We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Multifunctional radical quenchers as potential therapeutic agents for the treatment of mitochondrial dysfunction

    Xun Ji

    Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ 85287, USA

    ,
    Omar M Khdour

    *Author for correspondence: Tel.: +1 4809 651 623;

    E-mail Address: khdour@asu.edu

    Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ 85287, USA

    &
    Sidney M Hecht

    Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ 85287, USA

    School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA

    Published Online:https://doi.org/10.4155/fmc-2018-0481

    Mitochondrial dysfunction is associated with a wide range of human diseases, including neurodegenerative diseases, and is believed to cause or contribute to the etiology of these diseases. These disorders are frequently associated with increased levels of reactive oxygen species. One of the design strategies for therapeutic intervention involves the development of novel small molecules containing redox cores, which can scavenge reactive oxygen radicals and selectively block oxidative damage to the mitochondria. Presently, we describe recent research dealing with multifunctional radical quenchers as antioxidants able to scavenge reactive oxygen radicals. The review encompasses ubiquinone and tocopherol analogs, as well as novel pyri(mi)dinol derivatives, and their ability to function as protective agents in cellular models of mitochondrial diseases.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Weissig V. Targeted drug delivery to mammalian mitochondria in living cells. Expert Opin. Drug Deliv. 2(1), 89–102 (2005).
    • 2. Friedman JR, Nunnari J. Mitochondrial form and function. Nature 505(7483), 335–343 (2014).
    • 3. Milane L, Trivedi M, Singh A, Talekar M, Amiji M. Mitochondrial biology, targets, and drug delivery. J. Control. Release 207, 40–58 (2015).
    • 4. Saraste M. Oxidative phosphorylation at the fin de siècle. Science 283(5407), 1488–1493 (1999).
    • 5. Teixeira J, Deus CM, Borges F, Oliveira PJ. Mitochondria: targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants. Int. J. Biochem. Cell Biol. 97, 98–103 (2018).
    • 6. Lund M, Melbye M, Diaz LJ, Duno M, Wohlfahrt J, Vissing J. Mitochondrial dysfunction and risk of cancer. Br. J. Cancer 112(6), 1134–1140 (2015).
    • 7. Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7), 1241–1252 (2006).
    • 8. Wallace DC. Mitochondria and cancer. Nat. Rev. Cancer 12(10), 685–698 (2012).
    • 9. Cai Q, Tammineni P. Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J. Alzheimers Dis. 57(4), 1087–1103 (2017).
    • 10. Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat. Rev. Neurosci. 7(3), 207–219 (2006).
    • 11. Rocha M, Apostolova N, Herance JR et al. Perspectives and potential applications of mitochondria-targeted antioxidants in cardiometabolic diseases and type 2 diabetes. Med. Res. Rev. 34(1), 160–189 (2014).
    • 12. Kezic A, Spasojevic I, Lezaic V, Bajcetic M. Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. Oxid. Med. Cell Longev. 2016, 2950503 (2016).
    • 13. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113), 787–795 (2006). • Important review about the role of mitochondria in the pathogenesis of neurodegenerative diseases.
    • 14. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59(3), 527–605 (1979).
    • 15. Reed DJ. Glutathione: toxicological implications. Annu. Rev. Pharmacol. Toxicol. 30, 603–631 (1990).
    • 16. Sies H. Strategies of antioxidant defense. Eur. J. Biochem. 215(2), 213–219 (1993).
    • 17. Sheng Y, Abreu IA, Cabelli DE et al. Superoxide dismutases and superoxide reductases. Chem. Rev. 114(7), 3854–3918 (2014). • Important review about superoxide dismutases and superoxide reductases to quench ROS.
    • 18. Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med. 34(2), 145–169 (2003).
    • 19. Yamada Y, Harashima H. Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv. Drug Deliv. Rev. 60(13–14), 1439–1462 (2008). • This article discussed the key role of mitochondria in living cells, a number of drug delivery systems and mitochondrial-targeted therapeutic strategies.
    • 20. Bohr VA. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic. Biol. Med. 32(9), 804–812 (2002).
    • 21. Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol. 4, 193–199 (2013).
    • 22. Stadtman ER. Protein oxidation and aging. Free Radic. Res. 40(12), 1250–1258 (2006).
