We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Prodrugs in combination with nanocarriers as a strategy for promoting antitumoral efficiency

    Ming-Hsien Lin

    Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Chi-Feng Hung

    School of Medicine, Fu Jen Catholic University, Hsinchuang, New Taipei City, Taiwan

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Ching-Yun Hsu

    Department of Nutrition & Health Sciences, Chang Gung University of Science & Technology, Kweishan, Taoyuan, Taiwan

    Research Center for Food & Cosmetic Safety & Research Center for Chinese Herbal Medicine, Chang Gung University of Science & Technology, Kweishan, Taoyuan, Taiwan

    ,
    Zih-Chan Lin

    Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan

    &
    Jia-You Fang

    *Author for correspondence: Tel.: +886 321 8800; Fax: +886 3211 8236;

    E-mail Address: fajy@mail.cgu.edu.tw

    Research Center for Food & Cosmetic Safety & Research Center for Chinese Herbal Medicine, Chang Gung University of Science & Technology, Kweishan, Taoyuan, Taiwan

    Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan

    Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan

    Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan

    Published Online:https://doi.org/10.4155/fmc-2018-0388

    Prodrug entrapment into nanocarriers for tumor delivery is a strategy to achieve a valid therapy with high efficiency. The prodrug contains anticancer agents conjugating with functional moieties or ligands so that the active component is released after metabolism in the body or tumor. The advantages of nanosystems for loading prodrugs include high loading, increased prodrug stability, improved bioavailability and enhanced targeting to tumor cells. In the present article, we introduce the prodrug delivery approaches according to nanomedicine and the recent advances in prodrug-loaded nanocarriers. First, we discuss the conceptional design of combined prodrugs and nanocarriers in response to the obstruction in anticancer therapy. Then we describe the cases of prodrug-loaded nanoparticles for cancer treatment during the past 5 years.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116(4), 2602–2663 (2016). • Review for the chemical and biomedical aspects of polymeric nanoparticles.
    • 2. Fang JY, Al-Suwayeh SA. Nanoparticles as delivery carriers for anticancer prodrugs. Expert Opin. Drug Deliv. 9(6), 657–669 (2012).
    • 3. Wermuth CG, Ganellin CR, Lindberg P, Mitscher LA. Glossary of terms used in medicinal chemistry. Pure Appl. Chem. 70(5), 1129–1143 (1998).
    • 4. Rautio J, Meanwell NA, Di L, Hageman MJ. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. doi:10.1038/nrd.2018.46 (2018) (Epub ahead of print). • Review for the rationale of prodrug design.
    • 5. Wang Y, Sun S, Zhang Z, Shi D. Nanomaterials for cancer precision medicine. Adv. Mater. 30(17), e1705660 (2018).
    • 6. Vert M, Doi Y, Hellwich KH et al. Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl. Chem. 84(2), 377–410 (2012).
    • 7. Chou YP, Lin YK, Chen CH, Fang JY. Recent advances in polymeric nanosystems for treating cutaneous melanoma and its metastasis. Curr. Pharm. Design 23(35), 5301–5314 (2017).
    • 8. Huttunen KM, Raunio H, Rautio J. Prodrugs—from serendipity to rational design. Pharmacol. Rev. 63(3), 750–771 (2011).
    • 9. Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev. 116(5), 3436–3486 (2016).
    • 10. Fumagalli G, Marucci C, Christodoulou MS, Stella B, Dosio F, Passarella D. Self-assembly drug conjugates for anticancer treatment. Drug Discov. Today 21(8), 1321–1329 (2016).
