We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

The diverse bioactivity of α-mangostin and its therapeutic implications

    Tejashri Chavan

    Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences St. John's University, Queens, NY 11439, USA

    &
    Aaron Muth

    *Author for correspondence:

    E-mail Address: mutha@stjohns.edu

    Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences St. John's University, Queens, NY 11439, USA

    Published Online:https://doi.org/10.4155/fmc-2021-0146

    α-Mangostin is a xanthone natural product isolated as a secondary metabolite from the mangosteen tree. It has attracted a great deal of attention due to its wide-ranging effects on certain biological activity, such as apoptosis, tumorigenesis, proliferation, metastasis, inflammation, oxidation, bacterial growth and metabolism. This review focuses on the key pathways directly affected by α-mangostin and how this varies between disease states. Insight is also provided, where investigated, into the key structural features of α-mangostin that produce these biological effects. The review then sheds light on the utility of α-mangostin as a investigational tool for certain diseases and demonstrate how future derivatives may increase selectivity and potency for specific disease states.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Ovalle-Magallanes B, Eugenio-Pérez D, Pedraza-Chaverri J. Medicinal properties of mangosteen (Garcinia Mangostana L.): a comprehensive update. Food Chem. Toxicol. 109(Pt 1), 102–122 (2017).
    • 2. Aizat WM, Ahmad-Hashim FH, Syed Jaafar SN. Valorization of mangosteen, ‘The Queen of Fruits’, and new advances in postharvest and in food and engineering applications: a review. J. Adv. Res. 20(May 29), 61–70 (2019).
    • 3. Vemu B, Nauman MC, Veenstra JP, Johnson JJ. Structure activity relationship of xanthones for inhibition of cyclin dependent kinase 4 from mangosteen (Garcinia mangostana L.). Int. J. Nutr. 4(4), 38–45 (2019). •• Highlights the key functional groups responsible for α-mangostin's ability to inhibit CDK4.
    • 4. Wathoni N, Yuan Shan C, Yi Shan W et al. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) Rind. Heliyon. 5(8), e02299 (2019).
    • 5. Suksamrarn S, Komutiban O, Ratananukul P et al. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem. Pharm Bull. (Tokyo). 54(3), 301–305 (2006).
    • 6. Rana MN, Tangpong J, Rahman MA. Xanthones protects lead-induced chronic kidney disease (CKD) via activating Nrf-2 and modulating NF-κB, MAPK pathway. Biochem. Biophys. Rep. 21, 100718 (2020).
    • 7. Mohamed GA, Al-Abd AM, El-halawany AM et al. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J. Ethnopharmacol. 198, 302–312 (2017).
    • 8. Shan T, Ma Q, Guo K et al. Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr. Mol. Med. 11(8), 666–677 (2011).
    • 9. Elsaid Ali AA. Development and validation of analytical method by RP-HPLC for quantification of alpha-mangostin encapsulated in PLGA microspheres. J. Anal. Bioanal. Tech. 3(7), 1–5 (2012).
    • 10. Arunrattiyakorn P, Suksamrarn S, Suwannasai N, Kanzaki H. Microbial metabolism of α-mangostin isolated from Garcinia mangostana L. Phytochemistry. 72(8), 730–734 (2011).
    • 11. W. Ueber Das Mangostin. Justus Liebigs Ann. Chem. 93(1), 83–88 (1855).
    • 12. Li G, Thomas S, Johnson JJ. Polyphenols from the mangosteen (Garcinia mangostana) fruit for breast and prostate cancer. Front. Pharmacol. 4(80), 1–4 (2013).
    • 13. Yates P, Stout GH. The structure of mangostin. J. Am. Chem. Soc. 80(7), 1691–1700 (1958).