    • 23. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1–85 (1990).
    • 24. Schapira AH. Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia. Biochim. Biophys. Acta 1410(2), 159–170 (1999).
    • 25. Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimers Dis. 57(4), 1105–1121 (2017).
    • 26. Hoye AT, Davoren JE, Wipf P, Fink MP, Kagan VE. Targeting mitochondria. Acc. Chem. Res. 41(1), 87–97 (2008).
    • 27. Smith RA, Hartley RC, Murphy MP. Mitochondria-targeted small molecule therapeutics and probes. Antioxid. Redox Signal. 15(12), 3021–3038 (2011). • Addresses strategies for delivery into mitochondria.
    • 28. Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 47, 629–656 (2007).
    • 29. Apostolova N, Victor VM. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid. Redox. Signal. 22(8), 686–729 (2015).
    • 30. Alberts B, Johnson A, Lewis J et al. Molecular biology of the cell: Energy conversion: mitochondria and chloroplast. Molecular Biology of the Cell (4th Edition). Brand M (Ed.). Garland Publishing Inc., NY, USA, 1966–2119 (1994).
    • 31. Heller A, Brockhoff G, Goepferich A. Targeting drugs to mitochondria. Eur. J. Pharm. Biopharm. 82(1), 1–18 (2012).
    • 32. Oyewole AO, Birch-Machin MA. Mitochondria-targeted antioxidants. FASEB J. 29(12), 4766–4771 (2015).
    • 33. Wen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med. Chem. 5(1), 53–67 (2013).
    • 34. Smith RA, Porteous CM, Coulter CV, Murphy MP. Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem. 263, 709–716 (1999).
    • 35. Di Domenico F, Barone E, Perluigi M, Butterfield DA. Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev. Neurother. 15(1), 19–40 (2015).
    • 36. Hurko O. Drug development for rare mitochondrial disorders. Neurotherapeutics 10(2), 286–306 (2013).
    • 37. Lukashev AN, Skulachev MV, Ostapenko V et al. Advances in development of rechargeable mitochondrial antioxidants. Prog. Mol. Biol. Transl. Sci. 127, 251–265 (2014).
    • 38. Kerr DS. Review of clinical trials for mitochondrial disorders: 1997–2012. Neurotherapeutics 10(2), 307–319 (2013).
    • 39. Lyseng-Williamson KA. Idebenone: a review in Leber’s Hereditary Optic Neuropathy. Drugs 76(7), 805–813 (2016). • Important review discussing the use of idebenone for the treatment of Leber’s Hereditary Optic Neuropathy.
    • 40. Orsucci D, Mancuso M, Ienco EC, LoGerfo A, Siciliano G. Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues. Curr. Med. Chem. 18(26), 4053–4064 (2011).
    • 41. Enns GM, Kinsman SL, Perlman SL et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol. Genet. Metab. 105(1), 91–102 (2012).
    • 42. Shrader WD, Amagata A, Barnes A et al. a-Tocotrienol quinone modulates oxidative stress response and the biochemistry of aging. Bioorg. Med. Chem. Lett. 21(12), 3693–3698 (2011).
    • 43. Evans JL, Goldfine ID. Alpha-Lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technol. Ther. 2(3), 401–413 (2000).
    • 44. Bast A, Haenen GR. Lipoic acid: a multifunctional antioxidant. Biofactors 17(1-4), 207–213 (2003).
    • 45. Yoshida H, Yanai H, Namiki Y et al. Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury. CNS Drug Rev. 12(1), 9–20 (2006).
    • 46. Picard M, Wallace DC, Burelle Y. The rise of mitochondria in medicine. Mitochondrion 30, 105–116 (2016).
    • 47. Kanabus M, Heales SJ, Rahman S. Development of pharmacological strategies for mitochondrial disorders. Br. J. Pharmacol. 171(8), 1798–1817 (2014).
    • 48. Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. Annu. Rev. Pathol. 5, 297–348 (2010).
    • 49. Schmidt HH, Stocker R, Vollbracht C et al. Antioxidants in translational medicine. Antioxid. Redox Signal. 23(14), 1130–1143 (2015).
    • 50. Dharmaraja AT. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J. Med. Chem. 60(8), 3221–3240 (2017).
