We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Virtual screening and assessment of anticancer potential of selenium-based compounds against HL-60 and MCF7 cells

    Ericka Fernanda Ferreira de Queiroz

    Department of Animal Morphology & Physiology, Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Zip code: 52171900, Recife – Pernambuco, Brazil

    ,
    José Alixandre de Sousa Luis

    Education & Health Center, Federal University of Campina Grande, Cuité – Paraíba 58175000, Brazil

    ,
    Diego de Sousa Dantas

    Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 – Cidade Universitária, Recife – Pernambuco 50670901, Brazil

    ,
    Lúcia Cristina Pereira Arruda

    Department of Veterinary, Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife – Pernambuco 52171900, Brazil

    ,
    Ellen Cordeiro Bento da Silva

    Department of Animal Morphology & Physiology, Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Zip code: 52171900, Recife – Pernambuco, Brazil

    ,
    João Manoel de Sousa e Silva

    Education & Health Center, Federal University of Campina Grande, Cuité – Paraíba 58175000, Brazil

    ,
    Helivaldo Diogenes da Silva Souza

    Research Laboratory in Biofuels & Organic Synthesis, Department of Chemistry, Federal University of Paraíba, Campus I – Lot. Cidade Universitaria, João Pessoa – Paraíba 58051900, Brazil

    ,
    Renata Priscila Costa Barros

    Postgraduate Program in Natural & Synthetic Bioactive Products, Federal University of Paraíba, Campus I – Lot. Cidade Universitaria, João Pessoa – Paraíba 58051900, Brazil

    ,
    Luciana Amaral de Mascena Costa

    Department of Animal Morphology & Physiology, Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Zip code: 52171900, Recife – Pernambuco, Brazil

    ,
    Petrônio Figueiras de Athayde Filho

    Research Laboratory in Biofuels & Organic Synthesis, Department of Chemistry, Federal University of Paraíba, Campus I – Lot. Cidade Universitaria, João Pessoa – Paraíba 58051900, Brazil

    ,
    Luciana Scotti

    Postgraduate Program in Natural & Synthetic Bioactive Products, Federal University of Paraíba, Campus I – Lot. Cidade Universitaria, João Pessoa – Paraíba 58051900, Brazil

    ,
    Marcus Tullius Scotti

    *Author for correspondence: Tel.: +55 83 99869 0415;

    E-mail Address: mtscotti@gmail.com

    Postgraduate Program in Natural & Synthetic Bioactive Products, Federal University of Paraíba, Campus I – Lot. Cidade Universitaria, João Pessoa – Paraíba 58051900, Brazil

    &
    Manoel Adrião Gomes Filho

    Department of Animal Morphology & Physiology, Federal Rural University of Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Zip code: 52171900, Recife – Pernambuco, Brazil