    • 14. Ding YY, Luan JJ, Fan Y et al. α-Mangostin reduced the viability of A594 cells in vitro by provoking reactive oxygen species production through downregulation of NAMPT/NAD. Cell Stress Chaperones. 25(1), 163–172 (2020). • Describes how α-mangostin downregulates the NAMPT/NAD signaling pathway which alters ROS production leading to antitumor activity.
    • 15. Li RS, Xu GH, Cao J et al. Alpha-mangostin ameliorates bleomycin-induced pulmonary fibrosis in mice partly through activating adenosine 5′-monophosphate-activated protein kinase. Front. Pharmacol. 10(Nov 13), 1305 (2019).
    • 16. Liu Q, Li D, Wang A et al. Nitric oxide inhibitory xanthones from the pericarps of Garcinia mangostana. Phytochemistry. 131(Nov), 115–123 (2016).
    • 17. Markowicz J, Uram Ł, Sobich J, Mangiardi L, Maj P, Rode W. Antitumor and anti-nematode activities of α-mangostin. Eur. J. Pharmacol. 863(Nov 15), 172678 (2019).
    • 18. Kashyap D, Tuli HS, Yerer MB et al. Natural product-based nanoformulations for cancer therapy: opportunities and challenges. Semin. Cancer Biol. 69(Feb), 5–23 (2021).
    • 19. Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med. Princ. Pract. 25(Suppl. 2), 41–59 (2016).
    • 20. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20(3), 200–216 (2021).
    • 21. Amawi H, Ashby CR, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what’s limiting? Chin. J. Cancer. 36(1), 50 (2017).
    • 22. Wu J, Dai J, Zhang Y et al. Synthesis of novel xanthone analogues and their growth inhibitory activity against human lung cancer A549 cells. Drug Des. Devel. Ther. 13, 4239–4246 (2019).
    • 23. Cai N, Xie SJ, Qiu DB et al. Potential effects of α-mangostin in the prevention and treatment of hepatocellular carcinoma. J. Funct. Foods. 11(1), 309–318 (2016).
    • 24. Lee CH, Ying TH, Chiou HL et al. Alpha-mangostin induces apoptosis through activation of reactive oxygen species and ASK1/P38 signaling pathway in cervical cancer cells. Oncotarget. 8(29), 47425–47439 (2017).
    • 25. Chien HJ, Ying TH, Hsieh SC et al. α-Mangostin attenuates stemness and enhances cisplatin-induced cell death in cervical cancer stem-like cells through induction of mitochondrial-mediated apoptosis. J. Cell. Physiol. 235(7–8), 5590–5601 (2020).
    • 26. Chen CM, Hsieh SC, Lin CL et al. Alpha-mangostin suppresses the metastasis of human renal carcinoma cells by targeting MEK/ERK expression and MMP-9 transcription activity. Cell. Physiol. Biochem. 44(4), 1460–1470 (2017).
    • 27. Kwak HH, Kim IR, Kim HJ et al. α-mangostin induces apoptosis and cell cycle arrest in oral squamous cell carcinoma cell. Evid. Based Complement. Alternat. Med. 2016, 5352412 (2016).
    • 28. Hsieh SC, Huang MH, Cheng CW et al. α-mangostin induces mitochondrial dependent apoptosis in human hepatoma SK-Hep-1 cells through inhibition of P38 MAPK pathway. Apoptosis. 18(12), 1548–1560 (2013).
    • 29. Kritsanawong S, Innajak S, Imoto M, Watanapokasin R. Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells. Int. J. Oncol. 48(5), 2155–2165 (2016).
    • 30. Lemos A, Leão M, Soares J et al. Medicinal chemistry strategies to disrupt the P53–MDM2/MDMX interaction. Med. Res. Rev. 36(5), 789–844 (2016).
    • 31. Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30(1), 87 (2011).
    • 32. Plati J, Bucur O, Khosravi-Far R. Apoptotic cell signaling in cancer progression and therapy. Integr. Biol. 3(4), 279–296 (2011).
    • 33. Gerl R, Vaux DL. Apoptosis in the development and treatment of cancer. Carcinogenesis. 26(2), 263–270 (2005).
    • 34. Mohammad RM, Muqbil I, Lowe L et al. Broad targeting of resistance to apoptosis in cancer. Semin. Cancer Biol. 35(Suppl.), S78–S103 (2015).
    • 35. Wang JJ, Zhang W, Sanderson BJS. Altered MRNA expression related to the apoptotic effect of three xanthones on human melanoma SK-MEL-28 cell line. BioMed Res. Int. 2013, 715603 (2013).
    • 36. O’Brien MA, Kirby R. Apoptosis: a review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J. Vet. Emerg. Crit. Care. 18(6), 572–585 (2008).
    • 37. Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20(3), 175–193 (2019).
    • 38. Pérez-Rojas JM, González-Macías R, González-Cortes J, Jurado R, Pedraza-Chaverri J, García-López P. Synergic effect of α-mangostin on the cytotoxicity of cisplatin in a cervical cancer model. Oxid. Med. Cell. Longev. 2016, 7981397 (2016).
    • 39. Zhang C, Yu G, Shen Y. The naturally occurring xanthone α-mangostin induces ROS-mediated cytotoxicity in non-small scale lung cancer cells. Saudi J. Biol. Sci. 25(6), 1090–1095 (2018).
    • 40. Wudtiwai B, Pitchakarn P, Banjerdpongchai R. Alpha-mangostin, an active compound in Garcinia mangostana, abrogates anoikis-resistance in human hepatocellular carcinoma cells. Toxicol. In Vitro. 53(Dec), 222–232 (2018). • Describes α-mangostin’s ability to disrupt anoikis-resistance by inhibiting AKT and ERK signaling pathways.
    • 41. Yamanoi K, Matsumura N, Murphy SK et al. Suppression of ABHD2, identified through a functional genomics screen, causes anoikis resistance, chemoresistance and poor prognosis in ovarian cancer. Oncotarget. 7(30), 4762047636 (2016).
    • 42. Cao Z, Livas T, Kyprianou N. Anoikis and EMT: lethal ‘liaisons’ during cancer progression. Physiol. Behav. 21(3–4), 155–168 (2016).
    • 43. Yeong KY, Khaw KY, Takahashi Y, Itoh Y, Murugaiyah V, Suzuki T. Discovery of gamma-mangostin from Garcinia mangostana as a potent and selective natural SIRT2 inhibitor. Bioorganic Chem. 94(Jan), 103403 (2020).
    • 44. Di Fruscia P, Ho K, Laohasinnarong S et al. The discovery of novel 10,11-dihydro-5h-dibenz[b,f]azepine SIRT2 inhibitors. MedChemComm. 3, 373–378 (2012).
    • 45. Jing H, Hu J, He B et al. A SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell. 29(3), 297–310 (2016).
    • 46. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 144(5), 646–674 (2011).
    • 47. Gandalovičová A, Rosel D, Fernandes M et al. Migrastatics – anti-metastatic and anti-invasion drugs: promises and challenges. Trends Cancer. 3(6), 391–406 (2017).
    • 48. Wang JJ, Sanderson BJS, Zhang W. Significant anti-invasive activities of α-mangostin from the mangosteen pericarp on two human skin cancer cell lines. Anticancer Res. 32(9), 3805–3816 (2012).
    • 49. Hung SH, Shen KH, Wu CH et al. α-Mangostin suppresses PC-3 human prostate carcinoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen expression through the JNK signaling pathway. J. Agric. Food Chem. 57(4), 1291–1298 (2009).
    • 50. Lee YB, Ko KC, Shi MD et al. Alpha-mangostin, a novel dietary xanthone, suppresses TPA-mediated MMP-2 and MMP-9 expressions through the ERK signaling pathway in MCF-7 human breast adenocarcinoma cells. J. Food Sci. 75(1), H13–H23 (2010).
