We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Novel approaches for the treatment of infections due to multidrug-resistant bacterial pathogens

    Mohmmad Imran‡

    Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India

    Academy of Scientific & Innovative Research, Ghaziabad, 201002, India

    ‡These authors contributed equally to this work

    Search for more papers by this author

    ,
    Mohammad Naiyaz Ahmad‡

    Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India

    ‡These authors contributed equally to this work

    Search for more papers by this author

    ,
    Arunava Dasgupta

    Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India

    Academy of Scientific & Innovative Research, Ghaziabad, 201002, India

    ,
    Preeti Rana

    Department of Process & Medicinal Chemistry, National Institute of Pharmaceutical Education & Research, NH 9, Balanagar Main Rd, Kukatpally Industrial Estate, Balanagar, Hyderabad, Telangana, 500037. India

    ,
    Nanduri Srinivas

    Department of Process & Medicinal Chemistry, National Institute of Pharmaceutical Education & Research, NH 9, Balanagar Main Rd, Kukatpally Industrial Estate, Balanagar, Hyderabad, Telangana, 500037. India

    &
    Sidharth Chopra

    *Author for correspondence: Tel.: +91 522 2772 540;

    E-mail Address: skchopra007@gmail.com

    Division of Microbiology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India

    Academy of Scientific & Innovative Research, Ghaziabad, 201002, India

    Published Online:https://doi.org/10.4155/fmc-2022-0029

    Antimicrobial resistance (AMR), which is a major challenge for global healthcare, emerging because of several reasons including overpopulation, increased global migration and selection pressure due to enhanced use of antibiotics. Antibiotics are the widely used therapeutic options to combat infectious diseases; however, unfortunately, inadequate and irregular antibiotic courses are also major contributing factors in the emergence of AMR. Additionally, persistent failure to develop and commercialize new antibiotics has created the scarcity of effective anti-infective drugs. Thus, there is an urgent need for a new class of antimicrobials and other novel approaches to curb the menace of AMR. Besides the conventional approaches, some novel approaches such as the use of antimicrobial peptides, bacteriophages, immunomodulation, host-directed therapy and antibodies have shown really promising potentials.

    Papers of special note have been highlighted as: • of interest; •• of considerable interest

    References

    • 1. Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admettla A, Pattini L, Nielsen R. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLOS Genetics 7(11), e1002355 (2011).
    • 2. Vidovic N, Vidovic S. Antimicrobial resistance and food animals: influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics 9(2), 52 (2020).
    • 3. Mwangi J, Hao X, Lai R, Zhang Z. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool. Res. 40(6), 488–505 (2019). •• An excellent review article summarizing the efficacy of various antimicrobial peptides (AMPs) against different multidrug resistance pathogens
    • 4. Catalão M, Pimentel M. Mycobacteriophage lysis enzymes: targeting the mycobacterial cell envelope. Viruses 10(8), 428 (2018). • Specially focused review article on mycobacteriophages with special insight into the structure and functions of lysis protein encoded by them. It also enlist various strategies employed to increase effectiveness of mycobacteriophage against clinically relevant mycobacterial pathogens.
    • 5. Theuretzbacher U, Outterson K, Engel A, Karlén A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 18(5), 275–285 (2019).
    • 6. Beyer P, Paulin S. The antibacterial research and development pipeline needs urgent solutions. ACS Infect. Dis. 6(6), 1289–1291 (2020).
    • 7. Antibacterial products in clinical development for priority pathogens [Internet]. Who.int. (2022). www.who.int/observatories/global-observatory-on-health-research-and-development/monitoring/antibacterial-products-in-clinical-development-for-priority-pathogens
    • 8. Miethke M, Pieroni M, Weber T et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 5(10), 726–749 (2021).
    • 9. [Internet]. