We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

The advantages and challenges raised by the chemistry of aldehydic cellulose nanofibers in medicinal chemistry

    Isabelle Baussanne

    University Grenoble Alpes, DPM, CNRS, F-38000 Grenoble, France

    ,
    Julien Bras

    University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France

    ,
    Bastien Watbled

    University Grenoble Alpes, DPM, CNRS, F-38000 Grenoble, France

    &
    Martine Demeunynck

    *Author for correspondence:

    E-mail Address: martine.demeunynck@univ-grenoble-alpes.fr

    University Grenoble Alpes, DPM, CNRS, F-38000 Grenoble, France

    Published Online:https://doi.org/10.4155/fmc-2018-0277
    Free first page

    References

    • 1 Klemm D, Kramer F, Moritz S et al. Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50(24), 5438–5466 (2011).
    • 2 Missoum K, Belgacem MN, Bras J. Nanofibrillated cellulose surface modification: a review. Materials 6(5), 1745–1766 (2013).
    • 3 Habibi Y. Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43(5), 1519–1542 (2014).
    • 4 Jorfi M, Foster EJ. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym Sci. 132(14), 41719 (2015).
    • 5 Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V. Oxidized cellulose – survey of the most recent achievements. Carbohyd. Polym. 93(1), 207–215 (2013).
    • 6 Liimatainen H, Visanko M, Sirviö JA, Hormi OEO, Niinimaki J. Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13(5), 1592–1597 (2012).
    • 7 Tejado A, Alam MN, Antal M, Yang H, van de Ven TG. Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3), 831–842 (2012).
    • 8 Jaušovec D, Vogrinčič R, Kokol V. Introduction of aldehyde vs carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohyd. Polym. 116, 74–85 (2015).
    • 9 Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6), 1687–1691 (2006).
    • 10 Hosoya T, Bacher M, Potthast A, Elder T, Rosenau T. Insights into degradation pathways of oxidized anhydroglucose units in cellulose by β-alkoxy-elimination: a combined theoretical and experimental approach. Cellulose 25(7), 3797–3814 (2018).
    • 11 Potthast A, Rosenau T, Kosma P. Analysis of oxidized functionalities in cellulose. In: Polysaccharides II. Advances in Polymer Science, Volume 205. Klemm D (Ed.). Springer, Berlin, Heidelberg, Germany, 1–48 (2006).
    • 12 Anseth KS, Klok H-A. Click chemistry in biomaterials, nanomedicine, and drug delivery. Biomacromolecules 17(1), 1–3 (2016).
    • 13 Collins J, Xiao Z, Müllner M, Connal LA. The emergence of oxime click chemistry and its utility in polymer science. Polym. Chem. 7(23), 3812–3826 (2016).
    • 14 Zou Y, Zhang L, Yang L et al. ‘Click’ chemistry in polymeric scaffolds: bioactive materials for tissue engineering. J. Control. Rel. 273, 160–179 (2018).
    • 15 Sirviö JA, Visanko M, Laitinen O, Ämmälä A, Liimatainen H. Amino-modified cellulose nanocrystals with adjustable hydrophobicity from combined regioselective oxidation and reductive amination. Carbohyd. Polym. 136, 581–587 (2016).
    • 16 Guigo N, Mazeau K, Putaux J-L, Heux L. Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study. Cellulose 21(6), 4119–4133 (2014).
    • 17 Röhrling J, Potthast A, Rosenau T et al. A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method development. Biomacromolecules 3(5), 959–968 (2002).
    • 18 van de Ven TG, Sheikhi A. Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8(33), 15101–15114 (2016).
    • 19 Wang C, Venditti RA, Zhang K. Tailor-made functional surfaces based on cellulose-derived materials. Appl. Microbiol. Biotechnol. 99(14), 5791–5799 (2015).
    • 20 Uth C, Zielonka S, Hoerner S et al. A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds. Angew. Chem. Int. Ed. 53(46), 12618–12623 (2014).
    • 21 Nypeloö T, Amer H, Konnerth J, Potthast A, Rosenau T. Self-standing nanocellulose Janus-type films with aldehyde and carboxyl functionalities. Biomacromolecules 19(3), 973–979 (2018).
    • 22 Kalia J, Raines RT. Hydrolytic stability of hydrazones and oximes. Angew. Chem. 120(39), 7633–7636 (2008).