    • 51. Shih YW, Chien ST, Chen PS et al. α-Mangostin suppresses phorbol 12-myristate 13-acetate-induced MMP-2/MMP-9 expressions via Avβ3 integrin/FAK/ERK and NF-κB signaling pathway in human lung adenocarcinoma A549 cells. Cell Biochem. Biophys. 58(1), 31–44 (2010).
    • 52. Han C, Li Z, Hou J et al. Bioactivity evaluation of natural product α-mangostin as a novel xanthone-based lysine-specific demethylase 1 inhibitor to against tumor metastasis. Bioorganic Chem. 76(Feb), 415–419 (2018).
    • 53. Beninati S, Oliverio S, Cordella M et al. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by α-mangostin. Biochem. Biophys. Res. Commun. 450(4), 1512–1517 (2014).
    • 54. Mohan S, Syam S, Abdelwahab SI, Thangavel N. An anti-inflammatory molecular mechanism of action of α-mangostin, the major xanthone from the pericarp of Garcinia mangostana: an in silico, in vitro and in vivo approach. Food Funct. 9(7), 3860–3871 (2018). • The mechanism of α-mangostin's anti-inflammatory effect is explained in detail.
    • 55. Pan T, Wu D, Cai N et al. Alpha-mangostin protects rat articular chondrocytes against IL-1β-induced inflammation and slows the progression of osteoarthritis in a rat model. Int. Immunopharmacol. 52(Nov), 34–43 (2017).
    • 56. Herrera-Aco DR, Medina-Campos ON, Pedraza-Chaverri J et al. Alpha-mangostin: anti-inflammatory and antioxidant effects on established collagen-induced arthritis in DBA/1J mice. Food Chem. Toxicol. 124(Feb), 300–315 (2019).
    • 57. You BH, Chae HS, Song J et al. α-mangostin ameliorates dextran sulfate sodium-induced colitis through inhibition of NF-κB and MAPK pathways. Int. Immunopharmacol. 49, 212–221 (2017).
    • 58. Gutierrez-Orozco F, Thomas-Ahner JM, Berman-Booty LD et al. Dietary α-mangostin, a xanthone from mangosteen fruit, exacerbates experimental colitis and promotes dysbiosis in mice. Mol. Nutr. Food Res. 58(6), 1226–1238 (2014).
    • 59. Cai Y, Zhu L, Zhang F et al. Noninvasive monitoring of pulmonary fibrosis by targeting matrix metalloproteinases (MMPs). Mol. Pharm. 10(6), 2237–2247 (2013).
    • 60. Sundarakrishnan A, Zukas H, Coburn J et al. Bioengineered in vitro tissue model of fibroblast activation for modeling pulmonary fibrosis. ACS Biomater. Sci. Eng. 5(5), 2417–2429 (2019).
    • 61. Mahabusarakam W, Proudfoot J, Taylor W, Croft K. Inhibition of lipoprotein oxidation by prenylated xanthones derived from mangostin. Free Radic. Res. 33(5), 643–659 (2000). •• Highlights the key functional groups of α-mangostin responsible for its antioxidant activity.
    • 62. Kondo M, Zhang L, Ji H, Kou Y, Ou B. Bioavailability and antioxidant effects of a xanthone-rich mangosteen (Garcinia mangostana) product in humans. J. Agric. Food Chem. 57(19), 8788–8792 (2009).
    • 63. Ibrahim MY, Hashim NM, Mariod AA et al. α-Mangostin from Garcinia mangostana linn: an updated review of its pharmacological properties. Arab. J. Chem. 9(3), 317–329 (2016).
    • 64. Fang Y, Su T, Qiu X et al. Protective effect of alpha-mangostin against oxidative stress induced-retinal cell death. Sci. Rep. 6(Feb 18), 21018 (2016).
