We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Base excision repair pathways of bacteria: new promise for an old problem

    Krishna Kurthkoti

    *Author for correspondence: Tel.: +91 4712 529 519;

    E-mail Address: kurthkoti@rgcb.res.in

    Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India

    ,
    Pradeep Kumar

    Division of Infectious Disease, Department of Medicine, & the Ruy V. Lourenço Centre for the Study of Emerging & Re-emerging Pathogens, Rutgers University – New Jersey Medical School, Newark, NJ 07107, USA

    Authors contributed equally

    Search for more papers by this author

    ,
    Pau Biak Sang

    Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, 560012, India

    Current Address: The University of Texas Health Science Center at Tyler, TX 75708, USA

    Authors contributed equally

    Search for more papers by this author

    &
    Umesh Varshney

    **Author for correspondence: Tel.: +91 8022 932 686;

    E-mail Address: varshney@iisc.ac.in

    Department of Microbiology & Cell Biology, Indian Institute of Science, Bangalore, 560012, India

    Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India

    Published Online:https://doi.org/10.4155/fmc-2019-0267

    Infectious diseases continue to be a major cause of human mortality. With the emergence of drug resistance, diseases that were long thought to have been curable by antibiotics are resurging. There is an urgent clinical need for newer antibiotics that target novel cellular pathways to overcome resistance to currently used therapeutics. The base excision repair (BER) pathways of the pathogen restore altered bases and safeguard the genomic integrity of the pathogen from the host's immune response. Although the BER machinery is of paramount importance to the survival of the pathogens, its potential as a drug target is largely unexplored. In this review, we discuss the importance of BER in different pathogenic organisms and the potential of its inhibition with small molecules.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Friedberg EC , Walker GC , Seide W . DNA Repair and Mutagenesis. ASM Press, DC, USA (1995).
    • 2. Friedberg EC , Walker GC , Wolfram S , Wood RD , Schultz RA , Tom E . DNA Repair and Mutagenesis, Second Edition. ASM Press American Society for Microbiology, DC, USA (2006). • A comprehensive study material for DNA repair.
    • 3. Fels AO , Cohn ZA . The alveolar macrophage. J. Appl. Physiol. 60(2), 353–369 (1986).
    • 4. Lancaster JR Jr . Diffusion of free nitric oxide. Methods Enzymol. 268, 31–50 (1996).
    • 5. Imlay JA , Linn S . DNA damage and oxygen radical toxicity. Science 240(4857), 1302–1309 (1988).
    • 6. Wang Z , Zheng R , Fu S et al. Role of superoxide anion on the proliferation and c-Ha-ras or p53 expression in prostate cancer cell line PC3. Urol. Res. 26(5), 349–353 (1998).
    • 7. Fortini P , Pascucci B , Parlanti E , D'Errico M , Simonelli V , Dogliotti E . 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. Mutat. Res. 531(1–2), 127–139 (2003).
    • 8. Evans MD , Dizdaroglu M , Cooke MS . Oxidative DNA damage and disease: induction, repair and significance. Mutat. Res. 567(1), 1–61 (2004).
    • 9. Hmadcha A , Bedoya FJ , Sobrino F , Pintado E . Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J. Exp. Med. 190(11), 1595–1604 (1999).
    • 10. Hutchinson F . Chemical changes induced in DNA by ionizing radiation. Prog. Nucleic Acid Res. Mol. Biol. 32, 115–154 (1985).
    • 11. Ward JF . DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog. Nucleic Acid Res. Mol. Biol. 35, 95–125 (1988).
    • 12. Chan GL , Doetsch PW , Haseltine WA . Cyclobutane pyrimidine dimers and (6–4) photoproducts block polymerization by DNA polymerase I. Biochemistry 24(21), 5723–5728 (1985).
    • 13. Rattray AJ , Strathern JN . Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annu. Rev. Genet. 37, 31–66 (2003).
    • 14. Wiesmuller L , Ford JM , Schiestl RH . DNA damage, repair, and diseases. J. Biomed. Biotechnol. 2(2), 45 (2002).
    • 15. Shiloh MU , Nathan CF . Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Curr. Opin. Microbiol. 3(1), 35–42 (2000).
    • 16. Liew FY , Cox FE . Nonspecific defence mechanism: the role of nitric oxide. Immunol. Today 12(3), A17–A21 (1991).
    • 17. Nathan C . Nitric oxide as a secretory product of mammalian cells. Faseb J. 6(12), 3051–3064 (1992).
    • 18. Udwadia ZF . Totally drug-resistant tuberculosis in India: who let the djinn out? Respirology 17(5), 741–742 (2012).
    • 19. Udwadia ZF , Amale RA , Ajbani KK , Rodrigues C . Totally drug-resistant tuberculosis in India. Clin. Infect. Dis. 54(4), 579–581 (2012).
    • 20. Cetinkaya Y , Falk P , Mayhall CG . Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 13(4), 686–707 (2000).
    • 21. Dianov G , Lindahl T . Reconstitution of the DNA base excision-repair pathway. Curr. Biol. 4(12), 1069–1076 (1994).
    • 22. Friedberg EC . A history of the DNA repair and mutagenesis field: the discovery of base excision repair. DNA Repair (Amst.) 37, A35–A39 (2016).
    • 23. Lindahl T . An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl Acad. Sci. USA 71(9), 3649–3653 (1974).
    • 24. Krokan HE , Standal R , Slupphaug G . DNA glycosylases in the base excision repair of DNA. Biochem. J. 325(Pt 1), 1–16 (1997).
    • 25. Robertson AB , Klungland A , Rognes T , Leiros I . DNA repair in mammalian cells: base excision repair: the long and short of it. Cell. Mol. Life Sci. 66(6), 981–993 (2009).
    • 26. Krokan HE , Bjoras M . Base excision repair. Cold Spring Harb. Perspect. Biol. 5(4), a012583 (2013).
    • 27. Wallace SS . Base excision repair: a critical player in many games. DNA Repair (Amst.) 19, 14–26 (2014).
    • 28. McCullough AK , Dodson ML , Lloyd RS . Initiation of base excision repair: glycosylase mechanisms and structures. Annu. Rev. Biochem. 68, 255–285 (1999). • Provides details on the catalytic mechanism of glycosylase.
    • 29. Richardson CC , Lehman IR , Kornberg A . A deoxyribonucleic acid phosphatase-exonuclease from Escherichia coli. Ii. Characterization of the exonuclease activity. J. Biol. Chem. 239, 251–258 (1964).
    • 30. Siwek B , Bricteux-Gregoire S , Bailly V , Verly WG . The relative importance of Escherichia coli exonuclease III and endonuclease IV for the hydrolysis of 3′-phosphoglycolate ends in polydeoxynucleotides. Nucleic Acids Res. 16(11), 5031–5038 (1988).
    • 31. Doetsch PW , Cunningham RP . The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res. 236(2–3), 173–201 (1990).
    • 32. Demple B , Halbrook J , Linn S . Escherichia coli xth mutants are hypersensitive to hydrogen peroxide . J. Bacteriol. 153(2), 1079–1082 (1983).
    • 33. Bailly V , Verly WG . The multiple activities of Escherichia coli endonuclease IV and the extreme lability of 5′-terminal base-free deoxyribose 5-phosphates. Biochem. J. 259(3), 761–768 (1989).
    • 34. Cunningham RP , Saporito SM , Spitzer SG , Weiss B . Endonuclease IV (nfo) mutant of Escherichia coli . J. Bacteriol. 168(3), 1120–1127 (1986).
    • 35. Boiteux S , Guillet M . Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae . DNA Repair (Amst.) 3(1), 1–12 (2004).
    • 36. Guillet M , Boiteux S . Endogenous DNA abasic sites cause cell death in the absence of Apn1, Apn2 and Rad1/Rad10 in Saccharomyces cerevisiae . EMBO J. 21(11), 2833–2841 (2002).
    • 37. Loeb LA , Preston BD . Mutagenesis by apurinic/apyrimidinic sites. Annu. Rev. Genet. 20, 201–230 (1986).
