We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

GABAA receptor family: overview on structural characterization

    María Julia Amundarain

    Departamento de Física, Instituto de Física del Sur (IFISUR), Universidad Nacional del Sur (UNS), CONICET, Av L N Alem 1253, B8000CPB – Bahía Blanca, Argentina

    ,
    Rui Pedro Ribeiro

    Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134 Verona, Italy

    ,
    Marcelo Daniel Costabel

    Departamento de Física, Instituto de Física del Sur (IFISUR), Universidad Nacional del Sur (UNS), CONICET, Av L N Alem 1253, B8000CPB – Bahía Blanca, Argentina

    &
    Alejandro Giorgetti

    *Author for correspondence: Tel.: +39 045 802 7982;

    E-mail Address: alejandro.giorgetti@univr.it

    Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134 Verona, Italy

    IAS-5/INM-9: Computational Biomedicine-Institute for Advanced Simulation (IAS)/Institute of Neuroscience & Medicine (INM), Forschungszentrum Jülich, D-52425 Jülich, Germany

    Published Online:https://doi.org/10.4155/fmc-2018-0336

    The pentameric γ-aminobutyric acid type A receptors are ion channels activated by ligands, which intervene in the rapid inhibitory transmission in the mammalian CNS. Due to their rich pharmacology and therapeutic potential, it is essential to understand their structure and function thoroughly. This deep characterization was hampered by the lack of experimental structural information for many years. Thus, computational techniques have been extensively combined with experimental data, in order to undertake the study of γ-aminobutyric acid type A receptors and their interaction with drugs. Here, we review the exciting journey made to assess the structures of these receptors and outline major outcomes. Finally, we discuss the brand new structure of the α1β2γ2 subtype and the amazing advances it brings to the field.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1 Schofield PR, Darlison MG, Fujita N et al. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328(6127), 221 (1987).
    • 2 Olsen RW, Sieghart W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid A receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 50(2), 291–313 (1998).
    • 3 Langosch D, Thomas L, Betz H. Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc. Natl Acad. Sci. 85(19), 7394–7398 (1988).
    • 4 Cully DF, Vassilatis DK, Liu KK et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371(6499), 707 (1994).
    • 5 Noda M, Takahashi H, Tanabe T et al. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302(5908), 528 (1983).
    • 6 Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254(5030), 432–437 (1991).
    • 7 Davies PA, Wang W, Hales TG, Kirkness EF. A novel class of ligand-gated ion channel is activated by Zn2+. J. Biol. Chem. 278(2), 712–717 (2003).
    • 8 Ortells MO, Lunt GG. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci. 18(3), 121–127 (1995).
    • 9 Jaiteh M, Taly A, Hénin J. Evolution of pentameric ligand-gated ion channels: pro-loop receptors. PLoS ONE 11(3), e0151934 (2016).
    • 10 Keramidas A, Moorhouse AJ, Schofield PR, Barry PH. Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog. Biophys. Mol. Biol. 86(2004), 161–204 (2010).
    • 11 Imoto K, Busch C, Sakmann B et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335(13), 645–648 (1988).
    • 12 Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol. Rev. 89(1), 73–120 (2009).
    • 13 Ulens C, Spurny R, Thompson AJ et al. The prokaryote ligand-gated ion channel ELIC captured in a pore blocker-bound conformation by the Alzheimer's disease drug memantine. Structure 22(10), 1399–1407 (2014).
    • 14 Amundarain MJ, Viso JF, Zamarreño F, Giorgetti A, Costabel M. Orthosteric and benzodiazepine cavities of the α1β2γ2 GABAA receptor: insights from experimentally validated in silico methods. J. Biomol. Struct. Dyn. 4, 1–19 (2018) (Epub ahead of print).
    • 15 Baumann SW, Baur R, Sigel E. Forced subunit assembly in α1 β2γ2 GABAA receptors: insight into the absolute arrangement. J. Biol. Chem. 277(48), 46020–46025 (2002).
    • 16 Carter CRJ, Kozuska JL, Dunn SMJ. Insights into the structure and pharmacology of GABAA receptors. Future Med. Chem. 2(5), 859–75 (2010).
