We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Novel [1,2,3]triazolo[1,5-a]pyridine derivatives are trypanocidal by sterol biosynthesis pathway alteration

    Michel Lapier

    Clinical & Molecular Pharmacology Program, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile

    ,
    Rafael Ballesteros-Garrido

    Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n 46100 Burjassot, Valencia, Spain

    ,
    Daniela Guzman-Rivera

    Clinical & Molecular Pharmacology Program, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile

    ,
    Fabiola González-Herrera

    Clinical & Molecular Pharmacology Program, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile

    ,
    Benjamin Aguilera-Venegas

    Free Radical & Antioxidants Laboratory, Inorganic & Analytical Department, Faculty of Chemical & Pharmaceutical Sciences, Universidad de Chile, Santos Dumont 964, Santiago, Chile

    ,
    Mauricio Moncada-Basualto

    Free Radical & Antioxidants Laboratory, Inorganic & Analytical Department, Faculty of Chemical & Pharmaceutical Sciences, Universidad de Chile, Santos Dumont 964, Santiago, Chile

    Department of Environmental Sciences, Faculty of Chemistry & Biology, Universidad de Santiago de Chile, Chile

    ,
    Rafael Ballesteros

    Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n 46100 Burjassot, Valencia, Spain

    ,
    Belén Abarca

    Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés s/n 46100 Burjassot, Valencia, Spain

    ,
    Bárbara Pesce

    Clinical & Molecular Pharmacology Program, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile

    ,
    Ulrike Kemmerling

    Anatomy & Developmental Biology Program, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile

    ,
    Claudio Olea-Azar

    Free Radical & Antioxidants Laboratory, Inorganic & Analytical Department, Faculty of Chemical & Pharmaceutical Sciences, Universidad de Chile, Santos Dumont 964, Santiago, Chile

    &
    Juan D Maya

    *Author for correspondence:

    E-mail Address: jdmaya@uchile.cl

    Clinical & Molecular Pharmacology Program, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile

    Published Online:https://doi.org/10.4155/fmc-2018-0242

    Aim: To study a new series of [1,2,3]triazolo[1,5-α]pyridine derivatives as trypanocidal agents because current antichagasic pharmacologic therapy is only partially effective. Materials & methods: The effect of the series upon Trypanosoma cruzi epimastigotes and murine macrophages viability, cell cycle, cell death and on the metabolites of the sterol biosynthesis pathway was measured; also, docking in 14α-demethylase was analyzed. Results: Compound 16 inhibits 14α-demethylase producing an imbalance in the cholesterol/ergosterol synthesis pathway, as suggested by a metabolic control and theoretical docking analysis. Consequently, it prevented cell proliferation, stopping the cellular cycle at the G2/M phase, inducing cell death. Conclusion: Although the exact cell death mechanism remained elusive, this series can be used for the further rational design of novel antiparasitic molecules.

    Papers of special note have been highlighted as: •of interest; ••of considerable interest