    • 11. Giang I, Boland EL, Poon GM. Prodrug applications for targeted cancer therapy. AAPS J. 16(5), 899–913 (2014).
    • 12. Hsieh PW, Hung CF, Fang JY. Current prodrug design for drug discovery. Curr. Pharm. Design 15(19), 2236–2250 (2009).
    • 13. Jornada DH, dos Santos Fernandes GF, Chiba DE, de Melo TR, dos Santos JL, Chung MC. The prodrug approach: a successful tool for improving drug solubility. Molecules 21(1), 42 (2015).
    • 14. Cacciatore I, Ciulla M, Marinelli L, Eusepi P, Di Stefano A. Advances in prodrug design for Parkinson's disease. Expert Opin. Drug Discov. 13(4), 295–305 (2018).
    • 15. Cao H, Wang K, Ye YL, Shen JH. Orally administrated small molecule drugs with intestine targeted profile: recent development and prospects. Curr. Med. Chem. 24(35), 3921–3937 (2017).
    • 16. Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol. Cells 31(4), 295–302 (2011). • Nanoparticle approach for cancer therapy and diagnosis.
    • 17. Ladj R, Bitar A, Eissa MM et al. Polymer encapsulation of inorganic nanoparticles for biomedical applications. Int. J. Pharm. 458(1), 230–241 (2013).
    • 18. Liu FC, Yu HP, Lin CY, Elzoghby AO, Hwang TL, Fang JY. Use of cilomilast-loaded phosphatiosomes to suppress neutrophilic inflammation for attenuating acute lung injury: the effect of nanovesicular surface charge. J. Nanobiotechnol. 16(1), 35 (2018).
    • 19. Bodo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33(10), 2373–2387 (2016). • The introduction of US FDA-approved nanomedicines.
    • 20. Mura S, Bui DT, Couvreur P, Nicolas J. Lipid prodrug nanocarriers in cancer therapy. J. Control. Rel. 208, 25–41 (2015).
    • 21. Palange AL, Di Mascolo D, Carallo C, Gnasso A, Decuzzi P. Lipid-polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells. Nanomed. Nanotechnol. Biol. Med. 10(5), 991–1002 (2014).
    • 22. Boal AK, Ilhan F, DeRouchey JE, Thurn-Albrecht T, Russell TP, Rotello VM. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404(6779), 746–748 (2000).
    • 23. Zhang WJ, Hong CY, Pan CY. Polymerization-induced self-assembly of functionalized block copolymer nanoparticles and their application in drug delivery. Macromol. Rapid Commun. 39, e1800279 (2018).
    • 24. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 1, 149–173 (2010).
    • 25. Chou YP, Lin YK, Chen CH, Fang JY. Recent advances in polymeric nanosystems for treating cutaneous melanoma and its metastasis. Curr. Pharm. Design 23(35), 5301–5314 (2017).
    • 26. Albisa A, Espanol L, Prieto M, Sebastian V. Polymeric nanomaterials as nanomembrane entities for biomolecule and drug delivery. Curr. Pharm. Design 23(2), 263–280 (2017).
    • 27. Daneluti ALM, Neto FM, Velasco MVR, Baby AR, Matos JDR. Evaluation and characterization of the encapsulation/entrapping process of octyl methoxycinnamate in ordered mesoporous silica type SBA-15. J. Therm. Anal. Calorim. 131(1), 789–798 (2018).
    • 28. He Q, Shi J. Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem. 21(16), 5845 (2011).
    • 29. Lin MH, Lin CF, Yang SC, Hung CF, Fang JY. The interplay between nanoparticles and neutrophils. J. Biomed. Nanotechnol. 14(1), 66–85 (2018).
    • 30. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J. Pharm. Bioallied. Sci. 2(4), 282–289 (2010).
    • 31. Del Pozo-Rodríguez A, Solinís MÁ, Rodríguez-Gascón A. Applications of lipid nanoparticles in gene therapy. Eur. J. Pharm. Biopharm. 109, 184–193 (2016).
    • 32. Singh Y, Meher JG, Raval K et al. Nanoemulsion: concepts, development and applications in drug delivery. J. Control. Rel. 252, 28–49 (2017).