    • 38. Tornaletti S , Maeda LS , Hanawalt PC . Transcription arrest at an abasic site in the transcribed strand of template DNA. Chem. Res. Toxicol. 19(9), 1215–1220 (2006).
    • 39. Strauss BS . The ‘A rule’ of mutagen specificity: a consequence of DNA polymerase bypass of non-instructional lesions? Bioessays 13(2), 79–84 (1991).
    • 40. Fortini P , Pascucci B , Parlanti E , Sobol RW , Wilson SH , Dogliotti E . Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry 37(11), 3575–3580 (1998).
    • 41. Sukhanova M , Khodyreva S , Lavrik O . Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase beta in long patch base excision repair. Mutat. Res. 685(1–2), 80–89 (2010).
    • 42. Hoeijmakers JH . Genome maintenance mechanisms for preventing cancer. Nature 411(6835), 366–374 (2001).
    • 43. Kumar P , Bharti SK , Varshney U . Uracil excision repair in Mycobacterium tuberculosis cell-free extracts. Tuberculosis (Edinb.) 91(3), 212–218 (2011).
    • 44. Haltiwanger BM , Matsumoto Y , Nicolas E , Dianov GL , Bohr VA , Taraschi TF . DNA base excision repair in human malaria parasites is predominantly by a long-patch pathway. Biochemistry 39(4), 763–772 (2000).
    • 45. Pena-Diaz J , Akbari M , Sundheim O et al. Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair. J. Mol. Biol. 342(3), 787–799 (2004).
    • 46. Sang PB , Srinath T , Patil AG , Woo EJ , Varshney U . A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily. Nucleic Acids Res. 43(17), 8452–8463 (2015). • Reports the characterization of protein that forms an irreversible complex with uracil base.
    • 47. Mohni KN , Wessel SR , Zhao R et al. HMCES maintains genome integrity by shielding abasic sites in single-strand DNA. Cell 176(1–2), 144.e13–153.e13 (2019).
    • 48. Glickman MS , Jacobs WR Jr . Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 104(4), 477–485 (2001).
    • 49. Smith I . Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence . Clin. Microbiol. Rev. 16(3), 463–496 (2003).
    • 50. Mizrahi V , Andersen SJ . DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? Mol. Microbiol. 29(6), 1331–1339 (1998).
    • 51. Castaneda-Garcia A , Prieto AI , Rodriguez-Beltran J et al. A non-canonical mismatch repair pathway in prokaryotes. Nat. Commun. 8, 14246 (2017).
    • 52. Della M , Palmbos PL , Tseng HM et al. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306(5696), 683–685 (2004).
    • 53. Gong C , Bongiorno P , Martins A et al. Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. Nat. Struct. Mol. Biol. 12(4), 304–312 (2005).
    • 54. Srinath T , Bharti SK , Varshney U . Substrate specificities and functional characterization of a thermo-tolerant uracil DNA glycosylase (UdgB) from Mycobacterium tuberculosis . DNA Repair (Amst.) 6(10), 1517–1528 (2007).
    • 55. Malshetty VS , Jain R , Srinath T , Kurthkoti K , Varshney U . Synergistic effects of UdgB and Ung in mutation prevention and protection against commonly encountered DNA damaging agents in Mycobacterium smegmatis . Microbiology 156(Pt 3), 940–949 (2010).
    • 56. Sidorenko VS , Rot MA , Filipenko ML , Nevinsky GA , Zharkov DO . Novel DNA glycosylases from Mycobacterium tuberculosis . Biochemistry (Mosc.) 73(4), 442–450 (2008).
    • 57. Sang PB , Varshney U . Biochemical properties of MutT2 proteins from Mycobacterium tuberculosis and M. smegmatis and their contrasting antimutator roles in Escherichia coli . J. Bacteriol. 195(7), 1552–1560 (2013).
    • 58. Dos Vultos T , Blazquez J , Rauzier J , Matic I , Gicquel B . Identification of Nudix hydrolase family members with an antimutator role in Mycobacterium tuberculosis and Mycobacterium smegmatis . J. Bacteriol. 188(8), 3159–3161 (2006).
    • 59. Kurthkoti K , Varshney U . Base excision and nucleotide excision repair pathways in mycobacteria. Tuberculosis (Edinb.) 91(6), 533–543 (2011).