    • 51. Birch-Machin MA. The role of mitochondria in ageing and carcinogenesis. Clin. Exp. Dermatol. 31(4), 548–552 (2006).
    • 52. Tulah AS, Birch-Machin MA. Stressed out mitochondria: the role of mitochondria in ageing and cancer focusing on strategies and opportunities in human skin. Mitochondrion 13(5), 444–453 (2013).
    • 53. Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80(5), 780–787 (2002).
    • 54. Murphy MP. How mitochondria produce reactive oxygen species. Biochem. J. 417(1), 1–13 (2009).
    • 55. Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217(6), 1915–1928 (2018).
    • 56. Armstrong JS, Khdour O, Hecht SM. Does oxidative stress contribute to the pathology of Friedreich’s ataxia? A radical question. FASEB J. 24(7), 2152–2163 (2010).
    • 57. Gutteridge JM. Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide. FEBS Lett. 172(2), 245–249 (1984).
    • 58. Gueven N, Woolley K, Smith J. Border between natural product and drug: comparison of the related benzoquinones idebenone and coenzyme Q10. Redox Biol. 4, 289–295 (2015).
    • 59. Food and DrugAdministration. Pharmacy Compounding Advisory Committee (PCAC)Meeting 8-9 May 2017. https://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/pharmacycompoundingadvisorycommittee/ucm553368.pdf
    • 60. Kerr DS, deGrauw TJ, Feigenbaum AS. Phase III trial of coenzyme Q10 in mitochondrial disease. ClinicalTrials.gov. NCT00432744 (2007).
    • 61. Parkinson Study Group QE3 Investigators. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol. 71(5), 543–552 (2014).
    • 62. Erb M, Hoffmann-Enger B, Deppe H et al. Features of idebenone and related short-chain quinones that rescue ATP levels under conditions of impaired mitochondrial complex I. PLoS One 7(4), e36153 (2012).
    • 63. Montenegro L, Turnaturi R, Parenti C, Pasquinucci L. Idebenone: novel strategies to improve its systemic and local efficacy. Nanomaterials (Basel). 8(2), pii: E87 (2018).
    • 64. Regulatory action and news. WHO drug information. 27(2), 110–118 (2013).
    • 65. Hirano M. Study of idebenone in the treatment of mitochondrial encephalopathy lactic acidosis and stroke-like episodes (MELAS). ClinicalTrials.gov Identifier: NCT00887562 (2009).
    • 66. Meier T, Perlman SL, Rummey C, Coppard NJ, Lynch DR. Assessment of neurological efficacy of idebenone in pediatric patients with Friedreich’s ataxia: data from a 6-month controlled study followed by a 12-month open-label extension study. J Neurol. 259(2), 284–291 (2012).
    • 67. Klopstock T, Yu-Wai-Man P, Dimitriadis K et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 134(Pt 9), 2677–2686 (2011).
    • 68. Rudolph G, Dimitriadis K, Büchner B et al. Effects of idebenone on color vision in patients with Leber hereditary optic neuropathy. J. Neuroophthalmol. 33(1), 30–36 (2013).
    • 69. Duveau DY, Arce PM, Schoenfeld RA et al. Synthesis and characterization of mito Q and idebenone analogues as mediators of oxygen consumption in mitochondria. Bioorg. Med. Chem. 18(17), 6429–6441 (2010).
    • 70. Fash DM, Khdour OM, Sahdeo SJ et al. Effects of alkyl side chain modification of coenzyme Q10 on mitochondrial respiratory chain function and cytoprotection. Bioorg. Med. Chem. 21(8), 2346–2354 (2013).
    • 71. Madathil MM, Khdour OM, Jaruvangsanti J, Hecht SM. Synthesis and biological activities of N-(3-Carboxylpropyl)-5-amino-2-hydroxy-3-tridecyl-1,4-benzoquinone and analogues. J. Nat. Prod. 75(12), 2209–2215 (2012).
    • 72. Madathil MM, Khdour OM, Jaruvangsanti J, Hecht SM. A structurally simplified analogue of geldanamycin exhibits neuroprotective activity. ACS Med. Chem. Lett. 4(10), 953–957 (2013).
    • 73. Lin P, Li S, Wang S, Yang Y, Shi J. A nitrogen-containing 3-alkyl-1,4-benzoquinone and a gomphilactone derivative from Embelia ribes. J. Nat. Prod. 69(11), 1629–1632 (2006).