    • 17 Froestl W. An historical perspective on GABAergic drugs. Future Med. Chem. 3(2), 163–175 (2011).
    • 18 Olsen RW. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes. In: Diversity and Functions of GABA Receptors: A Tribute to Hanns Möhler, Part B. Elsevier, Inc., 167–202, Amsterdam, The Netherlands (2015). •• A detailed description of allosteric modulators of GABAARs and their binding sites. It reviews the experimental and computational approaches to identification and characterization of the sites.
    • 19 Miller PS, Smart TG. Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol. Sci. 31(4), 161–174 (2010).
    • 20 Althoff T, Hibbs RE, Banerjee S, Gouaux E. X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 512(7514), 333 (2014).
    • 21 Zhang J, Xue F, Liu Y, Yang H, Wang X. The structural mechanism of the Cys-loop receptor desensitization. Mol. Neurobiol. 48(1), 97–108 (2013).
    • 22 Gielen M, Thomas P, Smart TG. The desensitization gate of inhibitory Cys-loop receptors. Nat. Commun. 6, 1–10 (2015).
    • 23 Huang X, Chen H, Michelsen K, Schneider S, Shaffer PL. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine. Nature 536(7572), 277–280 (2015).
    • 24 Calimet N, Simoes M, Changeux J-P, Karplus M, Taly A, Cecchini M. A gating mechanism of pentameric ligand-gated ion channels. Proc. Natl Acad. Sci. USA 110(42), E3987–E3996 (2013).
    • 25 Dacosta CJB, Baenziger JE. Gating of pentameric ligand-gated ion channels: structural insights and ambiguities. Structure 21(8), 1271–1283 (2013).
    • 26 Lape R, Colquhoun D, Sivilotti LG. On the nature of partial agonism in the nicotinic receptor superfamily. Nature 454(7205), 722–727 (2008).
    • 27 Jatczak-Śliwa M, Terejko K, Brodzki M et al. Distinct modulation of spontaneous and GABA-evoked gating by flurazepam shapes cross-talk between agonist-free and liganded GABAA receptor activity. Front. Cell. Neurosci. 12, 1–18 (2018).
    • 28 Yuan H, Low C, Moody OA, Jenkins A, Traynelis SF. Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol. Pharmacol. 88(1), 203–217 (2015).
    • 29 Earnheart JC, Schweizer C, Crestani F et al. GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J. Neurosci. 27(14), 3845–3854 (2007).
    • 30 Möhler H. GABAA receptor diversity and pharmacology. Cell Tissue Res. 326(2), 505–516 (2006).
    • 31 Luscher B, Fuchs T. GABAergic control of depression-related brain states. Adv. Pharmacol. 73, 97–144 (2015) (Epub ahead pf print).
    • 32 Mukherjee S, Das SK, Vaidyanathan K, Vasudevan DM. Consequences of alcohol consumption on neurotransmitters – an overview. Curr. Neurovasc. Res. 5(4), 266–272 (2008).
    • 33 Woo T-U, Whitehead RE, Melchitzky DS, Lewis DA. A subclass of prefrontal γ-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proc. Natl Acad. Sci. 95(9), 5341–5346 (1998).
    • 34 Greenfield LJ. Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure 22(8), 589–600 (2013).
    • 35 Shangguan Y, Xu X, Ganbat B et al. CNTNAP4 impacts epilepsy through GABAA receptors regulation: evidence from temporal lobe epilepsy patients and mouse models. Cereb. Cortex. 28(10), 1–14 (2017).
    • 36 Collins AL, Ma D, Whitehead PL et al. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 7(3), 167–174 (2006).
    • 37 Mesbah-Oskui L, Penna A, Orser BA, Horner RL. Reduced expression of α5GABAA receptors elicits autism-like alterations in EEG patterns and sleep–wake behavior. Neurotoxicol. Teratol. 61, 115–122 (2017) (Epub ahead of print).
    • 38 Berman HM, Westbrook J, Feng Z et al. The Protein Data Bank. Nucleic Acids Res. 28(1), 235–242 (2000).
    • 39 Berman HM, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 10(12), 980 (2003).
