine based peptide conjugate with improved metabolic properties and dual mode of efficacy. Mol. Pharm. 14(3), 674–685 (2017).
    • 167 Cao LB, Zeng S, Zhao W. Highly stable PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles for the effective delivery of docetaxel in prostate cancers. Nanoscale Res. Lett. 11(1), 305 (2016).
    • 168 Ghanghoria R, Tekade RK, Mishra AK et al. Luteinizing hormone-releasing hormone peptide tethered nanoparticulate system for enhanced antitumoral efficacy of paclitaxel. Nanomedicine 11(7), 797–816 (2016).
    • 169 Zhao K, Li D, Xu W et al. Targeted hydroxyethyl starch prodrug for inhibiting the growth and metastasis of prostate cancer. Biomaterials 116, 82–94 (2017).
    • 170 Dadras P, Atyabi F, Irani S et al. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur. J. Pharm. Sci. 97, 47–54 (2017).
    • 171 Dharap SS, Qiu B, Williams GC et al. Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J. Control. Rel. 91(1-2), 61–73 (2003).
    • 172 Dharap SS, Wang Y, Chandna P et al. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc. Natl Acad. Sci. USA 102(36), 12962–12967 (2005).
    • 173 Engel JB, Keller G, Schally AV et al. Effective treatment of experimental human endometrial cancers with targeted cytotoxic luteinizing hormone-releasing hormone analogues AN-152 and AN-207. Fertil Steril. 83, 1125–1133 (2005).
    • 174 Günthert AR, Gründker C, Bongertz T et al. Internalization of cytotoxic analog AN-152 of luteinizing hormone-releasing hormone induces apoptosis in human endometrial and ovarian cancer cell lines independent of multidrug resistance-1 (MDR-1) system. Am. J. Obstet. Gynecol. 191(4), 1164–1172 (2004).
    • 175 Arencibia JM, Bajo AM, Schally AV et al. Effective treatment of experimental ES-2 human ovarian cancers with a cytotoxic analog of luteinizing hormone-releasing hormone AN-207. Anticancer Drugs 13(9), 949–956 (2002).
    • 176 Miyazaki M, Schally AV, Nagy A et al. Targeted cytotoxic analog of luteinizing hormone-releasing hormone AN-207 inhibits growth of OV-1063 human epithelial ovarian cancers in nude mice. Am. J. Obstet. Gynecol. 180(5), 1095–1103 (1999).
    • 177 Stangelberger A, Schally AV, Nagy A et al. Inhibition of human experimental prostate cancers by a targeted cytotoxic luteinizing hormone-releasing hormone analog AN-207. Prostate. 66(2), 200–210 (2006).
    • 178 Plonowski A, Schally AV, Nagy A et al. Inhibition of in vivo proliferation of MDA-PCa-2b human prostate cancer by a targeted cytotoxic analog of luteinizing hormone-releasing hormone AN-207. Cancer Lett. 176(1), 57–63 (2002). • Breakthrough paper about a luteinizing hormone-releasing hormone-based drug delivery system.
    • 179 Krebs LJ, Wang X, Nagy A et al. A conjugate of doxorubicin and an analog of luteinizing hormone-releasing hormone shows increased efficacy against oral and laryngeal cancers. Oral Oncol. 38(7), 657–663 (2002).
    • 180 Jaszberenyi M, Schally AV, Block NL et al. Inhibition of U-87 MG glioblastoma by AN-152 (AEZS-108), a targeted cytotoxic analog of luteinizing hormone-releasing hormone. Oncotarget 4(3), 422–432 (2013).
    • 181 Popovics P, Schally AV, Szalontay L et al. Targeted cytotoxic analog of luteinizing hormone-releasing hormone (LHRH), AEZS-108 (AN-152), inhibits the growth of DU-145 human castration-resistant prostate cancer in vivo and in vitro through elevating p21 and ROS levels. Oncotarget 5(12), 4567–4578 (2014).
    • 182 Rahimipour S, Ben-Aroya N, Ziv K et al. Receptor-mediated targeting of a photosensitizer by its conjugation to gonadotropin-releasing hormone analogues. J. Med. Chem. 46(19), 3965–3974 (2003).