    • 65. Lei J, Huo X, Duan W et al. α-mangostin inhibits hypoxia-driven ROS-induced PSC activation and pancreatic cancer cell invasion. Cancer Lett. 347(1), 129–138 (2014).
    • 66. Giannoni E, Bianchini F, Calorini L, Chiarugi P. Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid. Redox Signal. 14(12), 2361–2371 (2011).
    • 67. Pérez-Rojas JM, Cruz C, García-López P et al. Renoprotection by alpha-mangostin is related to the attenuation in renal oxidative/nitrosative stress induced by cisplatin nephrotoxicity. Free Radic. Res. 43(11), 1122–1132 (2009). • The renoprotective mechanism of action for α-mangostin is discussed in detail.
    • 68. Golestaneh N, Chu Y, Xiao YY et al. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis. 8(1), e2537 (2017).
    • 69. Velez G, Machlab DA, Tang PH et al. Proteomic analysis of the human retina reveals region-specific susceptibilities to metabolic- and oxidative stress-related diseases. PLoS ONE. 13(2), e0193250 (2018).
    • 70. Koh JJ, Qiu S, Zou H et al. Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim. Biophys. Acta - Biomembr. 1828(2), 834–844 (2013).
    • 71. Widyarman A, Lay S, Wendhita I et al. Indonesian mangosteen fruit (Garcinia mangostana L.) peel extract inhibits Streptococcus mutans and Porphyromonas gingivalis in biofilms in vitro. Contemp. Clin. Dent. 10(1), 123–128 (2019).
    • 72. Sakagami Y, Iinuma M, Piyasena KGNP, Dharmaratne HRW. Antibacterial activity of α-mangostin against vancomycin resistant enterococci (VRE) and synergism with antibiotics. Phytomedicine. 12(3), 203–208 (2005).
    • 73. Larsuprom L, Rungroj N, Lekcharoensuk C et al. In vitro antibacterial activity of mangosteen (Garcinia mangostana Linn.) crude extract against Staphylococcus pseudintermedius isolates from canine pyoderma. Vet. Dermatol. 30(6), 487–e145 (2019).
    • 74. Sivaranjani M, Leskinen K, Aravindraja C et al. Deciphering the antibacterial mode of action of alpha-mangostin on Staphylococcus epidermidis RP62A through an integrated transcriptomic and proteomic approach. Front. Microbiol. 10(Feb 6), 150 (2019). • The possible anti-bacterial mechanisms of action of α-mangostin are described, while also discussing a novel pathway through which it avoids developing resistance.
    • 75. Nguyen PTM, Marquis RE. Antimicrobial actions of α-mangostin against oral streptococci. Can. J. Microbiol. 57(3), 217–225 (2011).
    • 76. Sivaranjani M, Prakash M, Gowrishankar S et al. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl. Microbiol. Biotechnol. 101(8), 3349–3359 (2017).
    • 77. Kim HM, Kim YM, Huh JH et al. α-Mangostin ameliorates hepatic steatosis and insulin resistance by inhibition C-C chemokine receptor 2. PLoS ONE. 12(6), e0179204 (2017).
    • 78. Tousian Shandiz H, Razavi BM, Hosseinzadeh H. Review of Garcinia mangostana and its xanthones in metabolic syndrome and related complications. Phytother. Res. 31(8), 1173–1182 (2017).
    • 79. Tsai SY, Chung PC, Owaga EE et al. Alpha-mangostin from mangosteen (Garcinia mangostana Linn.) pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis. Nutr. Metab. 13(Dec 1), 88 (2016).
    • 80. Li D, Liu Q, Lu X et al. α-mangostin remodels visceral adipose tissue inflammation to ameliorate age-related metabolic disorders in mice. Aging. 11(23), 11084–11110 (2019).
    • 81. Chae HS, Kim EY, Han L et al. Xanthones with pancreatic lipase inhibitory activity from the pericarps of Garcinia mangostana L. (Guttiferae). Eur. J. Lipid Sci. Technol. 118(9), 1416–1421 (2016).
