We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Triazole-containing hybrids with anti-Mycobacterium tuberculosis potential – Part I: 1,2,3-Triazole

    Zhenyou Tan

    *Author for correspondence:

    E-mail Address: xq_201202@163.com

    Guangdong Xianqiang Pharmaceutical Co., Ltd, Guangzhou, PR China

    ,
    Jun Deng

    Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China

    ,
    Qiongxian Ye

    Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China

    &
    Zhenfeng Zhang

    Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong, PR China

    Published Online:https://doi.org/10.4155/fmc-2020-0301

    Tuberculosis regimens currently applied in clinical practice require months of multidrug therapy, which imposes a major challenge of patient compliance and drug resistance development. Moreover, because of the increasing emergence of hard-to-treat tuberculosis, this disease continues to be a significant threat to the human population. 1,2,3-triazole as a privileged structure has been widely used as an effective template for drug discovery, and 1,2,3-triazole-containing hybrids that can simultaneously act on dual or multiple targets in Mycobacterium tuberculosis have the potential to circumvent drug resistance, enhance efficacy, reduce side effects and improve pharmacokinetic as well as pharmacodynamic profiles. Thus, 1,2,3-triazole-containing hybrids are useful scaffolds for the development of antitubercular agents. This review aims to highlight recent advances of 1,2,3-triazole-containing hybrids with potential activity against various forms of M. tuberculosis, covering articles published between 2015 and 2020. The structure–activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective drug candidates.

    References

    • 1. Tornheim JA, Dooley KE. The global landscape of tuberculosis therapeutics. Ann. Rev. Med. 70, 105–120 (2019).
    • 2. Saleem A, Azher M. The next pandemic – tuberculosis: the oldest disease of mankind rising one more time. Br. J. Med. Pract. 6(1), a615 (2013).
    • 3. Turner RD. Cough in pulmonary tuberculosis: existing knowledge and general insights. Pulm. Pharmacol. Ther. 55, 89–94 (2019).
    • 4. Abdisamadov A, Tursunov O. Ocular tuberculosis epidemiology, clinic features and diagnosis: a brief review. Tuberculosis 124, e101963 (2020).
    • 5. World Health Organization. Global tuberculosis report 2019. https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1
    • 6. Natarajan A, Beena PM, Devnikar AV, Mali S. A systemic review on tuberculosis. Indian J. Tuberculosis 67(3), 295–311 (2020).
    • 7. Huszar S, Chibale K, Singh V. The quest for the holy grail: new antitubercular chemical entities, targets and strategies. Drug Discov. Today 25(4), 772–780 (2020).
    • 8. Mishra R, Krishan S, Siddiqui AN et al. Potential role of adjuvant drugs on efficacy of first line oral antitubercular therapy: drug repurposing. Tuberculosis 120, e101902 (2020).
    • 9. Knight GM, McQuaid CF, Dodd PJ, Houben RMGJ. Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling. Lancet Infect. Dis. 19(8), 903–912 (2019).
    • 10. Garcia-Basteiro AL, Jenkins HE, Rangaka M. The burden of latent multidrug-resistant tuberculosis. Lancet Infect. Dis. 19(8), 802–803 (2019).
    • 11. Gatadi S, Nanduri S. New potential drug leads against MDR-MTB: a short review. Bioorg. Chem. 95, e103534 (2020).
    • 12. Gawad J, Bonde C. Current affairs, future perspectives of tuberculosis and antitubercular agents. Indian J. Tuberculosis 65(1), 15–22 (2018).
    • 13. Neto JSS, Zeni G. A decade of advances in the reaction of nitrogen sources and alkynes for the synthesis of triazoles. Coordin. Chem. Rev. 409, e213217 (2020).
    • 14. Bozorov K, Zhao J, Aisa HA. 1,2,3-triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg. Med. Chem. 27(16), 3511–3531 (2019).
    • 15. Xia LW, Ba MY, Liu W et al. Triazol: a privileged scaffold for proteolysis targeting chimeras. Future Med. Chem. 11(22), 2919–2973 (2019).