    • 60. Black CG , Fyfe JA , Davies JK . Absence of an SOS-like system in Neisseria gonorrhoeae . Gene 208(1), 61–66 (1998).
    • 61. Nagorska K , Silhan J , Li Y et al. A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis . Mol. Microbiol. 83(5), 1064–1079 (2012).
    • 62. Tibballs KL , Ambur OH , Alfsnes K et al. Characterization of the meningococcal DNA glycosylase Fpg involved in base excision repair. BMC Microbiol. 9, 7 (2009).
    • 63. Davidsen T , Bjoras M , Seeberg EC , Tonjum T . Antimutator role of DNA glycosylase MutY in pathogenic Neisseria species. J. Bacteriol. 187(8), 2801–2809 (2005).
    • 64. Eutsey R , Wang G , Maier RJ . Role of a MutY DNA glycosylase in combating oxidative DNA damage in Helicobacter pylori . DNA Repair (Amst.) 6(1), 19–26 (2007).
    • 65. Carpenter EP , Corbett A , Thomson H et al. AP endonuclease paralogues with distinct activities in DNA repair and bacterial pathogenesis. EMBO J. 26(5), 1363–1372 (2007).
    • 66. Venkatesh J , Kumar P , Krishna PS , Manjunath R , Varshney U . Importance of uracil DNA glycosylase in Pseudomonas aeruginosa and Mycobacterium smegmatis, G+C-rich bacteria, in mutation prevention, tolerance to acidified nitrite, and endurance in mouse macrophages. J. Biol. Chem. 278(27), 24350–24358 (2003). • Reports the importance of uracil repair in guanine and cytosine rich bacteria.
    • 67. Morero NR , Argarana CE . Pseudomonas aeruginosa deficient in 8-oxodeoxyguanine repair system shows a high frequency of resistance to ciprofloxacin . FEMS Microbiol. Lett. 290(2), 217–226 (2009).
    • 68. Suvarnapunya AE , Lagasse HA , Stein MA . The role of DNA base excision repair in the pathogenesis of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 48(2), 549–559 (2003).
    • 69. Richardson AR , Soliven KC , Castor ME , Barnes PD , Libby SJ , Fang FC . The base excision repair system of Salmonella enterica serovar typhimurium counteracts DNA damage by host nitric oxide. PLoS Pathog. 5(5), e1000451 (2009).
    • 70. Kusters JG , Van Vliet AH , Kuipers EJ . Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 19(3), 449–490 (2006).
    • 71. Tomb JF , White O , Kerlavage AR et al. The complete genome sequence of the gastric pathogen Helicobacter pylori . Nature 388(6642), 539–547 (1997).
    • 72. Dorer MS , Sessler TH , Salama NR . Recombination and DNA repair in Helicobacter pylori . Annu. Rev. Microbiol. 65, 329–348 (2011).
    • 73. O'Rourke EJ , Chevalier C , Boiteux S , Labigne A , Ielpi L , Radicella JP . A novel 3-methyladenine DNA glycosylase from Helicobacter pylori defines a new class within the endonuclease III family of base excision repair glycosylases. J. Biol. Chem. 275(26), 20077–20083 (2000).
    • 74. Kulick S , Moccia C , Kraft C , Suerbaum S . The Helicobacter pylori mutY homologue HP0142 is an antimutator gene that prevents specific C to A transversions. Arch. Microbiol. 189(3), 263–270 (2008).
    • 75. Darwin KH , Ehrt S , Gutierrez-Ramos JC , Weich N , Nathan CF . The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302(5652), 1963–1966 (2003).
    • 76. Dwyer DJ , Belenky PA , Yang JH et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl Acad. Sci. USA 111(20), E2100–2109 (2014).
    • 77. Kohanski MA , Dwyer DJ , Hayete B , Lawrence CA , Collins JJ . A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5), 797–810 (2007).
    • 78. Sassetti CM , Rubin EJ . Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100(22), 12989–12994 (2003).
    • 79. El-Hajj HH , Zhang H , Weiss B . Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli . J. Bacteriol. 170(3), 1069–1075 (1988).
    • 80. Wang L , Weiss B . dcd (dCTP deaminase) gene of Escherichia coli: mapping, cloning, sequencing, and identification as a locus of suppressors of lethal dut (dUTPase) mutations. J. Bacteriol. 174(17), 5647–5653 (1992).