    • 40 Rose PW, Prlić A, Altunkaya A et al. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 45(45D1), D271–D281 (2017).
    • 41 Miller PS, Aricescu AR. Crystal structure of a human GABAA receptor. Nature 512(7514), 270–275 (2015). • Introduces the first crystallographic structure of a GABAAR, the human β3 homopentamer. It was captured in a desensitized state with agonist molecules bound.
    • 42 Zhu S, Noviello CM, Teng J, Walsh RM, Kim JJ, Hibbs RE. Structure of a human synaptic GABAA receptor. Nature 559(7712), 1 (2018). • Presents the new structure of a GABAA receptor obtained through cryo-electron microscopy. It belongs to the most common isoform in adult humans.
    • 43 Piccoli S, Suku E, Garonzi M, Giorgetti A. Genome-wide membrane protein structure prediction. Curr. Genomics 14(5), 324–9 (2013).
    • 44 Almén MS, Nordström KJV, Fredriksson R, Schiöth HB. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 7, 50 (2009).
    • 45 Hendrickson WA. Atomic-level analysis of membrane protein structure. Nat. Struct. Mol. Biol. 23(6), 464–467 (2016).
    • 46 Junge F, Schneider B, Reckel S, Schwarz D, Dotsch V, Bernhard F. Large-scale production of functional membrane proteins. Cell. Mol. Life Sci. 65(11), 1729–1755 (2008).
    • 47 Koehler Leman J, Ulmschneider MB, Gray JJ. Computational modeling of membrane proteins. Proteins Struct. Funct. Bioinforma. 83(1), 1–24 (2015).
    • 48 Carpenter EP, Beis K, Cameron AD, Iwata S. Overcoming the challenges of membrane protein crystallography. Curr. Opin. Struct. Biol. 18(5), 581–586 (2008).
    • 49 Vijayan RSK, Trivedi N, Roy SN et al. Modeling the closed and open state conformations of the GABAA ion channel-plausible structural insights for channel gating. J. Chem. Inf. Model. 52(11), 2958–2969 (2012).
    • 50 Higgins MK, Lea SM. On the state of crystallography at the dawn of the electron microscopy revolution. Curr. Opin. Struct. Biol. 46, 95–101 (2017) (Epub ahead of print). •• Focuses on the recent advances in high-resolution electron cryo-microscopy. It offers a thorough comparison between this technique and x-ray crystallography, in addition to prospects on the different structure determination methods.
    • 51 Birch J, Axford D, Foadi J, Meyer A, Eckhardt A. The fine art of integral membrane protein crystallisation. Methods 147, 150-162 (2018).
    • 52 Basak S, Gicheru Y, Samanta A et al. Cryo-EM structure of 5-HT3A receptor in its resting conformation. Nat. Commun. 9(514), 1–10 (2018).
    • 53 Miller PS, Masiulis S, Malinauskas T, Kotecha A. Heteromeric GABAA receptor structures in positively-modulated active states. bioRxiv(2018) (Preprint).
    • 54 Phulera S, Zhu H, Yu J et al. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2 heterotrimeric GABAA receptor in complex with GABA illuminates mechanism of receptor assembly and agonist binding. Elife 7(e39383), 1–21 (2018).
    • 55 Mowrey DD, Liu Q, Bondarenko V et al. Insights into distinct modulation of α7 and α7β2 nicotinic acetylcholine receptors by the volatile anesthetic. J. Biol. Chem. 288(50), 35793–35800 (2013).
    • 56 Morales-Perez CL, Noviello CM, Hibbs RE. X-ray structure of the human α4β2 nicotinic receptor. Nature 538(7625), 411–415 (2016).
    • 57 Kouvatsos N, Giastas P, Chroni-Tzartou D, Poulopoulou C, Tzartos SJ. Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: ligand-bound α2 homopentamer. 113(34), 9635–40 (2016).
    • 58 Miyazawa A, Fujiyoshi Y, Unwin N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423(6943), 949–955 (2003).
    • 59 Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346(4), 967–989 (2005).
    • 60 Zuber B, Unwin N. Structure and superorganization of acetylcholine receptor-rapsyn complexes. PNAS 110(26), 10622–10627 (2013).