    • 16. Kacprzak K, Skiera I, Piasecka M, Paryzek Z. Alkaloids and isoprenoids modification by copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (click chemistry): toward new functions and molecular architectures. Chem Rev. 116, 5689–5743 (2016).
    • 17. Johansson JR, Beke-Somfai T, Said SA, Kann N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: scope, mechanism, and applications. Chem. Rev. 116, 14726–14768 (2016).
    • 18. Totobenazara J, Burke AJ. New click-chemistry methods for 1,2,3-triazoles synthesis: recent advances and applications. Tetrahedron Lett. 56, 2853–2859 (2015).
    • 19. Xu M, Peng Y, Wang SL et al. Triazole derivatives as inhibitors of Alzheimer's disease: current developments and structure-activity relationships. Eur. J. Med. Chem. 180, 656–672 (2019).
    • 20. Kaur A, Mann S, Kaur A et al. Multi-target-directed triazole derivatives as promising agents for the treatment of Alzheimer's disease. Bioorg. Chem. 87, 572–584 (2019).
    • 21. Xu Z. 1,2,3-triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem. 206, e112686 (2020).
    • 22. Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem. 168, 357–372 (2019).
    • 23. Xu Z, Zhao SJ, Liu Y. 1,2,3-triazole-containing hybrids as potential anticancer agents: current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem. 183, e111700 (2019).
    • 24. Farrer NJ, Griffith DM. Exploiting azide-alkyne click chemistry in the synthesis, tracking and targeting of platinum anticancer complexes. Curr. Opin. Chem. Biol. 55, 59–68 (2020).
    • 25. Chu XM, Wang C, Wang WL et al. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem. 166, 206–223 (2019).
    • 26. Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J. Enzym. Inhib. Med. Chem. 26(1), 1–21 (2011).
    • 27. Zhang S, Xu Z, Gao C et al. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem. 138, 501–513 (2017).
    • 28. Bozorov K, Zhao J, Aisa H. 1,2,3-triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg. Med. Chem. 27(16), 3511–3531 (2019).
    • 29. Feng LS, Zheng MJ, Zhao F, Liu D. 1,2,3-triazole hybrids with anti-HIV-1 activity. Arch. Pharm. 354(1), e2000163 (2021).
    • 30. Kumar R, Yar MS, Chaturvedi S, Srivastava A. Triazole as pharmaceuticals potentials. Int. J. Pharm. Tech. Res. 5(4), 1844–1869 (2013).
    • 31. Feng LS, Xu Z, Chang L et al. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med. Res. Rev. 40(3), 931–971 (2020).
    • 32. Gao F, Huang G, Xiao J. Chalcone hybrids as potential anticancer agents: current development, mechanism of action, and structure-activity relationship. Med. Res. Rev. 40(5), 2049–2084 (2020).
    • 33. Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg. Chem. 71, 30–54 (2017).
    • 34. Thirmurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical–biology applications. Chem. Rev. 113(7), 4905–4979 (2013).
    • 35. Rani A, Singh G, Singh A et al. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: review. RSC Adv. 10, 5610–5635 (2020).
    • 36. Bancet A, Raingeval C, Lomberget T et al. Fragment linking strategies for structure-based drug design. J. Med. Chem. 63(20), 11420–11435 (2020).
    • 37. Nalla V, Shaikh A, Bapat S et al. Identification of potent chromone embedded [1,2,3]-triazoles as novel anti-tubercular agents. R. Soc. Open Sci. 5, e171750 (2018).
    • 38. Stanley SA, Kawate T, Iwase N et al. Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32. PNAS 110(28), 11565–11570 (2013).
    • 39. Keri RS, Nagaraja BM, Santos MA. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem. 100, 257–269 (2015).
    • 40. Hu YQ, Xu Z, Zhang S et al. Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur. J. Med. Chem. 136, 122–130 (2017).
