We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Recent progress of palmitoyl transferase DHHC3 as a novel antitumor target

    Tian Gao

    Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China 

    ,
    Shuya Liu

    Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China 

    ,
    Xiaocun Li

    Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China 

    ,
    Zichen Qin

    Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China 

    ,
    Kaiyue Wang

    Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China 

    ,
    Jinxin Wang

    Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design & Optimization, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China

    ,
    Yali Song

    *Author for correspondence: Tel.: +86 134 8328 3338;

    E-mail Address: yalisong@hbu.edu.cn

    Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China 

    &
    Kan Yang

    **Author for correspondence: Tel.: +86 181 3272 8897;

    E-mail Address: yangkan1014@163.com

    Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China 

    Published Online:https://doi.org/10.4155/fmc-2021-0192

    DHHC3 is a DHHC-family palmitoyl acyltransferase that is responsible for many mammalian palmitoylation events. By regulating the posttranslational modification of its specific substrates, DHHC3 has shown a strong protumor effect in various cancers. In this review, the authors introduce the research progress of DHHC3 as a new antitumor target through the expression of DHHC3 in patients with tumors, substrate proteins and potential mechanisms. Recent advances in the search for protein structures and inhibitors are also reviewed. Several design strategies to facilitate the optimization of the process of drug design based on DHHC3 are also discussed.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Jin J, Zhi X, Wang X, Meng D. Protein palmitoylation and its pathophysiological relevance. J. Cell Physiol. 236(5), 3220–3233 (2021). • Describes the pathological properties of protein palmitoylation in detail.
    • 2. Rocks O, Gerauer M, Vartak N et al. The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141(3), 458–471 (2010).
    • 3. Lemonidis K, Werno MW, Greaves J et al. The zDHHC family of S-acyltransferases. Biochem. Soc. Trans. 43(2), 217–221 (2015).
    • 4. Fernández-Hernando C, Fukata M, Bernatchez PN et al. Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. J. Cell Biol. 174(3), 369–377 (2006).
    • 5. Lemonidis K, Gorleku OA, Sanchez-Perez MC, Grefen C, Chamberlain LH. The Golgi S-acylation machinery comprises zDHHC enzymes with major differences in substrate affinity and S-acylation activity. Mol. Biol. Cell 25(24), 3870–3883 (2014).
    • 6. Greaves J, Chamberlain LH. Palmitoylation-dependent protein sorting. J. Cell Biol. 176(3), 249–254 (2007).
    • 7. Uemura T, Mori H, Mishina M. Isolation and characterization of Golgi apparatus-specific GODZ with the DHHC zinc finger domain. Biochem. Biophys. Res. Commun. 296(2), 492–496 (2002).
    • 8. Keller CA, Yuan X, Panzanelli P et al. The gamma2 subunit of GABA(A) receptors is a substrate for palmitoylation by GODZ. J. Neurosci. 24(26), 5881–5891 (2004).
    • 9. Rathenberg J, Kittler JT, Moss SJ. Palmitoylation regulates the clustering and cell surface stability of GABAA receptors. Mol. Cell Neurosci. 26(2), 251–257 (2004).
    • 10. Hayashi T, Rumbaugh G, Huganir RL. Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites. Neuron 47(5), 709–723 (2005).
    • 11. Fang C, Deng L, Keller CA et al. GODZ-mediated palmitoylation of GABA(A) receptors is required for normal assembly and function of GABAergic inhibitory synapses. J. Neurosci. 26(49), 12758–12768 (2006).