    • 81. Ahn WC , Aroli S , Kim JH et al. Covalent binding of uracil DNA glycosylase UdgX to abasic DNA upon uracil excision. Nat. Chem. Biol. 15(6), 607–614 (2019).
    • 82. Rex K , Kurthkoti K , Varshney U . Hypersensitivity of hypoxia grown Mycobacterium smegmatis to DNA damaging agents: implications of the DNA repair deficiencies in attenuation of mycobacteria. Mech. Ageing Dev. 134(10), 516–522 (2013).
    • 83. Dutta NK , Mehra S , Didier PJ et al. Genetic requirements for the survival of tubercle bacilli in primates. J. Infect. Dis. 201(11), 1743–1752 (2010).
    • 84. Wayne LG , Sohaskey CD . Nonreplicating persistence of Mycobacterium tuberculosis . Annu. Rev. Microbiol. 55, 139–163 (2001).
    • 85. Huang S , Kang J , Blaser MJ . Antimutator role of the DNA glycosylase mutY gene in Helicobacter pylori . J. Bacteriol. 188(17), 6224–6234 (2006).
    • 86. Alvarez G , Campoy S , Spricigo DA , Teixido L , Cortes P , Barbe J . Relevance of DNA alkylation damage repair systems in Salmonella enterica virulence. J. Bacteriol. 192(7), 2006–2008 (2010).
    • 87. Eskra L , Canavessi A , Carey M , Splitter G . Brucella abortus genes identified following constitutive growth and macrophage infection . Infect. Immun. 69(12), 7736–7742 (2001).
    • 88. Davidsen T , Amundsen EK , Rodland EA , Tonjum T . DNA repair profiles of disease-associated isolates of Neisseria meningitidis . FEMS Immunol. Med. Microbiol. 49(2), 243–251 (2007).
    • 89. Turgimbayeva A , Abeldenov S , Zharkov DO et al. Characterization of biochemical properties of an apurinic/apyrimidinic endonuclease from Helicobacter pylori . PLoS ONE 13(8), e0202232 (2018).
    • 90. Garcia-Ortiz MV , Marsin S , Arana ME et al. Unexpected role for Helicobacter pylori DNA polymerase I as a source of genetic variability. PLoS Genet. 7(6), e1002152 (2011).
    • 91. Chan S , Segelke B , Lekin T et al. Crystal structure of the Mycobacterium tuberculosis dUTPase: insights into the catalytic mechanism. J. Mol. Biol. 341(2), 503–517 (2004).
    • 92. Varga B , Barabas O , Takacs E , Nagy N , Nagy P , Vertessy BG . Active site of mycobacterial dUTPase: structural characteristics and a built-in sensor. Biochem. Biophys. Res. Commun. 373(1), 8–13 (2008).
    • 93. Horvati K , Bacsa B , Szabo N et al. Antimycobacterial activity of peptide conjugate of pyridopyrimidine derivative against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Tuberculosis (Edinb.) 95(Suppl. 1), S207–S211 (2015).
    • 94. Suksangpleng T , Leartsakulpanich U , Moonsom S et al. Molecular characterization of Plasmodium falciparum uracil-DNA glycosylase and its potential as a new anti-malarial drug target. Malar. J. 13, 149 (2014).
    • 95. Krokan HE , Standal R , Slupphaug G . DNA glycosylases in the base excision repair of DNA. Biochem. J. 325(Pt 1), 1–16 (1997).
    • 96. Mills SD , Eakin AE , Buurman ET et al. Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo . Antimicrobial. Agents Chemother. 55(3), 1088–1096 (2011). • Reports the identification and characterization of a NAD+ ligase inhibitor.
    • 97. Pergolizzi G , Wagner GK , Bowater RP . Biochemical and structural characterisation of DNA ligases from bacteria and archaea. Biosci. Rep. 36(5), 00391 (2016). • The article summarizes the research on bacterial ligases and inhibitors.
    • 98. Murphy-Benenato K , Wang H , McGuire HM et al. Identification through structure-based methods of a bacterial NAD(+)-dependent DNA ligase inhibitor that avoids known resistance mutations. Bioorg. Med. Chem. Lett. 24(1), 360–366 (2014).
    • 99. Wilkinson A , Day J , Bowater R . Bacterial DNA ligases. Mol. Microbiol. 40(6), 1241–1248 (2001).