    • 74. McErlean CS, Moody CJ. First synthesis of N-(3-carboxylpropyl)-5-amino-2-hydroxy-3- tridecyl-1,4-benzoquinone, an unusual quinone isolated from Embelia ribes. J. Org. Chem. 72(26), 10298–10301 (2007).
    • 75. Whitesell L, Shifrin SD, Schwab G, Neckers LM. Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res. 52(7), 1721–1728 (1992).
    • 76. Kamal-Eldin A, Appelqvist LA. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7), 671–701 (1996).
    • 77. Brigelius-Flohé R, Traber MG. Vitamin E: function and metabolism. FASEB J. 13(10), 1145–1155 (1999).
    • 78. Zhang ZW, Xu XC, Liu T, Yuan S. Mitochondrion-permeable antioxidants to treat ROS-burst-mediated acute diseases. Oxid. Med. Cell Longev. 2016, 6859523 (2016).
    • 79. Kirsh VA, Hayes RB, Mayne ST et al. Supplemental and dietary vitamin E, beta-carotene, and vitamin C intakes and prostate cancer risk. J. Natl Cancer Inst. 98(4), 245–254 (2006).
    • 80. Lippman SM, Klein EA, Goodman PJ et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 301(1), 39–51 (2009).
    • 81. Burton GW, Doba T, Gabe EJ et al. Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J. Am. Chem. Soc. 107(24), 7053–7065 (1985). • Discusses the finding that the introduction of electron donating groups not only decreases the O-H bond dissociation enthalpies, but also decreases the ionization potentials.
    • 82. Lucarini M, Pedulli GF, Cipollone M. Bond dissociation enthalpy of alpha-tocopherol and other phenolic antioxidants. J. Org. Chem. 59(17), 5063–5070 (1994).
    • 83. Wayner DD, Lusztyk E, Ingold KU, Mulder P. Application of photoacoustic calorimetry to the measurement of the O-H bond strength in vitamin E (α- and δ-tocopherol) and related phenolic antioxidants. J. Org. Chem. 61(18), 6430–6433 (1996).
    • 84. Lucarini M, Pedrielli P, Pedulli GF, Cabiddu S, Fattuoni C. Bond dissociation energies of O−H bonds in substituted phenols from equilibration studies. J. Org. Chem. 61(26), 9259–9263 (1996).
    • 85. Shanks D, Frisell H, Ottosson H, Engman L. Design principles for alpha-tocopherol analogues. Org. Biomol. Chem. 4(5), 846–852 (2006).
    • 86. Pratt DA, DiLabio GA, Brigati G, Pedulli GF, Valgimigli L. 5-Pyrimidinols: novel chain-breaking antioxidants more effective than phenols. J. Am. Chem. Soc. 123(19), 4625–4626 (2001). • To increase the stability of highly reactive compounds, these workers reported the studies of incorporation of nitrogen into the phenolic ring in both theory and experiment.
    • 87. Tallman KA, Pratt DA, Porter NA. Kinetic products of linoleate peroxidation: rapid β-fragmentation of nonconjugated peroxyls. J. Am. Chem. Soc. 123(47), 11827–11828 (2001).
    • 88. Wijtmans M, Pratt DA, Valgimigli L et al. 6-Amino-3-pyridinols: towards diffusion-controlled chain-breaking antioxidants. Angew. Chem. Int. Ed. Engl. 42(36), 4370–4373 (2003).
    • 89. Valgimigli L, Brigati G, Pedulli GF et al. The effect of ring nitrogen atoms on the homolytic reactivity of phenolic compounds: understanding the radical-scavenging ability of 5-pyrimidinols. Chem. Eur. J. 9(20), 4997–5010 (2003).
    • 90. Wijtmans M, Pratt DA, Brinkhorst J et al. Synthesis and reactivity of some 6-substituted-2,4-dimethyl-3-pyridinols, a novel class of chain-breaking antioxidants. J. Org. Chem. 69(26), 9215–9223 (2004).
    • 91. Kim HY, Pratt DA, Seal JR, Wijtmans M, Porter NA. Lipid-soluble 3-pyridinol antioxidants spare alpha-tocopherol and do not efficiently mediate peroxidation of cholesterol esters in human low-density lipoprotein. J. Med. Chem. 48(22), 6787–6789 (2005).