    • 12. Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS. Identification of PSD-95 palmitoylating enzymes. Neuron 44(6), 987–996 (2004).
    • 13. Chen ZW, Olsen RW. GABAA receptor associated proteins: a key factor regulating GABAA receptor function. J. Neurochem. 100(2), 279–294 (2007).
    • 14. Kanaani J, Diacovo MJ, El-Husseini Ael D, Bredt DS, Baekkeskov S. Palmitoylation controls trafficking of GAD65 from Golgi membranes to axon-specific endosomes and a Rab5a-dependent pathway to presynaptic clusters. J. Cell Sci. 117(Pt 10), 2001–2013 (2004).
    • 15. El-Husseini AE, Craven SE, Chetkovich DM et al. Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J. Cell Biol. 148(1), 159–172 (2000).
    • 16. Sharma C, Wang HX, Li Q et al. Protein acyltransferase DHHC3 regulates breast tumor growth, oxidative stress, and senescence. Cancer Res. 77(24), 6880–6890 (2017). • Shows elevated DHHC3 expression correlating with reduced survival in multiple human cancers.
    • 17. Lukk M, Kapushesky M, Nikkilä J et al. A global map of human gene expression. Nat. Biotechnol. 28(4), 322–324 (2010).
    • 18. Zhan F, Barlogie B, Arzoumanian V et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 109(4), 1692–1700 (2007).
    • 19. Sabates-Bellver J, Van Der Flier LG, De Palo M et al. Transcriptome profile of human colorectal adenomas. Mol. Cancer Res. 5(12), 1263–1275 (2007).
    • 20. Maia S, Haining WN, Ansén S et al. Gene expression profiling identifies BAX-delta as a novel tumor antigen in acute lymphoblastic leukemia. Cancer Res. 65(21), 10050–10058 (2005).
    • 21. Shai R, Shi T, Kremen TJ et al. Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 22(31), 4918–4923 (2003).
    • 22. Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J. Clin. Oncol. 24(5), 778–789 (2006).
    • 23. Finak G, Bertos N, Pepin F et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14(5), 518–527 (2008).
    • 24. Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, Van Kessel AG, Kovacs G. High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer 9, 152 (2009).
    • 25. Pei H, Li L, Fridley BL et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 16(3), 259–266 (2009).
    • 26. Hao Y, Triadafilopoulos G, Sahbaie P, Young HS, Omary MB, Lowe AW. Gene expression profiling reveals stromal genes expressed in common between Barrett's esophagus and adenocarcinoma. Gastroenterology 131(3), 925–933 (2006).
    • 27. Chamberlain LH, Shipston MJ. The physiology of protein S-acylation. Physiol. Rev. 95(2), 341–376 (2015).
    • 28. Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev. 118(3), 919–988 (2018).
    • 29. Holland SM, Collura KM, Ketschek A et al. Palmitoylation controls DLK localization, interactions and activity to ensure effective axonal injury signaling. Proc. Natl Acad. Sci. USA 113(3), 763–768 (2016).
    • 30. Zhang MM, Wu PY, Kelly FD, Nurse P, Hang HC. Quantitative control of protein S-palmitoylation regulates meiotic entry in fission yeast. PLoS Biol. 11(7), e1001597 (2013).
    • 31. Hilgemann DW, Fine M, Linder ME, Jennings BC, Lin MJ. Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts. Elife 2(213), 3096–3105 (2013).
    • 32. Lin DTS, Davis NG, Conibear E. Targeting the ras palmitoylation/depalmitoylation cycle in cancer. Biochem. Soc. Trans. 45(4), 913–921 (2017).
    • 33. Sharma C, Rabinovitz I, Hemler ME. Palmitoylation by DHHC3 is critical for the function, expression, and stability of integrin α6β4. Cell. Mol. Life Sci. 69(13), 2233–2244 (2012).
    • 34. Tsutsumi R, Fukata Y, Noritake J, Iwanaga T, Perez F, Fukata M. Identification of G protein alpha subunit-palmitoylating enzyme. Mol. Cell. Biol. 29(2), 435–447 (2009).