    • 41. Khare SP, Deshmukh TR, Sangshetti JN et al. Design, synthesis and molecular docking studies of novel triazole-chromene conjugates as antitubercular, antioxidant and antifungal agents. ChemistrySelect 3, 13113–13122 (2018).
    • 42. Ashok D, Chiranjeevi P, Kumar AV et al. 1,2,3-Triazole-fused spirochromenes as potential anti-tubercular agents: synthesis and biological evaluation. RSC Adv. 8, 16997–17007 (2018).
    • 43. Goud GL, Ramesh S, Ashok D et al. Design, synthesis, molecular docking and antimycobacterial evaluation of some novel 1,2,3-triazolyl xanthenones. MedChemComm 8, 559–570 (2017).
    • 44. Shaikh MH, Subhedar DD, Shingate BB et al. Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Med. Chem. Res. 25, 790–804 (2016).
    • 45. Ambekar SP, Mohan CD, Shirahatti A et al. Synthesis of coumarin-benzotriazole hybrids and evaluation of their anti-tubercular activity. Lett. Org. Chem. 15, 23–31 (2018).
    • 46. Ashok D, Gundu S, Amate VK et al. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J. Mol. Struct. 1157, 312–321 (2018).
    • 47. Danne AB, Choudhari AS, Sarkar D et al. Synthesis and biological evaluation of novel triazole-biscoumarin conjugates as potential antitubercular and anti-oxidant agents. Res. Chem. Intermed. 44, 6283–6310 (2018).
    • 48. Viana JO, Monteiro AFM, Filho JMB et al. The azoles in pharmacochemistry: perspectives on the synthesis of new compounds and chemoinformatic contributions. Curr. Pharm. Des. 25(44), 4702–4716 (2019).
    • 49. Das R, Asthana GS, Suri KA et al. Recent developments in azole compounds as antitubercular agent. Mini-Rev. Org. Chem. 16(3), 290–306 (2019).
    • 50. Keri RS, Chand K, Ramakrishnappa T, Nagaraja BM. Recent progress on pyrazole scaffold-based antimycobacterial agents. Arch. Pharm. 348(5), 299–314 (2015).
    • 51. Keri RS, Patil SA, Budagumpi S, Nagaraja BM. Triazole: a promising antitubercular agent. Chem. Biol. Drug Des. 86(4), 410–423 (2015).
    • 52. Shinde V, Mahulikar P, Mhaske PC et al. Synthesis and biological evaluation of new 2-aryl-4-((4-aryl-1H−1,2,3-triazol-1-yl)methyl)thiazole derivatives. Res. Chem. Intermed. 44, 1247–1261 (2018).
    • 53. Shinde V, Mhaske PC, Singh A et al. Synthesis and biological evaluation of new 4-(4-(1-benzyl-1H−1,2,3-triazol-4-yl)phenyl)-2-phenylthiazole derivatives. J. Heterocycl. Chem. 56, 3093–3111 (2019).
    • 54. Shinde V, Mahulikar P, Mhaske PC et al. Synthesis and antimycobacterial evaluation of new 5-(1-benzyl-1H− 1,2,3-triazol-4-yl)-4-methyl-2-arylthiazole derivatives. Med. Chem. Res. 28, 805–819 (2019).
    • 55. Karan S, Kashyap VK, Shafi S, Saxena AK. Structural and inhibition analysis of novel sulfur-rich 2-mercaptobenzothiazole and 1,2,3-triazole ligands against Mycobacterium tuberculosis DprE1 enzyme. J. Mol. Model. 23, e241 (2017).
    • 56. Nayak N, Ramprasad J, Dalimba U et al. Synthesis of new pyrazole-triazole hybrids by click reaction using a green solvent and evaluation of their antitubercular and antibacterial activity. Res. Chem. Intermed. 42, 3721–3741 (2016).
    • 57. Naidu KM, Srinivasarao S, Agnieszka N et al. Seeking potent anti-tubercular agents: design, synthesis, antitubercular activity and docking study of various ((triazoles/indole)-piperazin-1-yl/1,4-diazepan-1-yl)benzo[d]isoxazole derivatives. Bioorg. Med. Chem. Lett. 26, 2245–2250 (2016).