    • 92. Nam TG, Rector CL, Kim HY et al. Tetrahydro-1,8-naphthyridinol analogues of alpha-tocopherol as antioxidants in lipid membranes and low-density lipoproteins. J. Am. Chem. Soc. 129(33), 10211–10209 (2007).
    • 93. Nam TG, Nara SJ, Zagol-Ikapitte I et al. Pyridine and pyrimidine analogs of acetaminophen as inhibitors of lipid peroxidation and cyclooxygenase and lipoxygenase catalysis. Org. Biomol. Chem. 7(24), 5103–5112 (2009).
    • 94. Serwa R, Nam TG, Valgimigli L et al. Preparation and investigation of vitamin B6-derived aminopyridinol antioxidants. Chem. Eur. J. 16(47), 14106–14114 (2010).
    • 95. Valgimigli L, Bartolomei D, Amorati R et al. 3-Pyridinols and 5-pyrimidinols: tailor-made for use in synergistic radical-trapping co-antioxidant systems. Beilstein J. Org. Chem. 9, 2781–2792 (2013).
    • 96. Lu J, Khdour OM, Armstrong JS, Hecht SM. Design, synthesis, and evaluation of an α-tocopherol analogue as a mitochondrial antioxidant. Bioorg. Med. Chem. 18(21), 7628–7638 (2010).
    • 97. Khdour OM, Lu J, Hecht SM. An acetate prodrug of a pyridinol-based vitamin E analogue. Pharm. Res. 28(11), 2896–2909 (2011).
    • 98. Cai X, Khdour OM, Jaruvangsanti J, Hecht SM. Simplified bicyclic pyridinol analogues protect mitochondrial function. Bioorg. Med. Chem. 20(11), 3584–3595 (2012).
    • 99. Arce PM, Goldschmidt R, Khdour OM et al. Analysis of the structural and mechanistic factors in antioxidants that preserve mitochondrial function and confer cytoprotection. Bioorg. Med. Chem. 20(17), 5188–5201 (2012).
    • 100. Alam MP, Khdour OM, Arce PM et al. Cytoprotective pyridinol antioxidants as potential therapeutic agents for neurodegenerative and mitochondrial diseases. Bioorg. Med. Chem. 22(17), 4935–4947 (2014).
    • 101. Arce PM, Khdour OM, Goldschmidt R, Armstrong JS, Hecht SM. A strategy for suppressing redox stress within mitochondria. ACS Med. Chem. Lett. 2(8), 608–613 (2011).
    • 102. Goldschmidt R, Arce PM, Khdour OM et al. Effects of cytoprotective antioxidants on lymphocytes from representative mitochondrial neurodegenerative diseases. Bioorg Med. Chem. 21(4), 969–978 (2013).
    • 103. Khdour OM, Arce PM, Roy B, Hecht SM. An optimized pyrimidinol multifunctional radical quencher. ACS Med. Chem. Lett. 4(8), 724–729 (2013). • One of the important novel MRQs studied to treat the mitochondrial dysfunction.
    • 104. Mastroeni D, Khdour OM, Arce PM, Hecht SM, Coleman PD. Novel antioxidants protect mitochondria from the effects of oligomeric amyloid beta and contribute to the maintenance of epigenome function. ACS Chem. Neurosci. 6(4), 588–598 (2015).
    • 105. Mastroeni D, Nolz J, Khdour OM et al. Oligomeric amyloid β preferentially targets neuronal and not glial mitochondrial-encoded mRNAs. Alzheimer’s Dement. 14(6), 775–786 (2018). • An important study about a novel MRQ which protected neuronal mitochondria from OAβ-induced mitochondrial changes.
    • 106. Chevalier A, Alam MP, Khdour OM et al. Optimization of pyrimidinol antioxidants as mitochondrial protective agents: ATP production and metabolic stability. Bioorg. Med. Chem. 24(21), 5206–5220 (2016).
    • 107. Chevalier A, Khdour OM, Schmierer M, Bandyopadhyay I, Hecht SM. Influence of substituent heteroatoms on the cytoprotective properties of pyrimidinol antioxidants. Bioorg. Med. Chem. 25(5), 1703–1716 (2017).