    • 33. Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JE, Omidfar K. Drug targeting using solid lipid nanoparticles. Chem. Phys. Lipids 181, 56–61 (2014).
    • 34. Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J. Food Drug Anal. 25(2), 219–234 (2017).
    • 35. Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomed. Nanotechnol. Biol. Med. 12(1), 143–161 (2016).
    • 36. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13(5), 273–290 (2016).
    • 37. Vargas JR, Stanzl EG, Teng NN, Wender PA. Cell-penetrating, guanidinium-rich molecular transporters for overcoming efflux-mediated multidrug resistance. Mol. Pharm. 11(8), 2553–2565 (2014).
    • 38. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 10(9), 3223–3230 (2010). • Review for nanoparticle application on drug delivery and targeting.
    • 39. Clancy P. Nanoparticles: self-assembly finds its own limits. Nat. Nanotechnol. 6(9), 540–541 (2011).
    • 40. Duhem N, Danhier F, Pourcelle V et al. Self-assembling doxorubicin-tocopherol succinate prodrug as a new drug delivery system: synthesis, characterization, and in vitro and in vivo anticancer activity. Bioconjug. Chem. 25(1), 72–81 (2014).
    • 41. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015). • The strategy of using nanoparticles for facile biomembrane permeation.
    • 42. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 27(10), 2225–2238 (2016).
    • 43. Theile D. Under-reported aspects of platinum drug pharmacology. Molecules 22(3), E382 (2017).
    • 44. Köberle B, Tomicic MT, Usanova S, Kaina B. Cisplatin resistance: preclinical findings and clinical implications. Biochim. Biophys. Acta 1806(2), 172–182 (2010).
    • 45. Shi Y, Liu SA, Kerwood DJ, Goodisman J, Dabrowiak JC. Pt(IV) complexes as prodrugs for cisplatin. J. Inorg. Biochem. 107(1), 6–14 (2012).
    • 46. Song H, Kang X, Sun J et al. Nanoparticle delivery of sterically hindered platinum(IV) prodrugs shows 100-times higher potency than that of cisplatin upon light activation. Chem. Commun. 52(11), 2281–2283 (2016).
    • 47. Kelemen LE. The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int. J. Cancer 119(2), 243–250 (2006).
    • 48. Sun Y, Shi T, Zhou L, Zhou Y, Sun B, Liu X. Folate-decorated and NIR-activated nanoparticles based on platinum(IV) prodrugs for targeted therapy of ovarian cancer. J. Microencapsul. 34(7), 675–686 (2017).
    • 49. Botella P, Rivero-Buceta E. Safe approaches for camptothecin delivery: structural analogues and nanomedicines. J. Control. Rel. 247, 28–54 (2017). • The approach of camptothecin prodrugs for increased bioavailability.
    • 50. Liu J, Liu W, Weitzhandler I et al. Ring-opening polymerization of prodrugs: a versatile approach to prepare well-defined drug-loaded nanoparticles. Angew. Chem. Int. Ed. Engl. 54(3), 1002–1006 (2015).
    • 51. Kang Y, Ju X, Ding LS, Zhang S, Li BJ. Reactive oxygen species and glutathione dual redox-responsive supramolecular assemblies with controllable release capability. ACS Appl. Mater. Interfaces 9(5), 4475–4484 (2017).
    • 52. He W, Jiang Y, Li Q, Zhang D, Li Z, Luan Y. A versatile strategy to create an active tumor-targeted chemo-photothermal therapy nanoplatform: a case of an IR-780 derivative co-assembled with camptothecin prodrug. Acta Biomater. 84, 356–366 (2019).
    • 53. Yin W, Ke W, Chen W et al. Integrated block copolymer prodrug nanoparticles for combination of tumor oxidative stress amplification and ROS-responsive drug release. Biomaterials 195, 63–74 (2019).
    • 54. Zhang Y, Xiao C, Li M et al. Co-delivery of 10-hydroxycamptothecin with doxorubicin conjugated prodrugs for enhanced anticancer efficacy. Macromol. Biosci. 13(5), 584–594 (2013).