    • 82. Watanabe M, Gangitano E, Francomano D et al. Mangosteen extract shows a potent insulin sensitizing effect in obese female patients: a prospective randomized controlled pilot study. Nutrients. 10(5), 586 (2018).
    • 83. Quan X, Wang Y, Ma X et al. α-mangostin induces apoptosis and suppresses differentiation of 3T3-L1 cells via inhibiting fatty acid synthase. PLoS ONE. 7(3), e33376 (2012).
    • 84. Taher M, Mohamed Amiroudine MZA, Tengku Zakaria TMFS et al. α-mangostin improves glucose uptake and inhibits adipocytes differentiation in 3T3-L1 cells via PPAR γ, GLUT4, and leptin expressions. Evid. Based Complement. Alternat. Med. 2015, 740238 (2015).
    • 85. Chae HS, Kim YM, Bae JK et al. Mangosteen extract attenuates the metabolic disorders of high-fat-fed mice by activating AMPK. J. Med. Food. 19(2), 148–154 (2015).
    • 86. Karim N, Rahman MA, Changlek S, Tangpong J. Short-time administration of xanthone from Garcinia mangostana fruit pericarp attenuates the hepatotoxicity and renotoxicity of Type II diabetes mice. J. Am. Coll. Nutr. 39(6), 501–510 (2019).
    • 87. Kumar V, Bhatt PC, Kaithwas G et al. α-Mangostin mediated pharmacological modulation of hepatic carbohydrate metabolism in diabetes induced Wistar rat. Beni-Suef Univ. J. Basic Appl. Sci. 5(3), 255–276 (2016).
    • 88. Nain P, Saini V, Sharma S, Nain J. Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin-induced Type-2 diabetes mellitus (T2DM) rats. J. Ethnopharmacol. 142(1), 65–71 (2012).
    • 89. Lee D, Kim YM, Jung K et al. Alpha-mangostin improves insulin secretion and protects INS-1 cells from streptozotocin-induced damage. Int. J. Mol. Sci. 19(5), 1484 (2018). • The antidiabetic mechanism of action of α-mangostin is elucidated.
    • 90. Taher M, Tg Zakaria TMFS, Susanti D, Zakaria ZA. Hypoglycaemic activity of ethanolic extract of Garcinia mangostana Linn. in normoglycaemic and streptozotocin-induced diabetic rats. BMC Complement. Altern. Med. 16(May 21), 135 (2016).
    • 91. Shagufta, Ahmad I. Recent insight into the biological activities of synthetic xanthone derivatives. Eur. J. Med. Chem. 116(Jun 30), 267–280 (2016).
    • 92. Wathoni N, Rusdin A, Motoyama K, Joni IM, Lesmana R, Muchtaridi M. Nanoparticle drug delivery systems for α-mangostin. Nanotechnol. Sci. Appl. 13(Apr 1), 23–36 (2020).
    • 93. Asasutjarit R, Meesomboon T, Adulheem P et al. Physicochemical properties of alpha-mangostin loaded nanomeulsions prepared by ultrasonication technique. Heliyon. 5(9), e02465 (2019).
    • 94. Aisha AF, Ismail Z, Abu-Salah KM, Majid AM. Solid dispersions of α-mangostin improve its aqueous solubility through self-assembly of nanomicelles. J. Pharm. Sci. 101(2), 815–825 (2012).
    • 95. Li L, Brunner I, Han AR et al. Pharmacokinetics of α-mangostin in rats after intravenous and oral application. Mol. Nutr. Food Res. 55(S1), S67–S74 (2011).
    • 96. Kittipaspallop W, Taepavarapruk P, Chanchao C, Pimtong W. Acute toxicity and teratogenicity of α-mangostin in zebrafish embryos. Exp. Biol. Med. 243(15–16), 1212–1219 (2018).