    • 58. Ashok D, Gundu S, Aamate VK, Devulapally MG. Conventional andmicrowave-assisted synthesis of new indole-tethered benzimidazole-based 1,2,3-triazoles and evaluation of their antimycobacterial, antioxidant and antimicrobial activities. Mol. Divers. 22, 769–778 (2018).
    • 59. Reddyrajula R, Dalimba UK. Structural modification of zolpidem led to potent antimicrobial activity in imidazo[1,2-a]pyridine/pyrimidine-1,2,3-triazoles. New J. Chem. 43, 16281–16299 (2019).
    • 60. Adeniji SE, Uba S, Uzairu A. Geometrical and topological descriptors for activities modeling of some potent inhibitors against Mycobacterium tuberculosis: a genetic functional approach. Egypt. J. Chem. 62(7), 1235–1247 (2019).
    • 61. Deniji SE, Uba S, Uzairu A. In silico study for evaluating the binding mode and interaction of 1,2,4-triazole and its derivatives as potent inhibitors against Lipoate protein B (LipB). J. King Saud Univers.-Sci. 32, 475–485 (2020).
    • 62. Deshmukh TR, Khare SP, Krishna VS et al. Synthesis, bioevaluation and molecular docking study of new piperazine and amide linked dimeric 1,2,3-triazoles. Synth. Commun. 50(2), 271–288 (2020).
    • 63. Deshmukh TR, Khare SP, Krishna VS et al. Design and synthesis of new aryloxy-linked dimeric 1,2,3-triazoles via click chemistry approach: biological evaluation and molecular docking study. J. Heterocycl. Chem. 56, 2144–2162 (2019).
    • 64. Nainwal LM, Tasneem S, Akhtar W et al. Green recipes to quinoline: a review. Eur. J. Med. Chem. 164, 121–170 (2019).
    • 65. Villamizar-Mogotocoro AF, Vargas-Méndez LY, Kouznetsov VV. Pyridine and quinoline molecules as crucial protagonists in the never-stopping discovery of new agents against tuberculosis. Eur. J. Pharm. Sci. 151, e105374 (2020).
    • 66. Makafe GG, Hussain M, Surineni G et al. Quinoline derivatives kill Mycobacterium tuberculosis by activating glutamate kinase. Cell Chem. Biol. 26(8), 1187–1194 (2019).
    • 67. Pham TDM, Ziora ZM, Blaskovich MAT. Quinolone antibiotics. MedChemComm 10(10), 1719–1739 (2019).
    • 68. Chahine EB, Karaoui LR, Mansour H. Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Ann. Pharmacother. 48(1), 107–115 (2014).
    • 69. Fan YL, Wu JB, Cheng XW et al. Fluoroquinolone derivatives and their anti-tubercular activities. Eur. J. Med. Chem. 146, 554–563 (2018).
    • 70. Liu B, Li F, Zhou T et al. Quinoline derivatives with potential activity against multidrug-resistant tuberculosis. J. Heterocyclic Chem. 55(8), 1863–1873 (2018).
    • 71. Reddyrajula R, Dalimba U. Quinoline-1,2,3-triazole hybrids: design and synthesis through click reaction, evaluation of anti-tubercular activity, molecular docking and in silico ADME studies. ChemistrySelect 4, 2685–2693 (2019).
    • 72. Ramprasad J, Sthalam VK, Thampunuri RLM et al. Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorg. Med. Chem. Lett. 29, e126671 (2019).
    • 73. Banu S, Bollu R, Nagarapu L et al. Design, synthesis, and in vitro antitubercular activity of 1,2,3-triazolyl-dihydroquinoline derivatives. Chem. Biol. Drug Des. 92, 1315–1323 (2018).
    • 74. Cilliers P, Seldon R, Smit FJ et al. Design, synthesis, and antimycobacterial activity of novel ciprofloxacin derivatives. Chem. Biol. Drug Des. 94, 1518–1536 (2019).