    • 55. Li D, Ding J, Zhuang X, Chen L, Chen X. Drug binding rate regulates the properties of polysaccharide prodrugs. J. Mater. Chem. B 4(30), 5167 (2016).
    • 56. Wang Y, Liu D, Zheng Q et al. Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines. Nano Lett. 14(10), 5577–5583 (2014).
    • 57. Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Rel. 152(1), 2–12 (2011).
    • 58. Shim MK, Park J, Yoon HY et al. Carrier-free nanoparticles of cathepsin B-cleavable peptide-conjugated doxorubicin prodrug for cancer targeting therapy. J. Control. Rel. 294, 376–389 (2019).
    • 59. Xu C, He W, Lv Y, Qin C, Shen L, Yin L. Self-assembled nanoparticles from hyaluronic acid-paclitaxel prodrugs for direct cytosolic delivery and enhanced antitumor activity. Int. J. Pharm. 493(1–2), 172–181 (2015).
    • 60. Zhong Y, Zhang J, Cheng R et al. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. J. Control. Rel. 205, 144–154 (2015).
    • 61. Sun B, Luo C, Cui W, Sun J, He Z. Chemotherapy agent-unsaturated fatty acid prodrugs and prodrug-nanoplatforms for cancer chemotherapy. J. Control. Rel. 264, 145–159 (2017).
    • 62. Zhong T, Yao X, Zhang S et al. A self-assembling nanomedicine of conjugated linoleic acid-paclitaxel conjugate (CLA-PTX) with higher drug loading and carrier-free characteristic. Sci. Rep. 6, 36614 (2016).
    • 63. Luo C, Sun J, Liu D et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 16(9), 5401–5408 (2016).
    • 64. Luo C, Sun J, Sun B et al. Facile fabrication of tumor redox-sensitive nanoassemblies of small-molecule oleate prodrug as potent chemotherapeutic nanomedicine. Small 12(46), 6353–6362 (2016).
    • 65. Huang D, Zhuang Y, Shen H, Yang F, Wang X, Wu D. Acetal-linked PEGylated paclitaxel prodrugs forming free-paclitaxel-loaded pH-responsive micelles with high drug loading capacity and improved drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 82, 60–68 (2018).
    • 66. Ke W, Yin W, Zha Z et al. A robust strategy for preparation of sequential stimuli-responsive block copolymer prodrugs via thiolactone chemistry to overcome multiple anticancer drug delivery barriers. Biomaterials 154, 261–274 (2018).
    • 67. Wang H, Chen J, Xu C et al. Cancer nanomedicines stabilized by π-π stacking between heterodimeric prodrugs enable exceptionally high drug loading capacity and safer delivery of drug combinations. Theranostics 7(15), 3638–3652 (2017).
    • 68. Duan XC, Yao X, Zhang S et al. Antitumor activity of the bioreductive prodrug 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs) on MDA-MB-231 cells: in vitro and in vivo. Int. J. Nanomed. 14, 195–204 (2018).
    • 69. Ramesh M, Ahlawat P, Srinivas NR. Irinotecan and its active metabolite, SN-38: review of bioanalytical methods and recent update from clinical pharmacology perspectives. Biomed. Chromatogr. 24(1), 104–123 (2010).
    • 70. Fujita K, Kubota Y, Ishida H, Sasaki Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J. Gastroenterol. 21(43), 12234–12248 (2015).
    • 71. Makiyama A, Arimizu K, Hirano G et al. Irinotecan monotherapy as third-line or later treatment in advanced gastric cancer. Gastric Cancer 21(3), 464–472 (2018).
    • 72. Zhang C, Jin S, Xue X, Zhang T, Jiang Y, Wang PC, Liang XJ. Tunable self-assembly of Irinotecan-fatty acid prodrugs with increased cytotoxicity to cancer cells. J. Mater. Chem. B 4(19), 3286–3291 (2016).
    • 73. Zashikhina NN, Volokitina MV, Korzhikov-Vlakh VA et al. Self-assembled polypeptide nanoparticles for intracellular irinotecan delivery. Eur. J. Pharm. Sci. 109, 1–12 (2017).
