We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Candesartan, losartan and valsartan Zn(II) complexes interactions with bovine serum albumin

    Valeria R Martínez

    Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP) 120 N° 1465, La Plata, 1900, Argentina

    ,
    Evelina G Ferrer

    Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP) 120 N° 1465, La Plata, 1900, Argentina

    &
    Patricia AM Williams

    *Author for correspondence:

    E-mail Address: williams@quimica.unlp.edu.ar

    Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP) 120 N° 1465, La Plata, 1900, Argentina

    Published Online:https://doi.org/10.4155/fmc-2021-0216

    Background: The pharmacological response and the therapeutic efficacy of a drug depends on the interactions with plasma proteins. Methodology: The interaction of bovine serum albumin (BSA) with the metal complexes of antihypertensive drugs, Zn(II)/sartan complexes (candesartan, valsartan and losartan), was investigated using fluorescence quenching determinations at different temperatures. Results: The binding studies of the compounds with BSA showed static quenching and moderate binding with calculated constants in the range of 104–106 M-1, indicating potent serum distribution via albumins. In all cases, negative values of free energy are indicative of spontaneous processes and the stabilization of BSA/compound complexes through hydrogen bonding and van der Waals forces. The results for the sartans agree with the reported pharmacokinetics studies. Conclusion: It has been determined that the three sartans and the Zn complexes could be transported and distributed by albumin.

