We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Functional characterization of HIC, a P2Y1 agonist, as a p53 stabilizer for prostate cancer cell death induction

    Hien Thi Thu Le

    Molecular Signaling Lab, Faculty of Medicine & Health Technology, Tampere University, Finland

    BioMeditech & Tays Cancer Center, Tampere University Hospital, PO Box 553, 33101, Tampere, Finland

    ,
    Akshaya Murugesan

    Molecular Signaling Lab, Faculty of Medicine & Health Technology, Tampere University, Finland

    BioMeditech & Tays Cancer Center, Tampere University Hospital, PO Box 553, 33101, Tampere, Finland

    Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, 625002, India

    ,
    Nuno R Candeias

    Faculty of Engineering & Natural Sciences, Tampere University, 33101, Tampere, Finland

    LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal

    ,
    Olli Yli-Harja

    Computational Systems Biology Group, Faculty of Medicine & Health Technology, Tampere University, PO Box 553, 33101, Tampere, Finland

    Institute for Systems Biology, 1441N 34th Street, Seattle, WA 98103-8904, USA

    &
    Meenakshisundaram Kandhavelu

    *Author for correspondence:

    E-mail Address: meenakshisundaram.kandhavelu@tuni.fi

    Molecular Signaling Lab, Faculty of Medicine & Health Technology, Tampere University, Finland

    BioMeditech & Tays Cancer Center, Tampere University Hospital, PO Box 553, 33101, Tampere, Finland

    Published Online:https://doi.org/10.4155/fmc-2021-0159

    Background: (1-(2-hydroxy-5-nitrophenyl)(4-hydroxyphenyl)methyl)indoline-4-carbonitrile (HIC), an agonist of the P2Y1 receptor (P2Y1R), induces cell death in prostate cancer cells. However, the molecular mechanism behind the inhibition of HIC in prostate cancer remains elusive. Methods & results: Here, to outline the inhibitory role of HIC on prostate cancer cells, PC-3 and DU145 cell lines were treated with the respective IC50 concentrations, which reduced cell proliferation, adherence properties and spheroid formation. HIC was able to arrest the cell cycle at G1/S phase and also induced apoptosis and DNA damage, validated by gene expression profiling. HIC inhibited the prostate cancer cells’ migration and invasion, revealing its antimetastatic ability. P2Y1R-targeted HIC affects p53, MAPK and NF-κB protein expression, thereby improving the p53 stabilization essential for G1/S arrest and cell death. Conclusion: These findings provide an insight on the potential use of HIC, which remains the mainstay treatment for prostate cancer.