    References

    • 1. Zingales B , Miles MA , Moraes CB et al. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem. Inst. Oswaldo Cruz 109(6), 828–833 (2014).
    • 2. Rassi A , Rassi A , Marin-Neto JA . Chagas disease. Lancet 375(9723), 1388–1402 (2010).
    • 3. Ribeiro I , Sevcsik AM , Alves F et al. New, improved treatments for Chagas disease: from the R&D pipeline to the patients. PLoS Negl. Trop. Dis. 3(7), e484 (2009). • Declares the need for further funding for R&D on drug development for Chagas Disease and describes pipeline functioning such as the Drugs for Neglected Diseases initiative (DNDi).
    • 4. Adam R , Bilbao-Ramos P , Lopez-Molina S et al. Triazolopyridyl ketones as a novel class of antileishmanial agents. DNA binding and BSA interaction. Bioorg. Med. Chem. 22(15), 4018–4027 (2014).
    • 5. Lapier M , Zuniga-Lopez MC , Aguilera-Venegas B et al. Evaluation of the novel antichagasic activity of [1,2,3]triazolo[1,5-a]pyridine derivatives. Curr. Top. Med. Chem. 17(4), 399–411 (2017).
    • 6. Lepesheva GI , Waterman MR . Structural basis for conservation in the CYP51 family. Biochim. Biophys. Acta 1814(1), 88–93 (2011).
    • 7. Lepesheva GI , Ott RD , Hargrove TY et al. Sterol 14alpha-demethylase as a potential target for antitrypanosomal therapy: enzyme inhibition and parasite cell growth. Chem. Biol. 14(11), 1283–1293 (2007).
    • 8. Hargrove TY , Wawrzak Z , Alexander PW et al. Complexes of Trypanosoma cruzi sterol 14alpha-demethylase (CYP51) with two pyridine-based drug candidates for Chagas disease: structural basis for pathogen selectivity. J. Biol. Chem. 288(44), 31602–31615 (2013). •• Describes the active site of the 14α-demethylase to aid in the rational design of novel pyridine-derive inhibitors with trypanocidal activity.
    • 9. Kessler RL , Soares MJ , Probst CM , Krieger MA . Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death . PLoS One 8(1), e55497 (2013).
    • 10. Martinez-Botas J , Suarez Y , Ferruelo AJ , Gomez-Coronado D , Lasuncion MA . Cholesterol starvation decreases p34(cdc2) kinase activity and arrests the cell cycle at G2. FASEB J. 13(11), 1359–1370 (1999).
    • 11. Fernandez C , Martin M , Gomez-Coronado D , Lasuncion MA . Effects of distal cholesterol biosynthesis inhibitors on cell proliferation and cell cycle progression. J. Lipid Res. 46(5), 920–929 (2005).
    • 12. Abarca B , Ballesteros R , Elmasnaouy M . A facile route to new potential helicating ligands. Tetrahedron 54(50), 15287–15292 (1998).
    • 13. Boyer J , Goebel N . Notes- the identification of C12H8N4O, an oxidation product from α-Pyridil monohydrazone. J. Org. Chem. 25(2), 304–305 (1960).
    • 14. Bower JD , Ramage GR . 907. Heterocyclic systems related to pyrrocoline. Part II. The preparation of polyazaindenes by dehydrogenative cyclisations. J. Chem. Soc. (Resumed) 1857, 4506–4510 (1957).
    • 15. Abarca B , Ballesteros R , Chadlaoui M . Triazolopyridines. Part 24: New polynitrogenated potential helicating ligands. Tetrahedron 60(27), 5785–5792 (2004).
    • 16. Bourguignon SC , Mello CB , Santos DO , Gonzalez MS , Souto-Padron T . Biological aspects of the Trypanosoma cruzi (Dm28c clone) intermediate form, between epimastigote and trypomastigote, obtained in modified liver infusion tryptose (LIT) medium. Acta Trop. 98(1), 103–109 (2006).
    • 17. Mosmann T . Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1–2), 55–63 (1983).
    • 18. Frisch MJ , Trucks GW , Schlegel HB et al. Gaussian 16 Rev. B.01 (2016).
    • 19. Case DA , Betz RM , Cheatham TE III et al. AMBER 16 (2016).
    • 20. Chen C-K , Leung SSF , Guilbert C , Jacobson MP , McKerrow JH , Podust LM . Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Negl. Trop. Dis. 4(4), e651 (2010).
    • 21. Molecular Operating Environment (MOE), 2015.10. (2015).
    • 22. Maier JA , Martinez C , Kasavajhala K , Wickstrom L , Hauser KE , Simmerling C . ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11(8), 3696–3713 (2015).