    • 75. Hu YQ, Zhang S, Zhao F et al. Isoniazid derivatives and their anti-tubercular activity. Eur. J. Med. Chem. 133, 255–267 (2017).
    • 76. Chaudhari KS, Patel HM, Surana SJ. Pyridines: multidrug-resistant tuberculosis (MDR-TB) inhibitors. Indian J. Tuberculosis 64(2), 119–128 (2017).
    • 77. Badar AD, Sulakhe SM, Muluk MB et al. Synthesis of isoniazid-1,2,3-triazole conjugates: antitubercular, antimicrobial evaluation and molecular docking study. J. Heterocycl. Chem. 57(10), 3544–3557 (2020).
    • 78. Patil PS, Kasare SL, Haval NB et al. Novel isoniazid embedded triazole derivatives: synthesis, antitubercular and antimicrobial activity evaluation. Bioorg. Med. Chem. Lett. 30, e127434 (2020).
    • 79. Shaikh MH, Subhedar DD, Nawale L et al. Novel benzylidenehydrazide-1,2,3-triazole conjugates as antitubercular agents: Synthesis and molecular docking. Mini-Rev. Med. Chem. 19, 1178–1194 (2019).
    • 80. Yan M, Xu L, Wang Y et al. Opportunities and challenges of using five-membered ring compounds as promising antitubercular agents. Drug Dev. Res. 81(4), 402–418 (2020).
    • 81. Gholap SS. Pyrrole: an emerging scaffold for construction of valuable therapeutic agents. Eur. J. Med. Chem. 110, 13–31 (2016).
    • 82. Surineni G, Yogeeswari P, Sriram D, Kantevari S. Click-based synthesis and antitubercular evaluation of dibenzofuran tethered thiazolyl-1,2,3-triazolyl acetamides. Bioorg. Med. CHem. Lett. 26, 3684–3689 (2016).
    • 83. Chirke SS, Krishna JS, Rathod BB et al. Synthesis of triazole derivatives of 9-ethyl-9H-carbazole and dibenzo[b,d]furan and evaluation of their antimycobacterial and immunomodulatory activity. ChemistrySelect 2, 7309–7318 (2017).
    • 84. Vartak A, Goins C, Moura VCN et al. Biochemical and microbiological evaluation of N-aryl urea derivatives against mycobacteria and mycobacterial hydrolases. MedChemComm 10, 1197–1204 (2019).
    • 85. Devi ML, Reddy PL, Yogeeswari P et al. Design and synthesis of novel triazole linked pyrrole derivatives as potent Mycobacterium tuberculosis inhibitors. Med. Chem. Res. 26, 2985–2999 (2017).
    • 86. Pulipati L, Yogeeswari P, Sriram D, Kantevari S. Click-based synthesis and antitubercular evaluation of novel dibenzo[b,d]thiophene-1,2,3-triazoles with piperidine, piperazine, morpholine and thiomorpholine appendages. Bioorg. Med. Chem. Lett. 26, 2649–2654 (2016).
    • 87. Marvadi SK, Krishna VS, Sriram D, Kantevari S. Synthesis and evaluation of novel substituted 1,2,3-triazolyldihydroquinolines as promising antitubercular agents. Bioorg. Med. Chem. Lett. 29, 529–533 (2019).
    • 88. Marvadi SK, Krishna VS, Sinegubova EO et al. 5-Chloro-2-thiophenyl-1,2,3-triazolylmethyldihydroquinolines as dual inhibitors of Mycobacterium tuberculosis and influenza virus: synthesis and evaluation. Bioorg. Med. Chem. Lett. 29, 2664–2669 (2019).
    • 89. Reddyrajula R, Dalimba U. The bioisosteric modification of pyrazinamide derivatives led to potent antitubercular agents: synthesis via click approach and molecular docking of pyrazine-1,2,3-triazoles. Bioorg. Med. Chem. Lett. 30, e126846 (2020).