    • 61 Unwin N, Fujiyoshi Y. Gating movement of acetylcholine receptor caught by plunge-freezing. J. Mol. Biol. 422(5), 617–634 (2012).
    • 62 Du J, Lu W, Wu S, Cheng Y, Gouaux E. Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526(7572), 224–229 (2015).
    • 63 Moraga-cid G, Sauguet L, Huon C et al. Allosteric and hyperekplexic mutant phenotypes investigated on an α1 glycine receptor transmembrane structure. Proc. Natl Acad. Sci. USA 112(9), 2865–2870 (2015).
    • 64 Huang X, Chen H, Michelsen K, Schneider S, Shaffer PL. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine. Nature 536(7572), 277–280 (2015).
    • 65 Huang X, Chen H, Shaffer PL. Crystal structures of human GlyR α3 bound to ivermectin. Struct. Des. 25(6), 1–6 (2017).
    • 66 Huang X, Shaffer PL, Ayube S et al. Crystal structures of human GlyR α3 bound to a novel class of potentiators with efficacy in a mouse model of neuropathic pain. Nat. Struct. Mol. Biol. 24(3), 108 (2017).
    • 67 Hilf RJC, Dutzler R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452(7185), 375–379 (2008).
    • 68 Zimmermann I, Dutzler R. Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC. PLoS Biol. 9(6), e1001101 (2011).
    • 69 Zimmermann I, Marabelli A, Bertozzi C, Sivilotti LG, Dutzler R. Inhibition of the prokaryotic pentameric ligand-gated ion channel ELIC by divalent cations. PLoS Biol. 10(11), e1001429 (2012).
    • 70 Spurny R, Ramerstorfer J, Price K et al. Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines. Proc. Natl Acad. Sci. USA 109(44), E3028–E3034 (2012).
    • 71 Pan J, Chen Q, Willenbring D et al. Structure of the pentameric ligand-gated ion channel ELIC cocrystallized with its competitive antagonist acetylcholine. Nat. Commun. 3, 714 (2012).
    • 72 Gonzalez-Gutierrez G, Lukk T, Agarwal V, Papke D, Nair SK, Grosman C. Mutations that stabilize the open state of the Erwinia chrisanthemi ligand-gated ion channel fail to change the conformation of the pore domain in crystals. Proc. Natl Acad. Sci. USA 109(16), 6331–6336 (2012).
    • 73 Spurny R, Billen B, Howard RJ et al. Multisite binding of a general anesthetic to the prokaryotic pentameric Erwinia chrysanthemi ligand-gated ion channel (ELIC). J. Biol. Chem. 288(12), 8355–8364 (2013).
    • 74 Chen Q, Kinde MN, Arjunan P et al. Direct pore binding as a mechanism for isoflurane inhibition of the pentameric ligand-gated ion channel ELIC. Sci. Rep. 5(6), 13833(2015).
    • 75 Bertozzi C, Zimmermann I, Engeler S, Hilf RJC, Dutzler R. Signal transduction at the domain interface of prokaryotic pentameric ligand-gated ion channels. PLoS Biol. 14(3), e1002393 (2016).
    • 76 Nys M, Wijckmans E, Farinha A et al. Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine. Proc. Natl Acad. Sci. 113(43), E6696–E6703 (2016).
    • 77 Chen Q, Wells MM, Tillman TS et al. Structural basis of alcohol inhibition of the pentameric ligand-gated ion channel ELIC. Structure 25(1), 180–187 (2017).
    • 78 Schmandt N, Velisetty P, Chalamalasetti SV et al. A chimeric prokaryotic pentameric ligand-gated channel reveals distinct pathways of activation. J. Gen. Physiol. 146(4), 323–340 (2015).
    • 79 Hilf RJC, Bertozzi C, Zimmermann I, Reiter A, Trauner D, Dutzler R. Structural basis of open channel block in a prokaryotic pentameric ligand-gated ion channel. Nat. Struct. Mol. Biol. 17(11), 1330–1336 (2010).
    • 80 Bocquet N, Nury H, Baaden M et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457(7225), 111–114 (2009).
    • 81 Hilf RJC, Dutzler R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457(7225), 115–118 (2009).