    • 183 Szabó I, Manea M, Orbán E et al. Development of an oxime bond containing daunorubicin-gonadotropin-releasing hormone-III conjugate as a potential anticancer drug. Bioconjug. Chem. 20(4), 656–665 (2009).
    • 184 Manea M, Tóvári J, Tejeda M et al. In-vivo antitumour effect of daunorubicin-GnRH-III derivative conjugates on colon carcinoma-bearing mice. Anticancer Drugs 23(1), 90–97 (2012).
    • 185 Aggarwal S, Ndinguri MW, Solipuram R et al. [DLys(6)]-luteinizing hormone releasing hormone-curcumin conjugate inhibits pancreatic cancer cell growth in vitro and in vivo. Int. J. Cancer 129(7), 1611–1623 (2011).
    • 186 Sundaram S, Durairaj C, Kadam R et al. Luteinizing hormone-releasing hormone receptor-targeted deslorelin-docetaxel conjugate enhances efficacy of docetaxel in prostate cancer therapy. Mol. Cancer Ther. 8(6), 1655–1665 (2009).
    • 187 Zhu S, Wang Q, Jiang J et al. A conjugate of methotrexate and an analog of luteinizing hormone releasing hormone shows increased efficacy against prostate cancer. Sci. Rep. 6, 33894 (2016).
    • 188 Argyros O, Karampelas T, Asvos X et al. Peptide-drug conjugate GnRH-sunitinib targets angiogenesis selectively at the site of action to inhibit tumor growth. Cancer Res. 76(5), 1181–1192 (2016).
    • 189 Pribylova M, Dvorakova M, Hanusova V et al. Paclitaxel conjugation with the analog of the gonadotropin-releasing hormone as a targeting moiety. Int. J. Pharm. 415(1-2), 175–180 (2011).
    • 190 Wang C, Ma Y, Feng S et al. Gonadotropin-releasing hormone receptor-targeted paclitaxel-degarelix conjugate: synthesis and in vitro evaluation. J. Pept. Sci. 21(7), 569–576 (2015).
    • 191 Saad M, Garbuzenko OB, Ber E et al. Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging? J. Control. Rel. 130(2), 107–114 (2008).
    • 192 Sundaram S, Trivedi R, Durairaj C et al. Targeted drug and gene delivery systems for lung cancer therapy. Clin. Cancer Res. 15(23), 7299–7308 (2009).
    • 193 Lin CJ, Kuan CH, Wang LW et al. Integrated self-assembling drug delivery system possessing dual responsive and active targeting for orthotopic ovarian cancer theranostics. Biomaterials 90, 12–26 (2016).
    • 194 Taheri A1, Dinarvand R, Ahadi F et al. The in vivo antitumor activity of LHRH targeted methotrexate-human serum albumin nanoparticles in 4T1 tumor-bearing Balb/c mice. Int. J. Pharm. 431(1-2), 183–189 (2012).
    • 195 Cao LB, Zeng S, Zhao W. Highly stable PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles for the effective delivery of docetaxel in prostate cancers. Nanoscale Res. Lett. 11(1), 305 (2016).
    • 196 Varshosaz J, Hassanzadeh F, Aliabadi HS et al. Targeted delivery of doxorubicin to breast cancer cells by magnetic LHRH chitosan bioconjugated nanoparticles. Int. J. Biol. Macromol. 93(Pt A), 1192–1205 (2016).
    • 197 Li M, Tang Z, Zhang Y et al. Targeted delivery of cisplatin by LHRH-peptide conjugated dextran nanoparticles suppresses breast cancer growth and metastasis. Acta Biomater. 18, 132–143 (2015).
    • 198 Vincent JP, Mazella J, Kitabgi P. Neurotensin and neurotensin receptors. Trends Pharmacol. Sci. 20(7), 302–309 (1999).
    • 199 Carraway R, Leeman SE. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J. Biol. Chem. 248(19), 6854–6861 (1973).
    • 200 Wu Z, Martinez-Fong D, Trédaniel J et al. Neurotensin and its high affinity receptor 1 as a potential pharmacological target in cancer therapy. Front. Endocrinol. 3, 184 (2013).