    • 23. Aguilera-Venegas B , Olea-Azar C , Aran VJ et al. Electrochemical, ESR and theoretical insights into the free radical generation by 1,1 ‘-hydrocarbylenebisindazoles and its evaluation as potential bio-active compounds. Int. J. Electrochem. Sci. 7(7), 5837–5863 (2012).
    • 24. Aguilera-Venegas B , Olea-Azar C , Norambuena E et al. ESR, electrochemical, molecular modeling and biological evaluation of 4-substituted and 1,4-disubstituted 7-nitroquinoxalin-2-ones as potential anti-Trypanosoma cruzi agents. Spectrochim Acta A Mol. Biomol. Spectrosc. 78(3), 1004–1012 (2011).
    • 25. Morris GM , Goodsell DS , Halliday RS et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19(14), 1639–1662 (1998).
    • 26. Abarca B , Alkorta I , Ballesteros R et al. 3-(2-Pyridyl)-[1,2,3]triazolo[1,5-a]pyridines. An experimental and theoretical (DFT) study of the ring-chain isomerization. Org. Biomol. Chem. 3(21), 3905–3910 (2005).
    • 27. Moraes CB , Giardini MA , Kim H et al. Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development. Sci. Rep. 4, 4703 (2014). • Authors favor nitroheterocycle derived drugs as more efficacious that CYP51 inhibitors, after a broad screening on a panel of Trypanosoma cruzi stocks representing all current discrete typing units (DTUs).
    • 28. Liu XH , Sun ZH , Yang MY et al. Microwave assistant one pot synthesis, crystal structure, antifungal activities and 3D-QSAR of novel 1,2,4-triazolo[4,3-a]pyridines. Chem. Biol. Drug Des. 84(3), 342–347 (2014).
    • 29. Liu XH , Xu XY , Tan CX , Weng JQ , Xin JH , Chen J . Synthesis, crystal structure, herbicidal activities and 3D-QSAR study of some novel 1,2,4-triazolo[4,3-a]pyridine derivatives. Pest Manag. Sci. 71(2), 292–301 (2015).
    • 30. Lipinski CA , Lombardo F , Dominy BW , Feeney PJ . Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46(1–3), 3–26 (2001).
    • 31. Meanwell NA . Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem. Res. Toxicol. 24(9), 1420–1456 (2011).
    • 32. McKerrow JH , Lipinski CA . The rule of five should not impede anti-parasitic drug development. Int J Parasitol Drugs Drug Resist 7(2), 248–249 (2017). •• Antiparasitic rug development, and in general, neglected disease drug therapy development may be handicapped by the five of rule. Lipinsky declares here that the rule of Five may not apply in such circumstances.
    • 33. Daina A , Michielin O , Zoete V . SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 7, 42717 (2017).
    • 34. Urbina JA . Ergosterol biosynthesis and drug development for Chagas disease. Mem. Inst. Oswaldo Cruz 104(Suppl 1), 311–318 (2009).
    • 35. Lepesheva GI , Hargrove TY , Anderson S et al. Structural insights into inhibition of sterol 14alpha-demethylase in the human pathogen Trypanosoma cruzi . . J. Biol. Chem. 285(33), 25582–25590 (2010). •• Provides structural data on CYP51 inhibition and azole resistance, clarifying the path for directed design of new, more potent and selective drugs for Chagas disease.
    • 36. Hargrove TY , Wawrzak Z , Alexander PW et al. Complexes of Trypanosoma cruzi Sterol 14α-Demethylase (CYP51) with two pyridine-based drug candidates for chagas disease: structural basis for pathogen selectivity. J. Biol. Chem. 288(44), 31602–31615 (2013).
    • 37. Chung S , Kim SH , Seo Y , Kim SK , Lee JY . Quantitative analysis of cell proliferation by a dye dilution assay: application to cell lines and cocultures. Cytometry A 91(7), 704–712 (2017).
    • 38. Singh P , Saxena R , Srinivas G , Pande G , Chattopadhyay A . Cholesterol biosynthesis and homeostasis in regulation of the cell cycle. PLoS One 8(3), e58833 (2013).
    • 39. Fernandez C , Lobo Md Mdel V , Gomez-Coronado D , Lasuncion MA . Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation. Exp. Cell Res. 300(1), 109–120 (2004).