    • 35. Wang J, Xie Y, Wolff DW, Abel PW, Tu Y. DHHC protein-dependent palmitoylation protects regulator of G-protein signaling 4 from proteasome degradation. FEBS Lett. 584(22), 4570–4574 (2010).
    • 36. Lu D, Sun HQ, Wang H et al. Phosphatidylinositol 4-kinase IIα is palmitoylated by Golgi-localized palmitoyltransferases in cholesterol-dependent manner. J. Biol. Chem. 287(26), 21856–21865 (2012).
    • 37. Sharma C, Yang W, Steen H, Freeman MR, Hemler ME. Antioxidant functions of DHHC3 suppress anti-cancer drug activities. Cell. Mol. Life Sci. 78(5), 2341–2353 (2021). • Describes the relationship between DHHC3 and oxidative stress in detail.
    • 38. Yao H, Lan J, Li C et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat. Biomed. Eng. 3(4), 306–317 (2019). • Describes the relationship between DHHC3 and immune evasion in detail.
    • 39. Lipscomb EA, Mercurio AM. Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Met. Rev. 24(3), 413–423 (2005).
    • 40. Stipp CS. Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev. Mol. Med. 12(15), e3 (2010).
    • 41. Nikolopoulos SN, Blaikie P, Yoshioka T, Guo W, Giancotti FG. Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell 6(5), 471–483 (2004).
    • 42. Yang XH, Flores LM, Li Q et al. Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists. Cancer Res. 70(6), 2256–2263 (2010).
    • 43. Yang X, Kovalenko OV, Tang W, Claas C, Stipp CS, Hemler ME. Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J. Cell Biol. 167(6), 1231–1240 (2004).
    • 44. Gagnoux-Palacios L, Dans M, Van't Hof W et al. Compartmentalization of integrin alpha6beta4 signaling in lipid rafts. J. Cell Biol. 162(7), 1189–1196 (2003).
    • 45. Coleman DT, Soung YH, Surh YJ, Cardelli JA, Chung J. Curcumin prevents palmitoylation of integrin β4 in breast cancer cells. PLoS ONE 10(5), e0125399 (2015).
    • 46. Prior IA, Harding A, Yan J, Sluimer J, Parton RG, Hancock JF. GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat. Cell. Biol. 3(4), 368–375 (2001).
    • 47. Cifelli C, Rose RA, Zhang H et al. RGS4 regulates parasympathetic signaling and heart rate control in the sinoatrial node. Circ. Res. 103(5), 527–535 (2008).
    • 48. Hooks SB, Martemyanov K, Zachariou V. A role of RGS proteins in drug addiction. Biochem. Pharmacol. 75(1), 76–84 (2008).
    • 49. Hurst JH, Hooks SB. Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochem. Pharmacol. 78(10), 1289–1297 (2009).
    • 50. Graham TR, Burd CG. Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends. Cell Biol. 21(2), 113–121 (2011).
    • 51. Santiago-Tirado FH, Legesse-Miller A, Schott D, Bretscher A. PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Dev. Cell. 20(1), 47–59 (2011).
    • 52. Balla A, Kim YJ, Varnai P et al. Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol. Biol. Cell 19(2), 711–721 (2008).
    • 53. Minogue S. The Many Roles of Type II Phosphatidylinositol 4-kinases in membrane trafficking: new tyicks for old dogs. BioEssays 40(2), 1700145 (2018).
    • 54. Li J, Gao Z, Zhao D et al. PI-273, a substrate-Competitive, specific small-molecule inhibitor of PI4KIIα, inhibits the growth of breast cancer cells. Cancer Res. 77(22), 6253–6266 (2017).
    • 55. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug. Discov. 8(7), 579–591 (2009).
    • 56. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug. Discov. 12(12), 931–947 (2013).
    • 57. Hwang JW, Yao H, Caito S, Sundar IK, Rahman I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic. Biol. Med. 61, 95–110 (2013).
    • 58. Mahmood DF, Abderrazak A, El Hadri K, Simmet T, Rouis M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid. Redox. Signal. 19(11), 1266–1303 (2013).