    • 82 Nury H, Poitevin F, Van Renterghem C et al. One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue. Proc. Natl Acad. Sci. USA 107(14), 6275–6280 (2010).
    • 83 Nury H, Van Renterghem C, Weng Y et al. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469(7330), 428 (2011).
    • 84 Prevost MS, Sauguet L, Nury H et al. A locally closed conformation of a bacterial pentameric proton-gated ion channel. Nat. Struct. Mol. Biol. 19(6), 642–649 (2012).
    • 85 Pan J, Chen Q, Willenbring D et al. Structure of the pentameric ligand-gated ion channel GLIC bound with anesthetic ketamine. Structure 20(9), 1463–1469 (2012).
    • 86 Sauguet L, Howard RJ, Malherbe L et al. Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel. Nat. Commun. 4, 1697 (2013).
    • 87 Sauguet L, Murail S, Van C et al. Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels. 32(5), 728–741 (2013).
    • 88 Mowrey D, Chen Q, Liang Y, Liang J, Xu Y, Tang P. Signal transduction pathways in the pentameric ligand-gated ion channels. PLoS ONE 8(5), 1–8 (2013).
    • 89 Gonzalez-Gutierrez G, Cuello LG, Nair SK, Grosman C. Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by x-ray crystallography. Proc. Natl Acad. Sci. USA 110(46), 18716–18721 (2013).
    • 90 Sauguet L, Shahsavar A, Poitevin F et al. Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation. Proc. Natl Acad. Sci. USA 111(3), 966–971 (2014).
    • 91 Fourati Z, Delarue M, Sauguet L. Structural characterization of potential modulation sites in the extracellular domain of the prokaryotic pentameric proton-gated ion channel GLIC. Acta Crystallogr. Sect. D 71, 454–460 (2015).
    • 92 Sauguet L, Fourati Z, Prangé T, Delarue M, Colloc'h N. Structural basis for xenon inhibition in a cationic pentameric ligand-gated ion channel. PLoS ONE 11(2), 1–17 (2016).
    • 93 Laurent B, Murail S, Shahsavar A, Sauguet L, Delarue M, Baaden M. Sites of anesthetic inhibitory action on a cationic ligand-gated ion channel. Struct. Des. 24(4), 595–605 (2016).
    • 94 Basak S, Schmandt N, Gicheru Y, Chakrapani S. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel. Elife. 6, 1–28 pii: ee23886 (2017).
    • 95 Fourati Z, Ruza RR, Laverty D et al. Barbiturates bind in the GLIC ion channel pore and cause inhibition by stabilizing a closed state. J. Biol. Chem. 292(5), 1550–1558 (2017).
    • 96 Gonzalez-Gutierrez G, Wang Y, Cymes GD, Tajkhorshid E, Grosman C. Chasing the open-state structure of pentameric ligand-gated ion channels. J. Gen. Physiol. 149(12), 1119–1138 (2017).
    • 97 Nemecz Á, Hu H, Fourati Z, Van Renterghem C, Delarue M, Corringer PJ. Full mutational mapping of titratable residues helps to identify proton-sensors involved in the control of channel gating in the Gloeobacter violaceus pentameric ligand-gated ion channel. PLoS Biol. 15(12), 1–22 (2017).
    • 98 Zabara A, Chong JTY, Martiel I et al. Design of ultra-swollen lipidic mesophases for the crystallization of membrane proteins with large extracellular domains. Nat. Commun. 9, 544–544 (2018).
    • 99 Hibbs RE, Gouaux E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474(7349), 54 (2011).
    • 100 Miller PS, Scott S, Masiulis S et al. Structural basis for GABA A receptor potentiation by neurosteroids. Nat. Struct. Mol. Biol. 24(11), 986–992 (2017).
    • 101 Laverty D, Thomas P, Field M et al. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites. Nat. Struct. Mol. Biol. 24(11), 977–985 (2017).
    • 102 Hassaine G, Deluz C, Grasso L et al. X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512(7514), 276–281 (2014).