    Graphical abstract

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Friedrichs B, Peters TH Jr. All about albumin: biochemistry, genetics, and medical applications. Food / Nahrung 41(6), 382–382 (1997).
    • 2. Chadborn N, Bryant J, Bain AJ, O'Shea P. Ligand-dependent conformational equilibria of serum albumin revealed by tryptophan fluorescence quenching. Biophys. J. 76(4), 2198–2207 (1999).
    • 3. Peters T. Serum albumin. Adv. Protein Chem. 37(C), 161–245 (1985).
    • 4. Majorek KA, Porebski PJ, Dayal A et al. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 52(3–4), 174–182 (2012). • Describes the structure of different serum albumins.
    • 5. Takezako T, Unal H, Karnik SS, Node K. Current topics in angiotensin II type 1 receptor research: focus on inverse agonism, receptor dimerization and biased agonism. Pharmacol. Res. 123, 40–50 (2017).
    • 6. Tomat AL, Costa M de los Á, Arranz CT. Zinc restriction during different periods of life: influence in renal and cardiovascular diseases. Nutrition 27(4), 392–398 (2011).
    • 7. Martínez V, Aguirre MV, Todaro JS et al. Interaction of Zn with losartan: activation of intrinsic apoptotic signaling pathway in lung cancer cells and effects on alkaline and acid phosphatases. Biol. Trace Elem. Res. 186(2), 413–429 (2018).
    • 8. Martínez V, Aguirre MV, Todaro JS et al. Azilsartan and its Zn(II) complex: synthesis, anticancer mechanisms of action and binding to bovine serum albumin. Toxicol. Vitr. 48, 205–220 (2018).
    • 9. Martínez VR, Aguirre MV, Todaro JS, Ferrer EG, Williams PAM. Improvement of the anticancer activities of telmisartan by Zn(II) complexation and mechanisms of action. Biol. Trace Elem. Res. 197(2), 454–463 (2020).
    • 10. Martínez VR, Aguirre MV, Todaro JS, Ferrer EG, Williams PAM. Candesartan and valsartan Zn(ii) complexes as inducing agents of reductive stress: mitochondrial dysfunction and apoptosis. New J. Chem. 45(2), 939–951 (2021).
    • 11. Martínez VR, Aguirre MV, Todaro JS et al. Zinc complexation improves angiotensin II receptor type 1 blockade and in vivo antihypertensive activity of telmisartan. Future Med. Chem. 13(1), 13–23 (2021).
    • 12. Bi S, Sun Y, Qiao C, Zhang H, Liu C. Binding of several anti-tumor drugs to bovine serum albumin: fluorescence study. J. Lumin. 129(5), 541–547 (2009).
    • 13. Ashoka S, Seetharamappa J, Kandagal PB, Shaikh SMT. Investigation of the interaction between trazodone hydrochloride and bovine serum albumin. J. Lumin. 121(1), 179–186 (2006).
    • 14. Topală T, Bodoki A, Oprean L, Oprean R. Bovine serum albumin interactions with metal complexes. Med. Pharm. Reports. 87(4), 215–219 (2014).
    • 15. Makarska-Bialokoz M. Interactions of hemin with bovine serum albumin and human hemoglobin: a fluorescence quenching study. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 193, 23–32 (2018).
    • 16. Meti MD, Nandibewoor ST, Joshi SD, More UA, Chimatadar SA. Multi-spectroscopic investigation of the binding interaction of fosfomycin with bovine serum albumin. J. Pharm. Anal. 5(4), 249–255 (2015).
    • 17. Shi JH, Wang J, Zhu YY, Chen J. Characterization of interaction between isoliquiritigenin and bovine serum albumin: spectroscopic and molecular docking methods. J. Lumin. 145, 643–650 (2014).
    • 18. Lakowicz JR. Principles of fluorescence spectroscopy. Springer Science & Business Media, NY, USA (2013). • Gives an introduction to the biophysical principles of fluorescence methods.
    • 19. Wang BL, Pan DQ, Zhou KL, Lou YY, Shi JH. Multi-spectroscopic approaches and molecular simulation research of the intermolecular interaction between the angiotensin-converting enzyme inhibitor (ACE inhibitor) benazepril and bovine serum albumin (BSA). Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 212, 15–24 (2019).
    • 20. Wang Q, Huang CR, Jiang M et al. Binding interaction of atorvastatin with bovine serum albumin: spectroscopic methods and molecular docking. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 156, 155–163 (2016).
    • 21. Zhang YF, Zhou KL, Lou YY, Pan DQ, Shi JH. Investigation of the binding interaction between estazolam and bovine serum albumin: multi-spectroscopic methods and molecular docking technique. J. Biomol. Struct. Dyn. 35(16), 3605–3614 (2017).
    • 22. Fraiji LK, Hayes DM, Werner TC. Static and dynamic fluorescence quenching experiments for the physical chemistry laboratory. J. Chem. Educ. 69(5), 424–428 (1992).
    • 23. Kou SB, Lin ZY, Wang BL, Shi JH, Liu YX. Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: insights from spectroscopic and molecular docking studies. J. Mol. Struct. 1224(129024), 1–11 (2021).
    • 24. Pawar S, Joshi R, Ottoor D. Spectroscopic and molecular docking study to understand the binding interaction of rosiglitazone with bovine serum albumin in presence of valsartan. J. Lumin. 197, 200–210 (2018).
    • 25. Sun H, Science E, Science A. Spectrofluorimetric study on the interaction of losartan potassium. Int. J. Pharm. Sci. Res. 7(3), 1026–1034 (2016).
    • 26. Tarushi A, Kastanias P, Raptopoulou CP et al. Zinc complexes of flufenamic acid: characterization and biological evaluation. J. Inorg. Biochem. 163, 332–345 (2016).
    • 27. Tolia C, Papadopoulos AN, Raptopoulou CP et al. Copper(II) interacting with the non-steroidal antiinflammatory drug flufenamic acid: structure, antioxidant activity and binding to DNA and albumins. J. Inorg. Biochem. 123, 53–65 (2013).
    • 28. Escudero GE, Laino CH, Martini N. Zn(II) based potential drug containing sertraline as a strong antidepressant agent. Ann. Med. Chem. Res. 3(1), 1017 (2017).
    • 29. Ross PD, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20(11), 3096–3102 (1981).
    • 30. Fu XB, Lin ZH, Liu HF, Le XY. A new ternary copper(II) complex derived from 2-(2′-pyridyl)benzimidazole and glycylglycine: synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 122, 22–33 (2014).
    • 31. Husain A, Azim S, Mitra M, Bhasin PS. A review on candesartan: pharmacological and pharmaceutical profile. J. Appl. Pharm. Sci. 01(10), 12–17 (2011). • Reports pharmacokinetics studies of some angiotensin receptor blockers.