    Graphical abstract

    References

    • 1. Attard G, Parker C, Eeles RA et al. Prostate cancer. Lancet 387(10013), 70–82 (2016).
    • 2. Litwin MS, Tan HJ. The diagnosis and treatment of prostate cancer: a review. JAMA 317(24), 2532–2542 (2017).
    • 3. Marucci G, Santinelli C, Buccioni M et al. Anticancer activity study of A3 adenosine receptor agonists. Life Sci. 205, 155–163 (2018).
    • 4. Yu S, Sun L, Jiao Y, Lee LTO. The role of G protein-coupled receptor kinases in cancer. Int. J. Biol. Sci. 14(2), 189–203 (2018).
    • 5. Saengsawang W, Rasenick MM. G protein-coupled receptors. Encycl. Cell Biol. 3, 51–55 (2016).
    • 6. Janssens R, Communi D, Pirotton S, Samson M, Parmentier M, Boeynaems JM. Cloning and tissue distribution of the human P2Y1 receptor. Biochem. Biophys. Res. Commun. 221(3), 588–593 (1996).
    • 7. Wei Q, Costanzi S, Liu QZ, Gao ZG, Jacobson KA. Activation of the P2Y1 receptor induces apoptosis and inhibits proliferation of prostate cancer cells. Biochem. Pharmacol. 82(4), 418–425 (2011).
    • 8. Li WH, Qiu Y, Zhang HQ et al. P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells. Br. J. Cancer 109(6), 1666–1675 (2013).
    • 9. Shabbir M, Ryten M, Thompson C, Mikhailidis D, Burnstock G. Characterization of calcium-independent purinergic receptor-mediated apoptosis in hormone-refractory prostate cancer. BJU Int. 101(3), 352–359 (2008).
    • 10. Le HTT, Rimpilainen T, Konda Mani S et al. Synthesis and preclinical validation of novel P2Y1 receptor ligands as a potent anti-prostate cancer agent. Sci. Rep. 9(1), 18938 (2019).
    • 11. Buvinic S, Bravo-Zehnder M, Boyer JL, Huidobro-Toro JP, González A. Nucleotide P2Y1 receptor regulates EGF receptor mitogenic signaling and expression in epithelial cells. J. Cell Sci. 120(Pt 24), 4289–4301 (2007).
    • 12. Woehrle T, Ledderose C, Rink J, Slubowski C, Junger WG. Autocrine stimulation of P2Y1 receptors is part of the purinergic signaling mechanism that regulates T cell activation. Purinergic Signal. 15(2), 127–137 (2019).
    • 13. Niimi K, Ueda M, Fukumoto M et al. Transcription factor FOXO1 promotes cell migration toward exogenous ATP via controlling P2Y1 receptor expression in lymphatic endothelial cells. Biochem. Biophys. Res. Commun. 489(4), 413–419 (2017).
    • 14. Mamedova LK, Gao ZG, Jacobson KA. Regulation of death and survival in astrocytes by ADP activating P2Y1 and P2Y12 receptors. Biochem. Pharmacol. 72(8), 1031–1041 (2006).
    • 15. Harden TK, Waldo GL, Hicks SN, Sondek J. Mechanism of activation and inactivation of Gq/phospholipase C-β signaling nodes. Chem. Rev. 111(10), 6120–6129 (2011).
    • 16. Mizuno N, Itoh H. Functions and regulatory mechanisms of Gq-signaling pathways. NeuroSignals 17(1), 42–54 (2009).
    • 17. Xu KP, Dartt DA, Yu FSX. EGF-induced ERK phosphorylation independent of PKC isozymes in human corneal epithelial cells. Investig. Ophthalmol. Vis. Sci. 43(12), 3673–3679 (2002).
    • 18. Yin J, Yu FSX. ERK1/2 mediate wounding- and G-protein-coupled receptor ligands-induced EGFR activation via regulating ADAM17 and HB-EGF shedding. Investig. Ophthalmol. Vis. Sci. 50(1), 132–139 (2009).
    • 19. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. 35(6), 600–604 (2015).
    • 20. Muscella A, Cossa LG, Vetrugno C, Antonaci G, Marsigliante S. Inhibition of ZL55 cell proliferation by ADP via PKC-dependent signalling pathway. J. Cell. Physiol. 233(3), 2526–2536 (2018).
    • 21. Wong PC, Watson C, Crain EJ. The P2Y1 receptor antagonist MRS2500 prevents carotid artery thrombosis in cynomolgus monkeys. J. Thromb. Thrombolysis 41(3), 514–521 (2016).
    • 22. Li Y, Yin C, Liu P, Li D, Lin J. Identification of a different agonist-binding site and activation mechanism of the human P2Y1 receptor. Sci. Rep. 7(1), 13764 (2017).
    • 23. Shen J, DiCorleto PE. ADP stimulates human endothelial cell migration via P2Y1 nucleotide receptor-mediated mitogen-activated protein kinase pathways. Circ. Res. 102(4), 448–456 (2008).
    • 24. Borowicz S, Van Scoyk M, Avasarala S et al. The soft agar colony formation assay. J. Vis. Exp. (92), e51998 (2014).
    • 25. Pehkonen H, Lento M, Von Nandelstadh P et al. Liprin-α1 modulates cancer cell signaling by transmembrane protein CD82 in adhesive membrane domains linked to cytoskeleton. Cell Commun. Signal. 16(1), 41 (2018).