    Published Online:https://doi.org/10.4155/fmc-2020-0110

    Aim: Selenium-based compounds have antitumor potential. We used a ligand-based virtual screening analysis to identify selenoglycolicamides with potential antitumor activity. Results & Conclusion: Compounds 3, 6, 7 and 8 were selected for in vitro cytotoxicity tests against various cell lines, according to spectrophotometry results. Compound 3 presented the best cytotoxicity results against a promyelocytic leukemia line (HL-60) and was able to induce cell death at a frequency similar to that observed for doxorubicin. The docking study showed that compound 3 has good interaction energies with the targets caspase-3, 7 and 8, which are components of the apoptotic pathway. These results suggested that selenium has significant pharmacological potential for the selective targeting of tumor cells, inducing molecular and cellular events that culminate in tumor cell death.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Sanmartin C, Plano D, Palop JA. Selenium compounds and apoptotic modulation: a new perspective in cancer therapy. Mini Rev. Med. Chem. 8(10), 1020–1031 (2008). • Describes epidemiological data on cancer worldwide.
    • 2. Sanmartín C, Plano D, Sharma AK, Palop JA. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int. J. Mol. Sci. 13(8), 9649–9672 (2012).
    • 3. Forman D, Ferlay J, Stewart BW, Wild CP. The global and regional burden of cancer. World Cancer Rep. 1, 16–53 (2014).
    • 4. Lomas A, Leonardi-Bee J, Bath-Hextall F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br. J. Dermatol. 166(5), 1069–1080 (2012).
    • 5. Murad AM, Katz A. Oncologia: Bases Clínicas do Tratamento. Guanabara, Rio de Janeiro, Brazil, 41–42 (1996).
    • 6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
    • 7. Bonassa EMA, Gato MIR. Terapêutica Oncológica Para Enfermeiros e Farmacêuticos. Atheneu, São Paulo, Brazil, 644–645 (2012).
    • 8. Siegel R, DeSantis C, Virgo K et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 62(4), 220–241 (2012).
    • 9. Kumar R, Kaur M, Silakari O. Physiological modulation approaches to improve cancer chemotherapy: a review. Anticancer Agents Med. Chem. 14(5), 713–749 (2014). • Describes studies that report antitumor activity of some compounds containing selenium.
    • 10. Vinceti M, Wei ET, Malagoli C, Bergomi M, Vivoli G. Adverse health effects of selenium in humans. Rev. Environ. Health 16(4), 233–260 (2001).
    • 11. Chen Y-C, Prabhu KS, Mastro AM. Is selenium a potential treatment for cancer metastasis? Nutrients 5(4), 1149–1168 (2013).
    • 12. Margaret PR. Selenium and human health. Lancet 379(9822), 1256–1268 (2012).
    • 13. Weekley CM, Aitken JB, Finney L, Vogt S, Witting PK, Harris HH. Selenium metabolism in cancer cells: the combined application of XAS and XFM techniques to the problem of selenium speciation in biological systems. Nutrients 5(5), 1734–1756 (2013).
    • 14. Rahden-Staroń I, Suchocki P, Czeczot H. Evaluation of mutagenic activity of the organo-selenium compound Selol by use of the Salmonella typhimurium mutagenicity assay. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 699(1–2), 44–46 (2010). • Addresses the importance of computer-aided drug design in the development of new drugs.
    • 15. Mangiatordi GF, Trisciuzzi D, Alberga D et al. Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein. Eur. J. Med. Chem. 139, 792–803 (2017).
    • 16. Trisciuzzi D, Alberga D, Mansouri K et al. Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data. Future Med. Chem. 7(14), 1921–1936 (2015).
    • 17. Scotti L, Scotti MT. In silico studies applied to natural products with potential activity against Alzheimer's disease. In: Computational Modeling of Drugs Against Alzheimer’s Disease. Springer, NY, USA, 513–531 (2018).
    • 18. Scotti L, Júnior FJBM, Ishiki HM et al. Computer-aided drug design studies in food chemistry. In: Natural and Artificial Flavoring Agents and Food Dyes. Elsevier, MA, USA, 261–297 (2018).
    • 19. Silva LM, Alves MF, Scotti L, Lopes WS, Scotti MT. Predictive ecotoxicity of MoA 1 of organic chemicals using in silico approaches. Ecotoxicol. Environ. Saf. 153, 151–159 (2018). •• Describes the synthetic methodology and data that helped characterize the compounds used in the study.
    • 20. Luis JAS, Souza HDS, Lira BF et al. Combined structure-and ligand-based virtual screening aiding discovery of selenoglycolicamides as potential multitarget agents against Leishmania species. J. Mol. Struct. 1198, 126872 (2019). •• Describes methodologies of good practice in data curation for use in virtual screening.
    • 21. Fourches D, Muratov E, Tropsha A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J. Chem. Inf. Model. 50(7), 1189–1204 (2010).
    • 22. Fourches D, Muratov E, Tropsha A. Curation of chemogenomics data. Nat. Chem. Biol. 11(8), 535–535 (2015).
