We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Toward understanding calmodulin plasticity by molecular dynamics

    Eduardo Garrido

    Department of Materials Science & Physical Chemistry, Faculty of Chemistry, University of Barcelona & the Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Barcelona, Spain

    Department of Cell Biology, Immunology & Neuroscience, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain

    ,
    Montserrat Jaumot

    Department of Cell Biology, Immunology & Neuroscience, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain

    ,
    Neus Agell

    Department of Cell Biology, Immunology & Neuroscience, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain

    ,
    José M Granadino-Roldán

    Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus “Las Lagunillas” s/n, 23071, Jaén, Spain

    &
    Jaime Rubio-Martinez

    *Author for correspondence: Tel.: +34 93 403 9263; Fax: +34 93 402 1231;

    E-mail Address: jaime.rubio@ub.edu

    Department of Materials Science & Physical Chemistry, Faculty of Chemistry, University of Barcelona & the Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Barcelona, Spain

    Published Online:https://doi.org/10.4155/fmc-2018-0323

    Aim: Calmodulin interacts in many different ways with its ligands. We aim to shed light on its plasticity analyzing the changes followed by the linker region and the relative position of the lobes using conventional molecular dynamics, accelerated MD and scaled MD (sMD). Materials & methods: Three different structures of calmodulin are compared, obtaining a total of 2.5 μs of molecular dynamics, which have been analyzed using the principal component analysis and clustering methodologies. Results: sMD simulations reach conformations that conventional molecular dynamics is not able to, without compromising the stability of the protein. On the other hand, accelerated MD requires optimization of the setup parameters to be useful. Conclusion: sMD is useful to study flexible proteins, highlighting those factors that justify its promiscuity.

    Calmodulin, a very flexible protein, has been studied taking advantage of the new available methodologies such as scaled and accelerated molecular dynamics. The results will be important to determine how this protein behaves when binding to its partners, as many new roles have been recently found for this protein.

    Papers of special note have been highlighted as: •• of considerable interest

    References

    • 1. Marshall CB, Nishikawa T, Osawa M, Stathopulos PB, Ikura M. Calmodulin and STIM proteins: two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochem. Biophys. Res. Comm. 460(1), 5–21 (2015).
    • 2. Jurado LA, Chockalingam PS, Jarrett HW. Apocalmodulin. Physiol. Rev. 79(3), 661–682 (1999). •• A good starting point to understand calmodulin plasticity.
    • 3. Piazza M, Guillemette JG, Dieckmann T. Dynamics of nitric oxide synthase-calmodulin interactions at physiological calcium concentrations. Biochemistry 54(11), 1989–2000 (2015).
    • 4. Alvarez-Moya B, López-Alcalá C, Drosten M, Bachs O, Agell N. K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function. Oncogene 29, 5911 (2010).
    • 5. Lopez-Alcala C, Alvarez-Moya B, Villalonga P, Calvo M, Bachs O, Agell N. Identification of essential interacting elements in K-Ras/calmodulin binding and its role in K-Ras localization. J. Biol. Chem. 283(16), 10621–10631 (2008).
    • 6. Villarroel A, Taglialatela M, Bernardo-Seisdedos G et al. The ever changing moods of calmodulin: how structural plasticity entails transductional adaptability. J. Mol. Biol. 426(15), 2717–2735 (2014).
    • 7. Persechini A, Kretsinger RH. The central helix of calmodulin functions as a flexible tether. J. Biol. Chem. 263(25), 12175–12178 (1988). •• Very useful to understand calmodulin plasticity.
    • 8. Vlach J, Samal AB, Saad JS. Solution structure of calmodulin bound to the binding domain of the HIV-1 matrix protein. J. Biol. Chem. 289(12), 8697–8705 (2014).
    • 9. Nussinov R, Muratcioglu S, Tsai CJ, Jang H, Gursoy A, Keskin O. The key role of calmodulin in KRAS-driven adenocarcinomas. Mol. Cancer Res. 13(9), 1265–1273 (2015).
    • 10. Garrido E, Lazaro J, Jaumot M, Agell N, Rubio-Martinez J. Modeling and subtleties of K-Ras and calmodulin interaction. PLoS Comput. Biol. 14(10), e1006552 (2018). •• The first structure of calmodulin–KRas complex.
    • 11. Negi S. Effect of calcium ion removal, ionic strength, and temperature on the conformation change in calmodulin protein at physiological pH. J. Biophys. 2014, 329703 (2014).
    • 12. Meireles L, Gur M, Bakan A, Bahar I. Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins. Protein Sci. 20(10), 1645–1658 (2011).
    • 13. Bakan A, Bahar I. The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc. Natl Acad. Sci. USA 106(34), 14349–14354 (2009). •• Very good description of the induced fit effect.
    • 14. Tamura K, Hayashi S. Linear response path following: a molecular dynamics method to simulate global conformational changes of protein upon ligand binding. J. Chem. Theory Comput. 11(7), 2900–2917 (2015).
    • 15. Kukic P, Camilloni C, Cavalli A, Vendruscolo M. Determination of the individual roles of the linker residues in the interdomain motions of calmodulin using NMR chemical shifts. J. Mol. Biol. 426(8), 1826–1838 (2014). •• An experimental approximation to calmodulin dynamics.
    • 16. Sinko W, Miao Y, de Oliveira CA, McCammon JA. Population based reweighting of scaled molecular dynamics. J. Phys. Chem. B 117(42), 12759–12768 (2013).
    • 17. Hamelberg D, Mongan J, McCammon JA. Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J. Chem. Phys. 120(24), 11919–11929 (2004).
    • 18. Miao Y, McCammon JA. Unconstrained enhanced sampling for free energy calculations of biomolecules: a review. Mol. Simul. 42(13), 1046–1055 (2016).
    • 19. Gomez-Gutierrez P, Rubio-Martinez J, Perez JJ. Identification of potential small molecule binding pockets in p38alpha MAP kinase. J. Chem. Inf. Model. 57(10), 2566–2574 (2017).
    • 20. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins 65(3), 712–725 (2006).
    • 21. Case DA, Babin V, Berryman JT et al. AMBER 14. University of California, San Francisco. San Francisco, CA, USA (2014). http://ambermd.org
    • 22. Roe DR, Cheatham TE 3rd. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9(7), 3084–3095 (2013).
    • 23. Molecular Operating Environment (MOE) 2009.1. Chemical Computing Group Inc. Montreal, QC, Canada (2013). www.chemcomp.com/MOE-Molecular_Modeling_and_Simulations.htm
    • 24. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983).
    • 25. Adelman SA, Garrison BJ. Generalized langevin theory for gas-solid processes – dynamical solid models. J. Chem. Phys. 65(9), 3751–3761 (1976).
    • 26. Davidchack RL, Handel R, Tretyakov MV. Langevin thermostat for rigid body dynamics. J. Chem. Phys. 130(23), 234101 (2009).
    • 27. Ryckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23(3), 327–341 (1977).
    • 28. Perez JJ, Tomas MS, Rubio-Martinez J. Assessment of the sampling performance of multiple-copy dynamics versus a unique trajectory. J. Chem. Inf. Model. 56(10), 1950–1962 (2016).