    • 26. Hubbard T, Barker D, Birney E et al. The Ensembl genome database project. Nucleic Acids Res. 30(1), 38–41 (2002).
    • 27. Babraham Institute. FASTQC: a quality control tool for high throughput sequence data. www.bioinformatics.babraham.ac.uk/projects/fastqc/
    • 28. Dobin A, Davis CA, Schlesinger F et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1), 15–21 (2013).
    • 29. Li H, Handsaker B, Wysoker A et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16), 2078–2079 (2009).
    • 30. Anders S, Pyl PT, Huber W. HTSeq – a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2), 166–169 (2015).
    • 31. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014).
    • 32. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57(1), 289–300 (1995).
    • 33. Ashburner M, Ball CA, Blake JA et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–29 (2000).
    • 34. Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5), 284–287 (2012).
    • 35. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28(1), 27–30 (2000).
    • 36. Wang HY, Kim NH. CDK2 is required for the DNA damage response during porcine early embryonic development. Biol. Reprod. 95(2), 31 (2016).
    • 37. Gao SY, Li J, Qu XY, Zhu N, Ji YB. Downregulation of Cdk1 and CyclinB1 expression contributes to oridonin-induced cell cycle arrest at G2/M phase and growth inhibition in SGC-7901 gastric cancer cells. Asian Pacific J. Cancer Prev. 15(15), 6437–6441 (2014).
    • 38. Hur W, Rhim H, Jung CK et al. SOX4 overexpression regulates the p53-mediated apoptosis in hepatocellular carcinoma: clinical implication and functional analysis in vitro. Carcinogenesis 31(7), 1298–1307 (2010).
    • 39. Urist M, Tanaka T, Poyurovsky MV, Prives C. p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev. 18(24), 3041–3054 (2004).
    • 40. Mancini F, Pieroni L, Monteleone V et al. MDM4/HIPK2/p53 cytoplasmic assembly uncovers coordinated repression of molecules with anti-apoptotic activity during early DNA damage response. Oncogene 35(2), 228–240 (2016).
    • 41. Toledo F, Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int. J. Biochem. Cell Biol. 39(7–8), 1476–1482 (2007).
    • 42. Hussain T, Saha D, Purohit G et al. Transcription regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 is epigenetically controlled through the REST repressor complex. Sci. Rep. 7(1), 11541 (2017).
    • 43. Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. The MDM2–p53 pathway revisited. J. Biomed. Res. 27(4), 254–271 (2013).
    • 44. Siednienko J, Gajanayake T, Fitzgerald KA, Moynagh P, Miggin SM. Absence of MyD88 results in enhanced TLR3-dependent phosphorylation of IRF3 and increased IFN-β and RANTES production. J. Immunol. 186(4), 2514–2522 (2011).
    • 45. Matt S, Hofmann TG. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell. Mol. Life Sci. 73(15), 2829–2850 (2016).
    • 46. Das SP, Borrman T, Liu VWT, Yang SCH, Bechhoefer J, Rhind N. Replication timing is regulated by the number of MCMs loaded at origins. Genome Res. 25(12), 1886–1892 (2015).
    • 47. Gordon E, Ravicz J, Liu S, Chawla S, Hall F. Cell cycle checkpoint control: the cyclin G1/Mdm2/p53 axis emerges as a strategic target for broad-spectrum cancer gene therapy – a review of molecular mechanisms for oncologists. Mol. Clin. Oncol. 9(2), 115–134 (2018).
    • 48. Neganova I, Vilella F, Atkinson SP et al. An important role for CDK2 in G1 to S checkpoint activation and DNA damage response in human embryonic stem cells. Stem Cells 29(4), 651–659 (2011).
    • 49. Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers (Basel) 7(1), 179–237 (2015).
    • 50. Doan P, Nguyen T, Yli-Harja O et al. Effect of alkylaminophenols on growth inhibition and apoptosis of bone cancer cells. Eur. J. Pharm. Sci. 107, 208–216 (2017).
    • 51. Haque S, Morris JC. Transforming growth factor-β: a therapeutic target for cancer. Hum. Vaccines Immunother. 13(8), 1741–1750 (2017).
    • 52. Xu J, Lamouille S, Derynck R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19(2), 156–172 (2009).
    • 53. Ampuja M, Jokimäki R, Juuti-Uusitalo K, Rodriguez-Martinez A, Alarmo EL, Kallioniemi A. BMP4 inhibits the proliferation of breast cancer cells and induces an MMP-dependent migratory phenotype in MDA-MB-231 cells in 3D environment. BMC Cancer 13, 429 (2013).