    • 201 Falciani C, Lelli B, Brunetti J et al. Modular branched neurotensin peptides for tumor target tracing and receptor-mediated therapy: a proof-of-concept. Curr. Cancer Drug Targets 10(7), 695–704 (2010). •• Breakthrough paper about branched neurotensin peptides.
    • 202 Brunetti J, Pillozzi S, Falciani C et al. Tumor-selective peptide-carrier delivery of paclitaxel increases in vivo activity of the drug. Sci. Rep. 5, 17736 (2015).
    • 203 Falciani C, Accardo A, Brunetti J et al. Target-selective drug delivery through liposomes labeled with oligobranched neurotensin peptides. ChemMedChem. 6(4), 678–685 (2011).
    • 204 Falciani C, Brunetti J, Lelli B et al. Nanoparticles exposing neurotensin tumor-specific drivers. J. Pept. Sci. 19(4), 198–204 (2013).
    • 205 Maschauer S, Prante O. Radiopharmaceuticals for imaging and endoradiotherapy of neurotensin receptor-positive tumors. J. Labelled Comp. Radiopharm. 61(3), 309–325 (2018). •• A comprehensive review about radiopharmaceuticals for imaging and endoradiotherapy of neurotensin receptor-positive tumors.
    • 206 Miao Y, Quinn TP. Peptide-targeted radionuclide therapy for melanoma. Crit. Rev. Oncol. Hematol. 67, 213–228 (2008).
    • 207 Lin C-H, Al-Suwayeh SA, Hung C-F et al. Camptothecin-loaded liposomes with α-melanocyte-stimulating hormone enhance cytotoxicity toward and cellular uptake by melanomas: an application of nanomedicine on natural product. J. Tradit. Complement. Med. 3(2), 102–109 (2013).
    • 208 Silva CO, Molpeceres J, Batanero B et al. Functionalized diterpene parvifloron D-loaded hybrid nanoparticles for targeted delivery in melanoma therapy. Ther. Deliv. 7(8), 521–544 (2016).
    • 209 Kanduluru AK, Low PS. Development of a ligand-targeted therapeutic agent for neurokinin-1 receptor expressing cancers. Mol. Pharm. 14(11), 3859–3865 (2017).
    • 210 Önyüksel H, Mohanty PS, Rubinstein I. Vip-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: a novel targeted nanomedicine for breast cancer. Int. J. Pharm. 365(1-2), 157–161 (2009).
    • 211 Agemy L, Kotamraju VR, Friedmann-Morvinski D et al. Proapoptotic peptide-mediated cancer therapy targeted to cell surface p32. Mol. Ther. 21(12), 2195–2204 (2013).
    • 212 Mozhi A, Ahmad I, Okeke CI et al. pH-sensitive polymeric micelles for the co-delivery of proapoptotic peptide and anticancer drug for synergistic cancer therapy. RSC Adv. 7, 12886–12896 (2017).
    • 213 Timur SS, Bhattarai P, Gürsoy RN et al. Design and in vitro evaluation of bispecific complexes and drug conjugates of anticancer peptide, LyP-1 in human breast cancer. Pharm. Res. 34(2), 352–364 (2017).
    • 214 Zhang M, Chen X, Ying M et al. Glioma-targeted drug delivery enabled by a multifunctional peptide. Bioconjug. Chem. 28(3), 775–781 (2017).
    • 215 Yin H, Shi X, Wang H et al. Photodynamic therapy targeting VCAM-1- expressing human umbilical vein endothelial cells using a PpIX-VCAM-1 binding peptide–quantum dot conjugate. RSC Adv. 7, 50562–50570 (2017).
    • 216 Hsiung PL, Hardy J, Friedland S et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat. Med. 14(4), 454–458 (2008).
    • 217 Tiwari S, Tirosh B, Rubinstein A. Increasing the affinity of cationized polyacrylamide-paclitaxel nanoparticles towards colon cancer cells by a surface recognition peptide. Int. J. Pharm. 531(1), 281–291 (2017).
    • 218 Markovsky E, Eldar-Boock A, Ben-Shushan D et al. Targeting NCAM-expressing neuroblastoma with polymeric precision nanomedicine. J. Control. Rel. 249, 162–172 (2017).