    • 100. Korycka-Machala M , Rychta E , Brzostek A et al. Evaluation of NAD(+)-dependent DNA ligase of mycobacteria as a potential target for antibiotics. Antimicrob. Agents Chemother. 51(8), 2888–2897 (2007).
    • 101. Duncan BK , Weiss B . Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli . J. Bacteriol. 151(2), 750–755 (1982).
    • 102. Dinner AR , Blackburn GM , Karplus M . Uracil-DNA glycosylase acts by substrate autocatalysis. Nature 413(6857), 752–755 (2001).
    • 103. Werner RM , Stivers JT . Kinetic isotope effect studies of the reaction catalyzed by uracil DNA glycosylase: evidence for an oxocarbenium ion-uracil anion intermediate. Biochemistry 39(46), 14054–14064 (2000).
    • 104. Jiang YL , Ichikawa Y , Stivers JT . Inhibition of uracil DNA glycosylase by an oxacarbenium ion mimic. Biochemistry 41(22), 7116–7124 (2002).
    • 105. Kurthkoti K , Varshney U . Detrimental effects of hypoxia-specific expression of uracil DNA glycosylase (Ung) in Mycobacterium smegmatis . J. Bacteriol. 192(24), 6439–6446 (2010).
    • 106. Reed AM , Fishel ML , Kelley MR . Small-molecule inhibitors of proteins involved in base excision repair potentiate the anti-tumorigenic effect of existing chemotherapeutics and irradiation. Future Oncol. 5(5), 713–726 (2009).
    • 107. Jacobs AC , Calkins MJ , Jadhav A et al. Inhibition of DNA glycosylases via small molecule purine analogs. PLoS ONE 8(12), e81667 (2013).
    • 108. Dai Y , Dent P , Grant S . Induction of apoptosis in human leukemia cells by the CDK1 inhibitor CGP74514A. Cell Cycle 1(2), 143–152 (2002).
    • 109. Donley N , Jaruga P , Coskun E , Dizdaroglu M , McCullough AK , Lloyd RS . Small molecule inhibitors of 8-oxoguanine DNA glycosylase-1 (OGG1). ACS Chem. Biol. 10(10), 2334–2343 (2015).
    • 110. Rosa S , Fortini P , Karran P , Bignami M , Dogliotti E . Processing in vitro of an abasic site reacted with methoxyamine: a new assay for the detection of abasic sites formed in vivo . Nucleic Acids Res. 19(20), 5569–5574 (1991).
    • 111. Luo M , Kelley MR . Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res. 24(4), 2127–2134 (2004).
    • 112. Madhusudan S , Smart F , Shrimpton P et al. Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res. 33(15), 4711–4724 (2005).
    • 113. Bapat A , Glass LS , Luo M et al. Novel small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells. J. Pharmacol. Exp. Ther. 334(3), 988–998 (2010).
    • 114. Vertesy L , Aretz W , Fehlhaber HW , Kogler H . Salmycin A–D, antibiotika aus Streptomyces violaceus, DSM 8286, mit siderophor-aminoglycosid-struktur. Helve. Chim. Acta 78(1), 46–60 (1995).
    • 115. Pramanik A , Stroeher UH , Krejci J et al. Albomycin is an effective antibiotic, as exemplified with Yersinia enterocolitica and Streptococcus pneumoniae . Int. J. Med. Microbiol. 297(6), 459–469 (2007).
    • 116. Stefanska AL , Fulston M , Houge-Frydrych CS , Jones JJ , Warr SR . A potent seryl tRNA synthetase inhibitor SB-217452 isolated from a Streptomyces species. J. Antibiot. (Tokyo) 53(12), 1346–1353 (2000).
    • 117. Miller MJ , Malouin F . Microbial iron chelators as drug delivery agents: the rational design and synthesis of siderophore-drug conjugates. Acc. Chem. Res 26(5), 241–249 (1993).
    • 118. Miller MJ , Walz AJ , Zhu H et al. Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J. Am. Chem. Soc. 133(7), 2076–2079 (2011). • Describes the synthesis and testing of siderophore analog of artemisinin that was effective against infectious Mycobacteria indicating the importance of siderophore based drug delivery.
    • 119. Darwin KH , Nathan CF . Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis . Infect. Immun. 73(8), 4581–4587 (2005).
    • 120. Pettersen EF , Goddard TD , Huang CC et al. UCSF chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004).