    • 23. Fourches D, Muratov E, Tropsha A. Trust, but verify II: a practical guide to chemogenomics data curation. J. Chem. Inf. Model. 56(7), 1243–1252 (2016).
    • 24. Muratov EN, Artemenko AG, Varlamova EV et al. Per aspera ad astra: application of Simplex QSAR approach in antiviral research. Fut. Med. Chem. 2(7), 1205–1226 (2010).
    • 25. Breiman L. Random forests. Mach. Learn. Springer, USA, 45(1), 5–32 (2001).
    • 26. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009).
    • 27. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982). •• Relevant works to elucidate the results obtained in our in vitro studies of anticancer activity.
    • 28. Maciag JJ, Mackenzie SH, Tucker MB, Schipper JL, Swartz P, Clark AC. Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection. Proc. Natl Acad. Sci. 113(41), E6080–E6088 (2016).
    • 29. Blanchard H, Kodandapani L, Mittl PRE et al. The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Structure 7(9), 1125–1133 (1999).
    • 30. Witkowski WA, Hardy JA. L2′ loop is critical for caspase-7 active site formation. Protein Sci. 18(7), 1459–1468 (2009).
    • 31. Onodera K, Satou K, Hirota H. Evaluations of molecular docking programs for virtual screening. J. Chem. Inf. Model. 47(4), 1609–1618 (2007).
    • 32. Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49(11), 3315–3321 (2006).
    • 33. Riss TL, Moravec RA, Niles AL et al. Cell viability assays. In: Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences (2016).
    • 34. Mousinho KC. Estudo do potencial anticâncer de um derivado de Chalcona, 1-(4-Nitrofenil)-3-Fenilprop-2-En-1-Ona, in vitro e in vivo. Master Dissertation 1, 170 (2010).
    • 35. Liu K, Liu P-c, Liu R, Wu X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. 21, 15 (2015).
    • 36. Perelman A, Wachtel C, Cohen M, Haupt S, Shapiro H, Tzur A. JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 3, e430 (2012).
    • 37. Rayman MP. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc. Nutr. Soc. 64(4), 527–542 (2005).
    • 38. Houghton P, Fang R, Techatanawat I, Steventon G, Hylands PJ, Lee CC. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods 42(4), 377–387 (2007).
    • 39. Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in Cancer. Biochim. Biophys. Acta 1850(8), 1642–1660 (2015).
    • 40. Mishra T, Khullar M, Bhatia A. Anticancer potential of aqueous ethanol seed extract of Ziziphus mauritiana against cancer cell lines and Ehrlich ascites carcinoma. Evid. Based Complement. Alternat. Med. e-pub (2011).
    • 41. Riul S, Aguillar OM. Quimioterapia antineoplásica: revisão da literatura. Rev. Min. Enferm. 3(1/2), 60–67 (1999).
    • 42. Leist M, Jäättelä M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2, 589–598 (2001).
    • 43. Kroemer G, Galluzzi L, Vandenabeele P et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16(1), 3–11 (2009).
    • 44. Liu J-j, Lin M, Yu J-y, Liu B, Bao J-k. Targeting apoptotic and autophagic pathways for cancer therapeutics. Cancer Lett. 300(2), 105–114 (2011).
    • 45. Gabel-Jensen C, Lunøe K, Gammelgaard B. Formation of methylselenol, dimethylselenide and dimethyldiselenide in in vitro metabolism models determined by headspace GC-MS. Metallomics 2(2), 167–173 (2010).
    • 46. Wu M, Kang MM, Schoene NW, Cheng W-H. Selenium compounds activate early barriers of tumorigenesis. J. Biol. Chem. 285(16), 12055–12062 (2010).
    • 47. Degli Esposti M. Mitochondria in apoptosis: past, present and future. Biochem. Soc. Trans. 32(3), 493–495 (2004).
    • 48. Fairweather-Tait SJ, Bao Y, Broadley MR et al. Selenium in human health and disease. Antiox. Redox Sign. 14(7), 1337–1383 (2011).
    • 49. Lopez J, Tait SWG. Mitochondrial apoptosis: killing cancer using the enemy within. Br. J. Cancer 112(6), 957–962 (2015).
    • 50. Peng Z-f, Lan L-x, Zhao F et al. A novel thioredoxin reductase inhibitor inhibits cell growth and induces apoptosis in HL-60 and K562 cells. J. Zhejiang Univ. Sci. B 9(1), 16–21 (2008).
    • 51. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. 9(1), 47–59 (2008).
    • 52. Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology 7(3), 253–266 (1973).
    • 53. Vercammen D, Vandenabeele P, Beyaert R, Declercq W, Fiers W. Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 9(11), 801–808 (1997).
    • 54. Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr. Biol. 9(17), S967–S961 (1999).
    • 55. Tzifi F, Economopoulou C, Gourgiotis D, Ardavanis A, Papageorgiou S, Scorilas A. The role of BCL2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv. Hematol. 524308 (2012).
    • 56. Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature 407(6805), 810–816 (2000).
    • 57. Debatin K-M. Apoptosis pathways in cancer and cancer therapy. Cancer Immunol. Immunother. 53(3), 153–159 (2004).
    • 58. Gromadzińska J, Reszka E, Bruzelius K, Wąsowicz W, Åkesson B. Selenium and cancer: biomarkers of selenium status and molecular action of selenium supplements. Eur. J. Nut. 47(2), 29–50 (2008).