We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Published Online:https://doi.org/10.4155/fmc-2020-0150
Free first page

References

  • 1. Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53(Suppl. 3), S16–S21 (2004).
  • 2. Rorsman P, Ashcroft FM. Pancreatic beta-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98(1), 117–214 (2018).
  • 3. de Marchi U, Thevenet J, Hermant A, Dioum E, Wiederkehr A. Calcium co-regulates oxidative metabolism and ATP synthase-dependent respiration in pancreatic beta cells. J. Biol. Chem. 289(13), 9182–9194 (2014).
  • 4. Szabo I, Zoratti M. Mitochondrial channels: ion fluxes and more. Physiol. Rev. 94(2), 519–608 (2014).
  • 5. Tarasov AI, Semplici F, Ravier MA et al. The mitochondrial Ca2+ uniporter MCU is essential for glucose-induced ATP increases in pancreatic beta-cells. PLoS ONE 7(7), e39722 (2012).
  • 6. Wiederkehr A, Wollheim CB. Mitochondrial signals drive insulin secretion in the pancreatic beta-cell. Mol. Cell. Endocrinol. 353(1-2), 128–137 (2012).
  • 7. Georgiadou E, Haythorne E, Dickerson MT et al. The pore-forming subunit MCU of the mitochondrial Ca(2+) uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice. Diabetologia 63, 1368–1381 (2020).
  • 8. Montero M, Lobaton CD, Hernandez-Sanmiguel E et al. Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. Biochem. J. 384(Pt 1), 19–24 (2004).
  • 9. Varshney R, Mishra R, Das N, Sircar D, Roy P. A comparative analysis of various flavonoids in the regulation of obesity and diabetes: an in vitro and in vivo study. J. Funct. Foods 59, 194–205 (2019).
  • 10. Bermont F, Hermant A, Benninga R et al. Targeting mitochondrial calcium uptake with the natural flavonol kaempferol, to promote metabolism/secretion coupling in pancreatic beta-cells. Nutrients 12(2), 538 (2020).
  • 11. Arduino DM, Wettmarshausen J, Vais H et al. systematic identification of MCU modulators by orthogonal interspecies chemical screening. Mol. Cell 67(4), 711–723.e7 (2017).
  • 12. Di Marco G, Vallese F, Jourde B et al. A high-throughput screening identifies MICU1 targeting compounds. Cell Rep. 30(7), 2321–2331.e6 (2020).
  • 13. Fan C, Fan M, Orlando BJ et al. X-ray and cryo-EM structures of the mitochondrial calcium uniporter. Nature 559(7715), 575–579 (2018).
  • 14. Colombini M. VDAC structure, selectivity and dynamics. Biochim. Biophys. Acta 1818(6), 1457–1465 (2012).
  • 15. Shoshan-Barmatz V, de Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects Med. 31(3), 227–285 (2010).
  • 16. Szabadkai G, Bianchi K, Varnai P et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175(6), 901–911 (2006).
  • 17. Zhang E, Mohammed Al-Amily I, Mohammed S et al. Preserving insulin secretion in diabetes by inhibiting VDAC1 overexpression and surface translocation in beta cells. Cell Metab. 29(1), 64–77.e6 (2019).
  • 18. de Marchi U, Fernandez-Martinez S, de la Fuente S, Wiederkehr A, Santo-Domingo J. Mitochondrial ion channels in pancreatic beta-cells: novel pharmacological targets for the treatment of Type 2 diabetes. Br. J. Pharmacol. doi:10.1111/bph.15018 (2020) (Epub ahead of print).
  • 19. Wickenberg J, Ingemansson SL, Hlebowicz J. Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects. Nutr. J. 9, 43 (2010).
  • 20. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of Type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14(2), 88–98 (2018).