    • 103 Hu H, Nemecz Á, Van Renterghem C, Fourati Z, Sauguet L, Corringer P. Crystal structures of a pentameric ion channel gated by alkaline pH show a widely open pore and identify a cavity for modulation. Proc. Natl Acad. Sci. 115(17), E3959–E3968 (2018).
    • 104 Liu S, Xu L, Guan F et al. Cryo-EM structure of the human α5β3 GABAA receptor. Cell Res. 28(9), 958–961 (2018).
    • 105 Smit AB, Syed NI, Shaap D et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411(6835), 261–268 (2001).
    • 106 Cromer BA, Morton CJ, Parker MW. Anxiety over GABAA receptor structure relieved by AChBP. Trends Biochem. Sci. 27(6), 280–287 (2002).
    • 107 Brejc K, van Dijk WJ, Klaassen RV et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411(6835), 269–276 (2001).
    • 108 Le Novère N, Grutter T, Changeux J-P. Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. Proc. Natl Acad. Sci. USA 99(5), 3210–3215 (2002).
    • 109 Smit AB, Brejc K, Syed NI, Sixma TK. Structure and function of AChBP, homologue of the ligand-binding domain of the nicotinic acetylcholine receptor. Ann. NY Acad. Sci. 998(1), 81–92 (2003).
    • 110 Unwin N, Miyazawa A, Li J, Fujiyoshi Y. Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the a subunits. J. Mol. Biol. 319(5), 1165–1176 (2002).
    • 111 Hansen SB, Sulzenbacher G, Huxford T, Marchot P, Taylor P, Bourne Y. Structures of aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J. 24(20), 3635–3646 (2005).
    • 112 Ulens C, Hogg RC, Celie PH et al. Structural determinants of selective α-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proc. Natl Acad. Sci. 103(10), 3615–3620 (2006).
    • 113 Hilf RJC, Dutzler R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452(7185), 375–379 (2008).
    • 114 Tasneem A, Iyer LM, Jakobsson E, Aravind L. Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol. 6(1), R4 (2004).
    • 115 Borghese CM, Ruiz CI, Lee US et al. Identification of an inhibitory alcohol binding site in GABA. ACS Chem. Neurosci. 7(1), 100–108 (2016).
    • 116 Ii WDJ, Howard RJ, Trudell JR, Harris RA. The TM2 6′ position of GABAA receptors mediates alcohol inhibition. J. Pharmacol. Exp. Ther. 340(2), 445–456 (2012).
    • 117 Bali M, Akabas MH. The location of a closed channel gate in the GABAA receptor channel. J. Gen. Physiol. 129(2), 145–159 (2007).
    • 118 Chothia C, Lesk AM. The relation between the divergence of sequence and structure in proteins. EMBO J. 5(4), 823–826 (1986).
    • 119 Russell RB, Barton GJ. Structural features can be unconserved in proteins with similar folds: an analysis of side-chain to side-chain contacts secondary structure and accessibility. J. Mol. Biol. 244(3), 332–350 (1994).
    • 120 Russell RB, Saqi MAS, Sayle RA, Bates PA, Sternberg MJE. Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation. J. Mol. Biol. 269(3), 423–439 (1997).
    • 121 Jayakar SS, Zhou X, Chiara DC et al. Multiple propofol-binding sites in a γ-aminobutyric acid type a receptor (GABAAR) identified using a photoreactive propofol analog. J. Biol. Chem. 289(40), 27456–27468 (2014).
    • 122 Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291–325 (2000).
    • 123 Schmidt T, Bergner A, Schwede T. Modeling three-dimensional protein structures for applications in drug design. Drug Discov. Today. 19(00), 890–897 (2013).
    • 124 Almeida JG, Preto AJ, Koukos PI, Bonvin AMJJ, Moreira IS. Membrane proteins structures: a review on computational modeling tools. Biochim. Biophys. Acta – Biomembr. 1859(10), 2021–2039 (2017). •• Updated review on in silico techniques available for determination of the 3D structure of membrane proteins and characterization of binding interfaces. Relevant case studies are provided.
    • 125 Bali M, Jansen M, Akabas MH. GABA-induced intersubunit conformational movement in the GABA A receptor α1M1- β2M3 transmembrane subunit interface: experimental basis for homology modeling of an intravenous anesthetic binding site. J. Neurosci. 29(10), 3083–3092 (2009).