    • 74. Wang H, Xie H, Wu J et al. Structure-based rational design of prodrugs to enable their combination with polymeric nanoparticle delivery platforms for enhanced antitumor efficacy. Angew. Chem. Int. Ed. Engl. 53(43), 11532–11537 (2014).
    • 75. Sauraj, Kumar V, Kumar B et al. Lipophilic 5-fluorouracil prodrug encapsulated xylan-stearic acid conjugates nanoparticles for colon cancer therapy. Int. J. Biol. Macromol. 128, 204–213 (2019).
    • 76. Johnstone TC, Lippard SJ. The effect of ligand lipophilicity on the nanoparticle encapsulation of Pt(IV) prodrugs. Inorg. Chem. 52(17), 9915–9920 (2013). • An example to load platinum prodrugs into nanoparticles.
    • 77. Margiotta N, Savino S, Denora N et al. Encapsulation of lipophilic kiteplatin Pt(IV) prodrugs in PLGA-PEG micelles. Dalton Trans. 45(33), 13070–13081 (2016).
    • 78. Shamsuddin S, Santillan CC, Stark JL, Whitmire KH, Siddik ZH, Khokhar AR. Synthesis, characterization, and antitumor activity of new platinum(IV) trans-carboxylate complexes: crystal structure of [Pt(cis-1,4-DACH)trans-(acetate)2Cl2]. J. Inorg. Biochem. 71(1–2), 29–35 (1998).
    • 79. Chen Q, Yang Y, Lin X et al. Platinum(IV) prodrugs with long lipid chains for drug delivery and overcoming cisplatin resistance. Chem. Commun. 54(42), 5369–5372 (2018).
    • 80. Gao Y, Jiang M, Ma Y et al. Nanoparticle-mediated delivery of multinuclear platinum(IV) prodrugs with enhanced drug uptake and the activity of overcoming drug resistance. Anticancer Drugs 27(2), 77–83 (2016).
    • 81. Liu XQ, Picart C. Layer-by-layer assemblies for cancer treatment and diagnosis. Adv. Mater. 28(6), 1295–1301 (2016). • The introduction of layer-by-layer nanoparticles.
    • 82. Zhang R, Ru Y, Gao Y, Li J, Mao S. Layer-by-layer nanoparticles co-loading gemcitabine and platinum (IV) prodrugs for synergistic combination therapy of lung cancer. Drug Des. Devel. Ther. 11, 2631–2642 (2017).
    • 83. Ling X, Chen X, Riddell IA et al. Glutathione-scavenging poly(disulfide amide) nanoparticles for the effective delivery of Pt(IV) prodrugs and reversal of cisplatin resistance. Nano Lett. 18(7), 4618–4625 (2018).
    • 84. Huang M, Zhao K, Wang L et al. Dual stimuli-responsive polymer prodrugs quantitatively loaded by nanoparticles for enhanced cellular internalization and triggered drug release. ACS Appl. Mater. Interfaces 8(18), 11226–11236 (2016).
    • 85. Wohl AR, Michel AR, Kalscheuer S, Macosko CW, Panyam J, Hoye TR. Silicate esters of paclitaxel and docetaxel: synthesis, hydrophobicity, hydrolytic stability, cytotoxicity, and prodrug potential. J. Med. Chem. 57(6), 2368–2379 (2014).
    • 86. Han J, Michel AR, Lee HS et al. Nanoparticles containing high loads of paclitaxel-silicate prodrugs: formulation, drug release, and anticancer efficacy. Mol. Pharm. 12(12), 4329–4235 (2015).
    • 87. Giarra S, Serri C, Russo L et al. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles. Carbohydr. Polym. 140, 400–407 (2016).
    • 88. Poudel BK, Gupta B, Ramasamy T et al. Development of polymeric irinotecan nanoparticles using a novel lactone preservation strategy. Int. J. Pharm. 512(1), 75–86 (2016).
    • 89. Holmkvist AD, Friberg A, Nilsson UJ, Schouenborg J. Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release. Int. J. Pharm. 499(1–2), 351–357 (2016).
    • 90. Wang H, Agarwal P, Zhao S et al. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials 72, 74–89 (2015).
    • 91. Gao Z, Li Z, Yan J, Wang P. Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy. Drug Des. Devel. Ther. 11, 2595–2604 (2017).