    • 90. Shaikh MH, Subhedar DD, Arkile M et al. Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent. Bioorg. Med. Chem. Lett. 26, 561–569 (2016).
    • 91. Reddyrajula R, Dalimba U, Kumar SM. Molecular hybridization approach for phenothiazine incorporated 1,2,3-triazole hybrids as promising antimicrobial agents: design, synthesis, molecular docking and in silico ADME studies. Eur. J. Med. Chem. 168, 263–282 (2019).
    • 92. Srinivasarao S, Nandikolla A, Suresh A et al. Discovery of 1,2,3-triazole based quinoxaline-1,4-di-N-oxide derivatives as potential anti-tubercular agents. Bioorg. Chem. 100, e103955 (2020).
    • 93. Maddali NK, Viswanath IVK, Murthy YLN et al. Design, synthesis and molecular docking studies of quinazolin-4-ones linked to 1,2,3-triazol hybrids as Mycobacterium tuberculosis H37Rv inhibitors besides antimicrobial activity. Med. Chem. Res. 28, 559–570 (2019).
    • 94. Kumar R, Bimal D, Kumar M et al. Synthesis and antitubercular activity of 4,5-disubstituted N1-(5′-deoxythymidin-5′-yl)-1,2,3-triazoles. ChemistrySelect 5, 8839–8845 (2020).
    • 95. Venugopala KN, Rao GBD, Bhandary S et al. Design, synthesis, and characterization of (1-(4-aryl)-1H−1,2,3-triazol-4-yl)methyl, substituted phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates against Mycobacterium tuberculosis. Drug Des. Dev. Ther. 10, 2681–2690 (2016).
    • 96. Hajlaoui K, Guesmi A, Hamadi NB, Msaddek M. One-pot synthesis of new triazole-sucrose derivatives via click chemistry and evaluation of their antitubercular activity. Heterocycl. Commun. 22(4), 239–242 (2016).
    • 97. Abdu-Allah HHM, Youssif BGM, Abdelrarahman NH et al. Synthesis and anti-mycobacterial activity of 4-(4-phenyl-1H−1,2,3-triazol-1-yl)salicylhydrazones: revitalizing an old drug. Arch. Pharm. Res. 40, 168–179 (2017).
    • 98. Bua S, Osman SM, Prete SD et al. Click-tailed benzenesulfonamides as potent bacterial carbonic anhydrase inhibitors for targeting Mycobacterium tuberculosis and Vibrio cholera. Bioorg. Chem. 86, 183–186 (2019).
    • 99. Sajja Y, Vanguru S, Vulupala HR et al. Design, synthesis and in vitro anti-tuberculosis activity of benzo[6,7]cyclohepta[1,2-b]pyridine-1,2,3-triazole derivatives. Bioorg. Med. Chem. Lett. 27, 5119–5121 (2017).
    • 100. Suresh A, Srinivasarao S, Agnieszka N et al. Design and synthesis of 9H-fluorenone based 1,2,3-triazole analogues as Mycobacterium tuberculosis InhA inhibitors. Chem. Biol. Drug Des. 91, 1078–1086 (2018).
    • 101. Danne AB, Choudhari AS, Chakraborty S et al. Triazole-di-indolylmethane conjugates as new antitubercular agents: synthesis, bioevaluation and molecular docking. MedChemComm 9, 1114–1130 (2018).
    • 102. Zhao SJ, Lv ZS, Deng JL et al. Design, synthesis, and in vitro anti-mycobacterial activities of 1,2,3-triazole-tetraethylene glycol tethered isatin dimers. J. Heterocycl. Chem. 55, 3006–3010 (2018).
    • 103. Iannazzo L, Soroka D, Triboulet S et al. Routes of synthesis of carbapenems for optimizing both the inactivation of L,D-transpeptidase LdtMt1 of Mycobacterium tuberculosis and the stability toward hydrolysis by β-lactamase BlaC. J. Med. Chem. 59, 3427–3438 (2016).