    • 126 Ernst M, Brauchart D, Boresch S, Sieghart W. Comparative modeling of GABAA receptors: limits, insights, future developments. Neuroscience 119(4), 933–943 (2003).
    • 127 Payghan PV, Bera I, Bhattacharyya D, Ghoshal N. Capturing state dependent dynamic events of GABAA-receptors: a microscopic look into the structural and functional insights. J. Biomol. Struct. Dyn. 34(8), 1818–1837 (2016).
    • 128 Trudell JR. Unique assignment of interA-subunit association in GABA α1β3γ2 receptors determined by molecular modeling. Biochim. Biophys. Acta – Biomembr. 1565(1), 91–96 (2002).
    • 129 Bera AK, Chatav M, Akabas MH. GABAA receptor M2-M3 loop secondary structure and changes in accessibility during channel gating. J. Biol. Chem. 277(45), 43002–43010 (2002).
    • 130 Ernst M, Bruckner S, Boresch S, Sieghart W. Comparative models of GABA A receptor extracellular and transmembrane domains: important insights in pharmacology. Mol. Pharmacol. 68(5), 1291–1300 (2005).
    • 131 O'Mara M, Cromer B, Parker M, Chung S-HH. Homology model of the GABAA receptor examined using brownian dynamics. Biophys. J. 88(5), 3286–3299 (2005).
    • 132 Bergmann R, Kongsbak K, Sørensen PL, Sander T, Balle T. A unified model of the GABAA receptor comprising agonist and benzodiazepine binding sites. PLoS ONE 8(1), 1–13 (2013).
    • 133 Xie HB, Sha Y, Wang J, Cheng MS. Some insights into the binding mechanism of the GABAA receptor: a combined docking and MM-GBSA study. J. Mol. Model. 19(12), 5489–5500 (2013).
    • 134 Sieghart W, Sperk G. Subunit composition, distribution and function of GABAA receptor subtypes. Curr. Top. Med. Chem. 2(8), 795–816 (2002).
    • 135 Sigel E, Buhr A. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol. Sci. 18(4), 425–429 (1997).
    • 136 Berezhnoy D, Gibbs TT, Farb DH. Docking of 1,4-benzodiazepines in the α1/γ2 GABAA receptor modulator site. Mol. Pharmacol. 76(1998), 440–450 (2009).
    • 137 Ci S, Ren T, Su Z. Investigating the putative binding-mode of GABA and diazepam within GABA A receptor using molecular modeling. Protein J. 27(2), 71–78 (2008).
    • 138 Sancar F, Ericksen SS, Kucken AM, Teissere JA, Czajkowski C. Structural determinants for high-affinity zolpidem binding to GABA-A receptors. Mol. Pharmacol. 71(1), 38–46 (2006).
    • 139 Richter L, De Graaf C, Sieghart W et al. Diazepam-bound GABA A receptor models identify new benzodiazepine binding-site ligands. Nat. Chem. Biol. 8(5), 455–464 (2012).
    • 140 Clayton T, Chen JL, Ernst M et al. An updated unified pharmacophore model of the benzodiazepine binding site on γ-aminobutyric acida receptors: correlation with comparative models. Curr. Med. Chem. 14(26), 2755–2775 (2007).
    • 141 Mokrab Y, Bavro VN, Mizuguchi K et al. Exploring ligand recognition and ion flow in comparative models of the human GABA type A receptor. J. Mol. Graph. Model. 26(4), 760–774 (2007).
    • 142 Middendorp SJ, Puthenkalam R, Baur R, Ernst M, Sigel E.Accelerated discovery of novel benzodiazepine ligands by experiment-guided virtual screening. ACS Chem. Biol. 9(8), 1854–1859 (2014).
    • 143 Simeone X, Siebert DCB, Bampali K et al. Molecular tools for GABA A receptors: high affinity ligands for β 1-containing subtypes. Nat. Sci. Reports 7(5674), 1–12 (2017).
    • 144 Mihalik B, Pálvölgyi A, Bogár F et al. Loop-F of the α-subunit determines the pharmacologic profile of novel competitive inhibitors of GABA A receptors. Eur. J. Pharmacol. 798, 129–136 (2017).