    • 108. Smith RA, Adlam VJ, Blaikie FH et al. Mitochondria-targeted antioxidants in the treatment of disease. Ann. N Y Acad. Sci. 1147, 105–111 (2008).
    • 109. Gane EJ, Weilert F, Orr DW et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 30(7), 1019–1026 (2010).
    • 110. Snow BJ, Rolfe FL, Lockhart MM et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov. Disord. 25(11), 1670–1674 (2010).
    • 111. Zhao K, Zhao GM, Wu D et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem. 279(33), 34682–34690 (2004).
    • 112. Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharmacol. 171(8), 2029–2050 (2014).
    • 113. Szeto HH, Liu S, Soong Y et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol. 22(6), 1041–1052 (2011).
    • 114. Birk AV, Chao WM, Bracken C, Warren JD, Szeto HH. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br. J. Pharmacol. 171(8), 2017–2028 (2014).
    • 115. Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO. Mitochondria-penetrating peptides. Chem. Biol. 15(4), 375–382 (2008).
    • 116. Horton KL, Pereira MP, Stewart KM, Fonseca SB, Kelley SO. Tuning the activity of mitochondria-penetrating peptides for delivery or disruption. ChemBioChem. 13(3), 476–485 (2012).
    • 117. Chamberlain GR, Tulumello DV, Kelley SO. Targeted delivery of doxorubicin to mitochondria. ACS Chem. Biol. 8(7), 1389–1395 (2013).
    • 118. Jean SR, Ahmed M, Lei EK, Wisnovsky SP, Kelley SO. Peptide-mediated delivery of chemical probes and Therapeutics to mitochondria. Acc. Chem. Res. 49(9), 1893–902 (2016).
    • 119. Wisnovsky S, Lei EK, Jean SR, Kelley SO. Mitochondrial chemical biology: new probes elucidate the secrets of the powerhouse of the cell. Cell Chem. Biol. 23(8), 917–927 (2016). • An important review about mitochondria-penetrating peptides for delivery into mitochondria.
    • 120. Lei EK, Kelley SO. Delivery and release of small-molecule probes in mitochondria using traceless linkers. J. Am. Chem. Soc. 139(28), 9455–9458 (2017).
    • 121. Ghosh A, Chandran K, Kalivendi SV et al. Neuroprotection by a mitochondria targeted drug in a Parkinson’s disease model. Free Radic. Biol. Med. 49(11), 1674–1684 (2010).
    • 122. Solesio ME, Prime TA, Logan A et al. The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson’s disease. Biochim. Biophys. Acta. 1832(1), 174–182 (2013).
    • 123. McManus MJ, Murphy MP, Franklin JL. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J. Neurosci. 31(44), 15703–15715 (2011).
    • 124. Ng LF, Grube J, Cheah IK et al. The mitochondria-targeted antioxidant MitoQ extends lifespan and improves health span of a transgenic Caenorhabditis elegans model of Alzheimer disease. Free Radic. Biol. Med. 71, 390–401 (2014).
    • 125. Manczak M, Mao P, Calkins MJ et al. Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J. Alzheimers Dis. 20(Suppl. 2), S609–S631 (2010).
    • 126. Dare AJ, Bolton EA, Pettigrew GJ, Bradley JA, Saeb-Parsy K, Murphy MP. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 5, 163–168 (2015).
    • 127. Gioscia-Ryan RA, LaRocca TJ, Sindler AL, Zigler MC, Murphy MP, Seals DR. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J. Physiol. 592(12), 2549–2561 (2014).
    • 128. Gioscia-Ryan RA, Battson ML, Cuevas LM, Eng JS, Murphy MP, Seals DR. Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. J. Appl. Physiol. 124(5), 1194–1202 (2017).
    • 129. Rossman MJ, Santos-Parker JR, Steward CAC et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71(6), 1056–1063 (2018).
    • 130. Zhou J, Wang H, Shen R et al. Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Am. J. Transl. Res. 10(6), 1887–1899 (2018).
    • 131. Gottwald EM, Duss M, Bugarski M et al. The targeted anti-oxidant MitoQ causes mitochondrial swelling and depolarization in kidney tissue. Physiol. Rep. 6, e13667 (2018).