    • 54. Du R, Liu B, Zhou L et al. Downregulation of annexin A3 inhibits tumor metastasis and decreases drug resistance in breast cancer. Cell Death Dis. 9(2), 126 (2018).
    • 55. Peitsch WK, Doerflinger Y, Fischer-Colbrie R et al. Desmoglein 2 depletion leads to increased migration and upregulation of the chemoattractant secretoneurin in melanoma cells. PLoS ONE 9(2), e89491 (2014).
    • 56. Shen H, Xu L, You C et al. miR-665 is downregulated in glioma and inhibits tumor cell proliferation, migration and invasion by targeting high mobility group box 1. Oncol. Lett. 21(2), 156 (2021).
    • 57. Woodfield SE, Shi Y, Patel RH et al. MDM4 inhibition: a novel therapeutic strategy to reactivate p53 in hepatoblastoma. Sci. Rep. 11(1), 2967 (2021).
    • 58. Fukasawa K, Vande Woude GF. Synergy between the Mos/mitogen-activated protein kinase pathway and loss of p53 function in transformation and chromosome instability. Mol. Cell. Biol. 17(1), 506–518 (1997).
    • 59. Mor O, Yaron P, Huszar M et al. Absence of p53 mutations in malignant mesotheliomas. Am. J. Respir. Cell Mol. Biol. 16(1), 9–13 (1997).
    • 60. Okuda T, Otsuka J, Sekizawa A et al. p53 mutations and overexpression affect prognosis of ovarian endometrioid cancer but not clear cell cancer. Gynecol. Oncol. 88(3), 318–325 (2003).
    • 61. Chen L, Wang S, Zhou Y et al. Identification of early growth response protein 1 (EGR-1) as a novel target for JUN-induced apoptosis in multiple myeloma. Blood 115(1), 61–70 (2010).
    • 62. Fan M, Goodwin ME, Birrer MJ, Chambers TC. The c-Jun NH2-terminal protein kinase/AP-1 pathway is required for efficient apoptosis induced by vinblastine. Cancer Res. 61(11), 4450–4458 (2001).
    • 63. Saha MN, Jiang H, Yang Y et al. Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma. PLoS ONE 7(1), e30215 (2012).
    • 64. Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med. 6(3), a026104 (2016).
    • 65. Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P. P2Y1 receptor-evoked glutamate exocytosis from astrocytes. J. Biol. Chem. 281(41), 30684–30696 (2006).
    • 66. Shadfan M, Lopez-Pajares V, Yuan ZM. MDM2 and MDMX: alone and together in regulation of p53. Transl. Cancer Res. 1(2), 88–89 (2012).
    • 67. Pearson AS, Spitz FR, Swisher SG et al. Up-regulation of the proapoptotic mediators Bax and Bak after adenovirus-mediated p53 gene transfer in lung cancer cells. Clin. Cancer Res. 6(3), 887–890 (2000).
    • 68. Zhu J, Chen M, Chen N et al. Glycyrrhetinic acid induces G1-phase cell cycle arrest in human non-small cell lung cancer cells through endoplasmic reticulum stress pathway. Int. J. Oncol. 46(3), 981–988 (2015).
    • 69. Higgins SP, Tang Y, Higgins CE et al. TGF-β1/p53 signaling in renal fibrogenesis. Cell. Signal. 43, 1–10 (2018).
    • 70. Oh IR, Raymundo B, Kim MJ, Kim CW. Mesenchymal stem cells co-cultured with colorectal cancer cells showed increased invasive and proliferative abilities due to its altered p53/TGF-β1 levels. Biosci. Biotechnol. Biochem. 84(2), 256–267 (2020).
    • 71. Gen SW. The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol. Ther. 3(2), 156–161 (2004).
    • 72. van der Vorst EPC, Theodorou K, Wu Y et al. High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-κB/STAT1-IRF1 signaling. Cell Metab. 25(1), 197–207 (2017).
    • 73. Chen L, He HY, Li HM et al. ERK1/2 and p38 pathways are required for P2Y receptor-mediated prostate cancer invasion. Cancer Lett. 215(2), 239–247 (2004).
    • 74. Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20(4), 199–210 (2019).
    • 75. Muscella A, Vetrugno C, Antonaci G, Cossa LG, Marsigliante S. PKC-δ/PKC-α activity balance regulates the lethal effects of cisplatin. Biochem. Pharmacol. 98(1), 29–40 (2015).
    • 76. Basu A. Involvement of protein kinase C-δ in DNA damage-induced apoptosis. J. Cell. Mol. Med. 7(4), 341–350 (2003).
    • 77. Chuderland D, Seger R. Calcium regulates ERK signaling by modulating its protein–protein interactions. Commun. Integr. Biol. 1(1), 4–5 (2008).
    • 78. Liu Y, Song X, Shi Y et al. WNK1 activates large-conductance Ca2+-activated K+ channels through modulation of ERK1/2 signaling. J. Am. Soc. Nephrol. 26(4), 844–854 (2015).