    • 145 Massah AR, Gharaghani S, Ardeshiri H, Nahad L. New and mild method for the synthesis of alprazolam and diazepam and computational study of their binding mode to GABAA receptor. Med. Chem. Res. 25(8), 1538–1550 (2016).
    • 146 Hénin J, Salari R, Murlidaran S, Brannigan G. A predicted binding site for cholesterol on the GABAA receptor. Biophys. J. 106(9), 1938–1949 (2014).
    • 147 Jayakar SS, Zhou X, Savechenkov PY et al. Positive and negative allosteric modulation of an α1β3γ2 gamma-aminobutyric acid type A (GABAA) receptor by binding to a site in the transmembrane domain at the γ+-β- interface. J. Biol. Chem. 290(38), 23432–23446 (2015).
    • 148 Jayakar SS, Zhou X, Chiara DC et al. Multiple propofol-binding sites in a γ-aminobutyric acid type a receptor (GABAAR) identified using a photoreactive propofol analog. J. Biol. Chem. 289(40), 27456–27468 (2014).
    • 149 Chiara DC, Dostalova Z, Jayakar SS, Zhou X, Miller KW, Cohen JB. Mapping general anesthetic binding site(s) in human α1β3 γ- aminobutyric acid type A receptors with [3 H]TDBzl-etomidate, a photoreactive etomidate analog. Biochemistry 51(4), 836–847 (2012).
    • 150 Westergard T, Salari R, Martin JV, Brannigan G. Interactions of L-3,5,3′-triiodothyronine, allopregnanolone, and ivermectin with the GABAA receptor: evidence for overlapping intersubunit binding modes. PLoS ONE 10(9), 1–18 (2015).
    • 151 Charon S, Taly A, Rodrigo J, Perret P, Goeldner M. Binding modes of noncompetitive GABA-channel blockers revisited using engineered affinity-labeling reactions combined with new docking studies. J. Agric. Food Chem. 59(7), 2803–2807 (2011).
    • 152 Puthenkalam R, Hieckel M, Simeone X et al. Structural studies of GABAA receptor binding sites: which experimental structure tells us what? Front. Mol. Neurosci. 9(44), 1–20 (2016). • The newest and most comprehensive approach to homology modeling of GABAA receptors and their interaction with novel ligands.
    • 153 Michatowski MA, Kraszewski S, Mozrzymas JW. Binding site opening by loop C shift and chloride ion-pore interaction in the GABAA receptor. Phys. Chem. Chem. Phys. 19(21), 13664–13678 (2017).
    • 154 Rossokhin AV. Side chain flexibility and the pore dimensions in the GABA A receptor. J. Comput. Aided. Mol. Des. 30(7), 559–567 (2016).
    • 155 Rossokhin AV. Homology modeling of the transmembrane domain of the GABA A receptor. Biophysics (Oxford) 62(5), 708–716 (2017).
    • 156 Alvarez LD, Pecci A. Structure and dynamics of neurosteroid binding to the α1β2γ2 GABAA receptor. J. Steroid Biochem. Mol. Biol. 182, 72–80 (2018) (Epub ahead of print).
    • 157 Hosie AM, Wilkins ME, Da Silva HMA, Smart TG. Endogenous neurosteroids regulate GABAAreceptors through two discrete transmembrane sites. Nature 444(7118), 486–489 (2006).
    • 158 Li GD, Chiara DC, Cohen JB, Olsen RW. Neurosteroids allosterically modulate binding of the anesthetic etomidate to γ-aminobutyric acid type A receptors. J. Biol. Chem. 284(18), 11771–11775 (2009).
    • 159 Pettersen EF, Goddard TD, Huang CC et al. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004).
    • 160 Musgaard M, Paramo T, Domicevica L, Andersen OJ, Biggin PC. Insights into channel dysfunction from modeling and molecular dynamics simulations. Neuropharmacology 132, 20–30 (2018).
    • 161 Sandal M, Duy TP, Cona M et al. GOMoDo: a GPCRs online modeling and docking webserver. PLoS ONE 8(9), 1–7 (2013).