    • 59. Pérez-Mancera PA, Young AR, Narita M. Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14(8), 547–558 (2014).
    • 60. Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int. J. Biochem. Cell Biol. 37(5), 961–976 (2005).
    • 61. Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol. Cell Proteomics 9(1), 54–70 (2010).
    • 62. Lin QH, Zhang KD, Duan HX, Liu MX, Wei WL, Cao Y. ERGIC3, which is regulated by miR-203a, is a potential biomarker for non-small cell lung cancer. Cancer Sci. 106(10), 1463–1473 (2015).
    • 63. Wu M, Tu T, Huang Y, Cao Y. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene. BMC Cancer 13(9), 44–45 (2013).
    • 64. Nguyen TL, Schneppenheim J, Rudnik S et al. Functional characterization of the lysosomal membrane protein TMEM192 in mice. Oncotarget 8(27), 43635–43652 (2017).
    • 65. Burr ML, Sparbier CE, Chan YC et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549(7670), 101–105 (2017).
    • 66. Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid. Redox. Signal. 16(11), 1323–1367 (2012).
    • 67. Chen Y, Ning J, Cao W et al. Research progress of TXNIP as a tumor suppressor gene participating in the metabolic reprogramming and oxidative stress of cancer cells in various cancers. Front. Oncol. 10, 568574 (2020).
    • 68. Panieri E, Gogvadze V, Norberg E, Venkatesh R, Orrenius S, Zhivotovsky B. Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic. Biol. Med. 57(2), 176–187 (2013).
    • 69. Coppé JP, Patil CK, Rodier F et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6(12), 2853–2868 (2008).
    • 70. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8(328), 328rv4 (2016).
    • 71. Yang Y, Hsu JM, Sun L et al. Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Res. 29(1), 83–86 (2019).
    • 72. Li CW, Lim SO, Xia W et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun. 7, 12632 (2016).
    • 73. Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat. Rev. Mol. Cell Biol. 8(1), 74–84 (2007).
    • 74. Mezzadra R, Sun C, Jae LT et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 549(7670), 106–110 (2017).
    • 75. Verardi R, Kim JS, Ghirlando R, Banerjee A. Structural basis for substrate recognition by the ankyrin repeat domain of human DHHC17 palmitoyltransferase. Structure 25(9), 1337–1347 (2017).
    • 76. Rana MS, Kumar P, Lee CJ, Verardi R, Rajashankar KR, Banerjee A. Fatty acyl recognition and transfer by an integral membrane S-acyltransferase. Science 359(6372), 176 (2018).
    • 77. Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J. Lipid Res. 47(6), 1118–1127 (2006).
    • 78. Howie J, Reilly L, Fraser NJ et al. Substrate recognition by the cell surface palmitoyl transferase DHHC5. Proc. Natl Acad. Sci. USA 111(49), 17534–17539 (2014).
    • 79. Berlow RB, Dyson HJ, Wright PE. Functional advantages of dynamic protein disorder. FEBS Lett. 589(19), 2433–2440 (2015).
    • 80. Liu Z, Huang Y. Advantages of proteins being disordered. Protein Sci. 23(5), 539–550 (2014).
    • 81. Gottlieb CD, Linder ME. Structure and function of DHHC protein S-acyltransferases. Biochem. Soc. Trans. 45(4), 923–928 (2017). • Explains the structure and function of DHHC protein.
    • 82. Gottlieb CD, Zhang S, Linder ME. The cysteine-rich domain of the DHHC3 palmitoyltransferase is palmitoylated and contains tightly bound zinc. J. Biol. Chem. 290(49), 29259–29269 (2015).
    • 83. González Montoro A, Quiroga R, Valdez Taubas J. Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1. Biochem. J. 454(3), 427–435 (2013).
    • 84. Rana MS, Lee CJ, Banerjee A. The molecular mechanism of DHHC protein acyltransferases. Biochem. Soc. Trans. 47(1), 157–167 (2019). • Explains the molecular mechanism of DHHC protein acyltransferases.