    • 92. Ramasamy T, Kim J, Choi HG, Yong CS, Kim JO. Novel dual drug-loaded block ionomer complex micelles for enhancing the efficacy of chemotherapy treatments. J. Biomed. Nanotechnol. 10(7), 1304–1312 (2014).
    • 93. Oh KT, Bronich TK, Bromberg L, Hatton TA, Kabanov AV. Block ionomer complexes as prospective nanocontainers for drug delivery. J. Control. Rel. 115(1), 9–17 (2006).
    • 94. Ramasamy T, Choi JY, Cho HJ et al. Polypeptide-based micelles for delivery of irinotecan: physicochemical and in vivo characterization. Pharm. Res. 32(6), 1947–1956 (2015).
    • 95. Nguyen F, Alferiev I, Guan P et al. Enhanced intratumoral delivery of SN38 as a tocopherol oxyacetate prodrug using nanoparticles in a neuroblastoma xenograft model. Clin. Cancer Res. 24(11), 2585–2593 (2018).
    • 96. Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials 7(7), E189 (2017). • Review for mesoporous silica nanoparticles as the drug delivery systems.
    • 97. Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles in nanomedicine applications. J. Mater. Sci. Mater. Med. 29(5), 65 (2018).
    • 98. Kettiger H, Sen Karaman D, Schiesser L, Rosenholm JM, Huwyler J. Comparative safety evaluation of silica-based particles. Toxicol. In Vitro 30(1 Pt B), 355–363 (2015).
    • 99. Ravera M, Perin E, Gabano E et al. Functional fluorescent nonporous silica nanoparticles as carriers for Pt(IV) anticancer prodrugs. J. Inorg. Biochem. 151, 132–42 (2015).
    • 100. Ravera M, Gabano E, Zanellato I, Perin E, Arrais A, Osella D. Functionalized nonporous silica nanoparticles as carriers for Pt(IV) anticancer prodrugs. Dalton Trans. 45(43), 17233–17240 (2016).
    • 101. Du X, Xiong L, Dai S, Qiao SZ. γ-PGA-coated mesoporous silica nanoparticles with covalently attached prodrugs for enhanced cellular uptake and intracellular GSH-responsive release. Adv. Healthc. Mater. 4(5), 771–781 (2015).
    • 102. Goess R, Friess H. A look at the progress of treating pancreatic cancer over the past 20 years. Expert Rev. Anticancer Ther. 18(3), 295–304 (2018).
    • 103. Moysan E, Bastiat G, Benoit JP. Gemcitabine versus modified gemcitabine: a review of several promising chemical modifications. Mol. Pharm. 10(2), 430–444 (2013).
    • 104. Malfanti A, Miletto I, Bottinelli E et al. Delivery of gemcitabine prodrugs employing mesoporous silica nanoparticles. Molecules 21(4), 522 (2016).
    • 105. Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J. Pharm. Sci. 102(1), 6–28 (2013).
    • 106. Li T, Shen X, Xie X et al. Irinotecan/IR-820 coloaded nanocomposite as a cooperative nanoplatform for combinational therapy of tumor. Nanomedicine 13(6), 595–603 (2018).
    • 107. Liu X, Situ A, Kang Y et al. Irinotecan delivery by lipid-coated mesoporous silica nanoparticles shows improved efficacy and safety over liposomes for pancreatic cancer. ACS Nano 10(2), 2702–2715 (2016).
    • 108. Grinberg S, Linder C, Heldman E. Progress in lipid-based nanoparticles for cancer therapy. Crit. Rev. Oncog. 19(3–4), 247–260 (2014).
    • 109. Pignatello R, Acquaviva R, Campisi A, Raciti G, Musumeci T, Puglisi G. Effects of liposomal encapsulation on the antioxidant activity of lipophilic prodrugs of idebenone. J. Liposome Res. 21(1), 46–54 (2011).
    • 110. Du R, Zhong T, Zhang WQ et al. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma. Int. J. Nanomed. 9, 3091–3105 (2014).
    • 111. Xiong H, Yu Q, Gong Y et al. Yes-associated protein (YAP) promotes tumorigenesis in melanoma cells through stimulation of low-density lipoprotein receptor-related protein 1 (LRP1). Sci. Rep. 7(1), 15528 (2017).