    • 104. Phatak PS, Bakale RD, Dhumal ST et al. Synthesis, antitubercular evaluation and molecular docking studies of phthalimide bearing 1,2,3-triazoles. Synth. Commun. 49(6), 2017–2028 (2019).
    • 105. Ruysscher DD, Pang L, Mattelaer CA et al. Phenyltriazole-functionalized sulfamate inhibitors targeting tyrosyl- or isoleucyl-tRNA synthetase. Bioorg. Med. Chem. 28, e115580 (2020).
    • 106. Negi B, Rawat DS. Synthesis, characterization, and antimycobacterial activity of novel thymol-triazole hybrids. Indian J. Heterocycl. Chem. 28, 113–123 (2018).
    • 107. Sajja Y, Vanguru S, Jilla L et al. A convenient synthesis and screening of benzosuberone bearing 1,2,3-triazoles against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 26, 4292–4295 (2016).
    • 108. Liu B, Hu G, Tang X et al. 1H−1,2,3-triazole-tethered isatin-coumarin hybrids: design, synthesis and in vitro anti-mycobacterial evaluation. J. Heterocycl. Chem. 55, 775–780 (2018).
    • 109. Huang GC, Xu Y, Xu Z et al. Propylene-1H−1,2,3-triazole-4-methylene-tethered isatin-coumarin hybrids: design, synthesis, and in vitro anti-tubercular evaluation. J. Heterocycl. Chem. 55, 830–835 (2018).
    • 110. Xu Y, Dang R, Guan J et al. Isatin-(thio)semicarbazide/oxime-1H−1,2,3-triazole-coumarin hybrids: design, synthesis, and in vitro anti-mycobacterial evaluation. J. Heterocycl. Chem. 55, 1069–1073 (2018).
    • 111. Jin X, Yang X, Chen X et al. Design, synthesis and in vitro anti-microbial evaluation of ethylene/propylene-1H−1,2,3-triazole-4-methylene-tethered isatin-coumarin hybrids. Curr. Top. Med. Chem. 17, 3213–3218 (2017).
    • 112. Srivastava S, Bimal D, Bohra K et al. Synthesis and antimycobacterial activity of 1-(β-D-Ribofuranosyl)-4-coumarinyloxymethyl-/-coumarinyl-1,2,3-triazole. Eur. J. Med. Chem. 150, 268–281 (2018).
    • 113. Somagond SM, Kamble RR, Bayannavar PK et al. Click chemistry based regioselective one-pot synthesis of coumarin-3-yl-methyl-1,2,3-triazolyl-1,2,4-triazol-3(4H)-ones as newer potent antitubercular agents. Arch. Pharm. 352(10), e1900013 (2019).
    • 114. Khanapurmath N, Kulkarni MV, Joshi SD, Kumar GNA. A click chemistry approach for the synthesis of cyclic ureido tethered coumarinyl and 1-aza coumarinyl 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis H37Rv and their in silico studies. Bioorg. Med. Chem. 27, e115054 (2019).
    • 115. Xu Z, Lv ZS, Song XF, Qiang M. Ciprofloxacin-isatin-1H−1,2,3-triazole hybrids: design, synthesis, and in vitro anti-tubercular activity against M. tuberculosis. J. Heterocycl. Chem. 55, 97–101 (2018).
    • 116. Hu YQ, Meng LD, Qiang M, Song XF. Design, synthesis, and in vitro anti-mycobacterial evaluation 1H−1,2,3-triazole-tethered ciprofloxacin and isatin conjugates. J. Heterocycl. Chem. 54, 3725–3729 (2017).
    • 117. Chen RX, Zhang H, Ma T et al. Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorg. Med. Chem. Lett. 29, 2635–2637 (2019).
    • 118. Xu Z, Song X, Hu Y et al. Design, synthesis and in vitro anti-mycobacterial activities of 8-OMe ciprofloxacin-1H−1,2,3-triazole-isatin-(thio) semicarbazide/oxime hybrids. J. Heterocycl. Chem. 55, 192–198 (2018).
