We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Advances in ‘Trojan horse’ strategies in antibiotic delivery systems

    Alexandra Dassonville-Klimpt

    Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, UR 4294, UFR de Pharmacie, 1 rue des Louvels, Amiens cedex 1, 80037 France

    &
    Pascal Sonnet

    *Author for correspondence:

    E-mail Address: pascal.sonnet@u-picardie.fr

    Université de Picardie Jules Verne, AGIR: Agents Infectieux, Résistance et Chimiothérapie, UR 4294, UFR de Pharmacie, 1 rue des Louvels, Amiens cedex 1, 80037 France

    Published Online:https://doi.org/10.4155/fmc-2020-0065
    Free first page

    References

    • 1. Holmes AH, Moore LSP, Sundsfjord A et al. Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet. 387(10014), 176–187 (2016).
    • 2. OECD. Stemming the superbug tide: just a few dollars more. OECD Health Policy Studies. OCDE, Paris, France (2018).
    • 3. Nelson RE, Slayton RB, Stevens VW et al. Attributable mortality of healthcare-associated infections due to multidrug-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus. Infect. Control Hosp. Epidemiol. 38(7), 848–856 (2017).
    • 4. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13(1), 42–51 (2015).
    • 5. Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).
    • 6. Masi M, Réfregiers M, Pos KM, Pagès J-M. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol. 2, 17001 (2017).
    • 7. Pham TN, Loupias P, Dassonville-Klimpt A, Sonnet P. Drug delivery systems to overcome antimicrobial resistance. Med. Res. Rev. 39(6), 2343–2396 (2019).
    • 8. Hider RC, Kong X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27(5), 637–657 (2010).
    • 9. Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol. Med. 22(12), 1077–1090 (2016).
    • 10. Schalk IJ. Siderophore–antibiotic conjugates: exploiting iron uptake to deliver drugs into bacteria. Clin. Microbiol. Infect. 24(8), 801–802 (2018).
    • 11. Ghosh M, Miller PA, Möllmann U et al. Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multidrug resistant Acinetobacter baumannii both in vitro and in vivo. J. Med. Chem. 60(11), 4577–4583 (2017).
    • 12. World Heatlh Organization. Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. (2019). https://www.who.int/medicines/areas/rational_use/antibacterial_agents_clinical_development/en/
    • 13. Reinhardt A, Neundorf I. Design and application of antimicrobial peptide conjugates. Int. J. Mol. Sci. 17(5), 701 (2016).
    • 14. Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20(1), 122–128 (2015).
    • 15. Li W, O'Brien-Simpson NM, Holden JA et al. Covalent conjugation of cationic antimicrobial peptides with a β-lactam antibiotic core. Pept. Sci. 110(3), e24059 (2018).
    • 16. Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 38(4), 406–424 (2017).
    • 17. Brezden A, Mohamed MF, Nepal M et al. Dual targeting of intracellular pathogenic bacteria with a cleavable conjugate of kanamycin and an antibacterial cell-penetrating peptide. J. Am. Chem. Soc. 138(34), 10945–10949 (2016).
    • 18. Lee H, Lim SI, Shin SH, Lim Y, Koh JW, Yang S. Conjugation of cell-penetrating peptides to antimicrobial peptides enhances antibacterial activity. ACS Omega 4(13), 15694–15701 (2019).
    • 19. Lehar SM, Pillow T, Xu M et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527(7578), 323–328 (2015).
    • 20. Lakshminarayanan R, Ye E, Young DJ, Li Z, Loh XJ. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv. Health. Mater. 7(13), e1701400 (2018).