    • 112. Ramsay EC, Anantha M, Zastre J et al. Irinophore C: a liposome formulation of irinotecan with substantially improved therapeutic efficacy against a panel of human xenograft tumors. Clin. Cancer Res. 14(4), 1208–1217 (2008).
    • 113. Verreault M, Strutt D, Masin D et al. Vascular normalization in orthotopic glioblastoma following intravenous treatment with lipid-based nanoparticulate formulations of irinotecan (Irinophore C®), doxorubicin (Caelyx®) or vincristine. BMC Cancer 11, 124 (2011).
    • 114. Waterhouse DN, Sutherland BW, Santos ND et al. Irinophore C™, a lipid nanoparticle formulation of irinotecan, abrogates the gastrointestinal effects of irinotecan in a rat model of clinical toxicities. Invest. New Drugs 32(6), 1071–1082 (2014). • An example of Irinophore C application.
    • 115. Chen PY, Ozawa T, Drummond DC et al. Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts. Neuro-Oncol. 15(2), 189–197 (2013).
    • 116. Klouda L. Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur. J. Pharm. Biopharm. 97(Pt B), 338–349 (2015).
    • 117. Din FU, Choi JY, Kim DW et al. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv. 24(1), 502–510 (2017).
    • 118. Attama AA. SLN, NLC, LDC: state of the art in drug and active delivery. Recent Pat. Drug Deliv. Formul. 5(3), 178–187 (2011).
    • 119. Sun B, Luo C, Li L et al. Core-matched encapsulation of an oleate prodrug into nanostructured lipid carriers with high drug loading capability to facilitate the oral delivery of docetaxel. Colloids Surf. B Biointerfaces 143, 47–55 (2016).
    • 120. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J. Pharm. Bioallied. Sci. 2(4), 282–289 (2010). • Review for metallic nanoparticles used for biomedical application.
    • 121. Li K, Nejadnik H, Daldrup-Link HE. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov. Today 22(9), 1421–1429 (2017).
    • 122. Yu C, Ding B, Zhang X et al. Targeted iron nanoparticles with platinum-(IV) prodrugs and anti-EZH2 siRNA show great synergy in combating drug resistance in vitro and in vivo. Biomaterials 155, 112–123 (2018).
    • 123. Engel JB, Tinneberg HR, Rick FG, Berkes E, Schally AV. Targeting of peptide cytotoxins to LHRH receptors for treatment of cancer. Curr. Drug Targets 17(5), 488–494 (2016).
    • 124. Lala MA, Ioannou PV. The reaction of allyl and benzylarsonic acids with thiols: mechanistic aspects and implications for dioxygen activation by trivalent arsenic compounds. J. Inorg. Biochem. 97(4), 331–339 (2003).
    • 125. Minehara H, Narita A, Naka K et al. Tumor cell-specific prodrugs using arsonic acid-presenting iron oxide nanoparticles with high sensitivity. Bioorg. Med. Chem. 20(15), 4675–4679 (2012).
    • 126. Mu Q, Jeon M, Hsiao MH et al. Stable and efficient Paclitaxel nanoparticles for targeted glioblastoma therapy. Adv. Healthc. Mater. 4(8), 1236–1245 (2015).
    • 127. Monteiro APF, Caminhas LD, Ardisson JD, Paniago R, Cortés ME, Sinisterra RD. Magnetic nanoparticles coated with cyclodextrins and citrate for irinotecan delivery. Carbohydr. Polym. 163, 1–9 (2017).
    • 128. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), E1534 (2016).
    • 129. Qiu L, Li JW, Hong CY, Pan CY. Silver nanoparticles covered with pH-sensitive camptothecin-loaded polymer prodrugs: switchable fluorescence ‘off’ or ‘on’ and drug delivery dynamics in living cells. ACS Appl. Mater. Interfaces 9(46), 40887–40897 (2017).
    • 130. Maiyo F, Singh M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine 12(9), 1075–1089 (2017).
    • 131. Gao F, Yuan Q, Gao L et al. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials 35(31), 8854–8866 (2014).