    • 85. Won SJ, Martin BR. Temporal profiling establishes a dynamic S-palmitoylation cycle. ACS Chem. Biol. 13(6), 1560–1568 (2018).
    • 86. Drisdel RC, Manzana E, Green WN. The role of palmitoylation in functional expression of nicotinic alpha7 receptors. J. Neurosci. 24(46), 10502–10510 (2004).
    • 87. Valdez-Taubas J, Pelham H. Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation. EMBO J. 24(14), 2524–2532 (2005).
    • 88. Murphy J, Kolandaivelu S. Palmitoylation of progressive rod-cone degeneration (PRCD) regulates protein stability and localization. J. Biol. Chem. 291(44), 23036–23046 (2016).
    • 89. Rossin A, Durivault J, Chakhtoura-Feghali T, Lounnas N, Gagnoux-Palacios L, Hueber AO. Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability. Cell. Death Differ. 22(4), 643–653 (2015).
    • 90. Rocks O, Peyker A, Kahms M et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307(5716), 1746–1752 (2005).
    • 91. Craven SE, El-Husseini AE, Bredt DS. Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron 22(3), 497–509 (1999).
    • 92. Michaelson D, Ahearn I, Bergo M, Young S, Philips M. Membrane trafficking of heterotrimeric G proteins via the endoplasmic reticulum and Golgi. Mol. Biol. Cell 13(9), 3294–3302 (2002).
    • 93. Hayashi T, Thomas GM, Huganir RL. Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron 64(2), 213–226 (2009).
    • 94. Yount JS, Moltedo B, Yang YY et al. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat. Chem. Biol. 6(8), 610–614 (2010).
    • 95. Runkle KB, Kharbanda A, Stypulkowski E et al. Inhibition of DHHC20-mediated EGFR palmitoylation creates a dependence on EGFR signaling. Mol. Cell. 62(3), 385–396 (2016).
    • 96. Mitchell DA, Mitchell G, Ling Y, Budde C, Deschenes RJ. Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes. J. Biol. Chem. 285(49), 38104–38114 (2010).
    • 97. Jennings BC, Linder ME. DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. J. Biol. Chem. 287(10), 7236–7245 (2012).
    • 98. Lobo S, Greentree WK, Linder ME, Deschenes RJ. Identification of a ras palmitoyltransferase in Saccharomyces cerevisiae. J. Biol. Chem. 277(43), 41268–41273 (2002).
    • 99. Roth AF, Feng Y, Chen L, Davis NG. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J. Cell Biol. 159(1), 23–28 (2002).
    • 100. González Montoro A, Chumpen Ramirez S, Valdez Taubas J. The canonical DHHC motif is not absolutely required for the activity of the yeast S-acyltransferases Swf1 and Pfa4. J. Biol. Chem. 290(37), 22448–22459 (2015).
    • 101. Jennings BC, Nadolski MJ, Ling Y et al. 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. J. Lipid Res. 50(2), 233–242 (2009).
    • 102. Hamel LD, Lenhart BJ, Mitchell DA et al. Identification of protein palmitoylation inhibitors from a scaffold ranking library. Comb. Chem. High Through. Screen 19(4), 262–274 (2016).
    • 103. Moche M, Schneider G, Edwards P, Dehesh K, Lindqvist Y. Structure of the complex between the antibiotic cerulenin and its target, beta-ketoacyl-acyl carrier protein synthase. J. Biol. Chem. 274(10), 6031–6034 (1999).
    • 104. Ducker CE, Griffel LK, Smith RA et al. Discovery and characterization of inhibitors of human palmitoyl acyltransferases. Mol. Cancer. Ther. 5(7), 1647–1659 (2006).
    • 105. Hamel LD, Lenhart BJ, Mitchell DA, Santos RG, Giulianotti MA, Deschenes RJ. Identification of protein palmitoylation inhibitors from a scaffold ranking library. Comb. Chem. High. T. Scr. 19(4), 262–274 (2016).
    • 106. Abrami L, Audagnotto M, Ho S et al. Palmitoylated acyl protein thioesterase APT2 deforms membranes to extract substrate acyl chains. Nat Chem Biol. 17(4), 438–447 (2021).