    • 132. Fink BD, Herlein JA, Yorek MA, Fenner AM, Kerns RJ, Sivitz W. Bioenergetic effects of mitochondrial-targeted coenzyme Q analogs in endothelial cells. J. Pharmacol. Exp. Ther. 342(3), 709–719 (2012).
    • 133. Imai Y, Fink BD, Promes JA, Kulkarni CA, Kerns RJ, Sivitz WI. Effect of a mitochondrial-targeted coenzyme Q analog on pancreatic beta-cell function and energetics in high fat fed obese mice. Pharmacol. Res. Perspect. 6, e00393 (2018).
    • 134. Petri S, Kiaei M, Damiano M et al. Cell- permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J. Neurochem. 98(4), 1141–1148 (2006).
    • 135. Reddy PH, Manczak M, Kandimalla R. Mitochondria-targeted small molecule SS31: a potential candidate for the treatment of Alzheimer’s disease. Hum. Mol. Genet. 26(8), 1483–1496 (2017).
    • 136. Cho J, Won K, Wu D et al. Potent mitochondria-targeted peptides reduce myocardial infarction in rats. Coron. Artery Dis. 18(3), 215–220 (2007).
    • 137. Lee FY, Shao PL, Wallace CG et al. Combined Therapy with SS31 and Mitochondria Mitigates Myocardial Ischemia-Reperfusion Injury in Rats. Int. J. Mol. Sci. 19(9), 2782 (2018).
    • 138. Lu HI, Huang TH, Sung PH et al. Administration of antioxidant peptide SS-31 attenuates transverse aortic constriction-induced pulmonary arterial hypertension in mice. Acta Pharmacol. Sin. 37(5), 589–603 (2016).
    • 139. Cai J, Jiang Y, Zhang M et al. Protective effects of mitochondrion-targeted peptide SS-31 against hind limb ischemia-reperfusion injury. J. Physiol. Biochem. 74(2), 335–343 (2018).
    • 140. Mizuguchi Y, Chen J, Seshan SV et al. A novel cell-permeable antioxidant peptide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction. Am. J. Physiol. Renal Physiol. 295(5), F1545–F1553 (2008).
    • 141. Liu S, Soong Y, Seshan SV et al. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis. Am. J. Physiol. Renal Physiol. 306(9), F970–F980 (2014).
    • 142. Thomas DA, Stauffer C, Zhao K et al. Mitochondrial targeting with antioxidant peptide SS-31 prevents mitochondrial depolarization, reduces islet cell apoptosis, increases islet cell yield, and improves post transplantation function. J. Am. Soc. Nephrol. 18(1), 213–222 (2007).
    • 143. Yang L, Zhao K, Calingasan NY et al. Mitochondria targeted peptides protect against 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine neurotoxicity. Antioxid. Redox Signal. 11(9), 2095–2104 (2009).
    • 144. Roshanravan B, Liu Z, Ali AS et al. Elamipretide improves skeletal muscle function in elderly subjects: results from a randomized, double-blind, placebo-controlled, single IV dose study. J. Cachexia Sarcopenia Muscle 8, 171 (2017).
    • 145. Daubert MA, Yow E, Dunn G et al. Novel mitochondria-targeting peptide in heart failure treatment: a randomized, placebo-controlled trial of elamipretide. Circ. Heart Fail. 10(12), e004389 (2017).
    • 146. Saad A, Herrmann SMS, Eirin A et al. Phase 2a clinical trial of mitochondrial protection (Elamipretide) during stent revascularization in patients with atherosclerotic renal artery stenosis. Circ. Cardiovasc. Interv. 10(9), e005487 (2017).
    • 147. Gibson CM, Giugliano RP, Kloner RA et al. EMBRACE STEMI study: a Phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur. Heart. J. 37(16), 1296–1303 (2016).
    • 148. Karaa A, Haas R, Goldstein A, Vockley J, Weaver WD, Cohen BH. Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy. Neurology. 90(14), e1212–e1221 (2018).
    • 149. Hecht S, Armstrong J, Khdour O, Lu J, Arce P. WO2011103536A1 (2011).
    • 150. Hecht S, Khdour O, Lu J, Arce P. US20130267546A1 (2013).
    • 151. Hecht S, Khdour O, Lu J, Arce P. US8952025 (2015).