We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Selective CDK9 degradation using a proteolysis-targeting chimera (PROTAC) strategy

    Jayapal Reddy Mallareddy‡

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Sarbjit Singh‡

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA

    ‡Authors contributed equally

    Search for more papers by this author

    ,
    Lidia Boghean

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA

    &
    Amarnath Natarajan

    *Author for correspondence: Tel.: +1 402 559 3793;

    E-mail Address: anatarajan@unmc.edu

    Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA

    Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA

    Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA

    Published Online:https://doi.org/10.4155/fmc-2021-0220
    Free first page

    References

    • 1. Blake DR, Vaseva AV, Hodge RG et al. Application of a MYC degradation screen identifies sensitivity to CDK9 inhibitors in KRAS-mutant pancreatic cancer. Sci. Signal. 12(590), eaav7259 (2019).
    • 2. Sonawane YA, Taylor MA, Napoleon JV, Rana S, Contreras JI, Natarajan A. Cyclin dependent kinase 9 inhibitors for cancer therapy. J. Med. Chem. 59(19), 8667–8684 (2016).
    • 3. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98(15), 8554–8559 (2001).
    • 4. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9(3), 153–166 (2009).
    • 5. Rana S, Mallareddy JR, Singh S et al. Inhibitors, PROTACs and molecular glues as diverse therapeutic modalities to target cyclin dependent kinase. Cancers 13, 5506 (2021).
    • 6. Martin MP, Endicott JA, Noble MEM. Structure-based discovery of cyclin-dependent protein kinase inhibitors. Essays Biochem. 61(5), 439–452 (2017).
    • 7. Hirose Y, Ohkuma Y. Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. J. Biochem. 141(5), 601–608 (2007).
    • 8. Chen R, Keating MJ, Gandhi V, Plunkett W. Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood 106(7), 2513–2519 (2005).
    • 9. Chen R, Guo L, Chen Y, Jiang Y, Wierda WG, Plunkett W. Homoharringtonine reduced Mcl-1 expression and induced apoptosis in chronic lymphocytic leukemia. Blood 117(1), 156–164 (2011).
    • 10. Lee DJ, Zeidner JF. Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach. Expert Opin. Investig. Drugs 28(11), 989–1001 (2019).
    • 11. Wu T, Qin Z, Tian Y et al. Recent developments in the biology and medicinal chemistry of CDK9 inhibitors: an update. J. Med. Chem. 63(22), 13228–13257 (2020).
    • 12. Robb CM, Contreras JI, Kour S et al. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem. Commun. (Camb.) 53(54), 7577–7580 (2017).
    • 13. King HM, Rana S, Kubica SP et al. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorg. Med. Chem. Lett. 43, 128061 (2021).
    • 14. Olson CM, Jiang B, Erb MA et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat. Chem. Biol. 14(2), 163–170 (2018).
    • 15. Bian J, Ren J, Li Y et al. Discovery of wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg. Chem. 81, 373–381 (2018).
    • 16. Lu J, Qian Y, Altieri M et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22(6), 755–763 (2015).
    • 17. Hu B, Zhou Y, Sun D et al. PROTACs: new method to degrade transcription regulating proteins. Eur. J. Med. Chem. 207, 112698 (2020).
    • 18. Contreras JI, Robb CM, King HM et al. Chemical genetic screens identify kinase inhibitor combinations that target anti-apoptotic proteins for cancer therapy. ACS Chem. Biol. 13(5), 1148–1152 (2018).
    • 19. Moreau K, Coen M, Zhang AX et al. Proteolysis-targeting chimeras in drug development: a safety perspective. Br. J. Pharmacol. 177(8), 1709–1718 (2020).
    • 20. Qiu X, Li Y, Yu B et al. Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion. Eur. J. Med. Chem. 211, 113091 (2021).