    • 119. Xu Z, Song XF, Qiang M, Lv ZS. 1H−1,2,3-triazole-tethered 8-OMe ciprofloxacin and isatin hybrids: design, synthesis and in vitro anti-mycobacterial activities. J. Heterocycl. Chem. 54, 3735–3761 (2017).
    • 120. Xu Z, Song XF, Hu YQ et al. Azide-alkyne cycloaddition towards 1H−1,2,3-triazole-tethered gatifloxacin and isatin conjugates: design, synthesis and in vitro anti-mycobacterial evaluation. Eur. J. Med. Chem. 138, 66–71 (2017).
    • 121. Xu Z, Zhang S, Song X et al. Design, synthesis and in vitro anti-mycobacterial evaluation of gatifloxacin-1H−1,2,3-triazole-isatin hybrids. Bioorg. Med. Chem. Lett. 27, 3643–3646 (2017).
    • 122. Ding Z, Hou P, Liu B. Gatifloxacin-1,2,3-triazole-isatin hybrids and their antimycobacterial activities. Arch. Pharm. 352, e1900135 (2019).
    • 123. Xu Z, Song XF, Fan J, Lv ZS. Design, synthesis, and in vitro anti-mycobacterial evaluation of propylene-1H−1,2,3-triazole-4-methylene-tethered (thio)semicarbazone-isatin-moxifloxacin hybrids. J. Heterocycl. Chem. 55, 77–82 (2018).
    • 124. Hu YQ, Xu Z, Qiang M, Lv ZS. Design, synthesis and in vitro antimycobacterial activities of isatin-1,2,3-triazole-moxifloxacin hybrids. J. Heterocycl. Chem. 55, 187–191 (2018).
    • 125. Hu YQ, Fan J, Song X. Design, synthesis and in vitro anti-mycobacterial activity of propylene-1H−1,2,3-triazole-4-methylene-tethered isatin-moxifloxacin hybrids. J. Heterocycl. Chem. 55, 246–250 (2018).
    • 126. Yan X, Lv Z, Wen J et al. Synthesis and in vitro evaluation of novel substituted isatinpropylene-1H−1,2,3-triazole-4-methylene-moxifloxacin hybrids for their anti-mycobacterial activities. Eur. J. Med. Chem. 143, 899–904 (2019).
    • 127. Jiang Y, Qian A, Li Y. 1H−1,2,3-Triazole tethered isatin-moxifloxacin: Design, synthesis and in vitro anti-mycobacterial evaluation. Arch. Pharm. 352, e1900040 (2019).
    • 128. Gao F, Chen Z, Ma L et al. Synthesis and biological evaluation of moxifloxacin-acetyl-1,2,3-1H-triazole-methylene-isatin hybrids as potential anti-tubercular agents against both drug-susceptible and drug-resistant Mycobacterium tuberculosis strains. Eur. J. Med. Chem. 180, 648–655 (2019).
    • 129. Bangalore PK, Vagolu SK, Bollikanda RK et al. Usnic acid enaminone-coupled 1,2,3-triazoles as antibacterial and antitubercular agents. J. Nat. Prod. 83, 26–35 (2020).
    • 130. Singh A, Viljoen A, Kremer L, Kumar V. Azide-alkyne cycloaddition en route to 4-aminoquinoline-ferrocenylchalcone conjugates: Synthesis and anti-TB evaluation. Future Med. Chem. 9, 1701–1708 (2017).
    • 131. Singh A, Biot C, Viljoen A et al. 1H−1,2,3-triazole-tethered uracil-ferrocene and uracil-ferrocenylchalcone conjugates: synthesis and antitubercular evaluation. Chem. Biol. Drug Des. 89, 856–861 (2017).
    • 132. Raju KS, AnkiReddy S, Sabitha G et al. Synthesis and biological evaluation of 1H-pyrrolo[2,3-d]pyrimidine-1,2,3-triazole derivatives as novel anti-tubercular agents. Bioorg. Med. Chem. Lett. 29, 284–290 (2019).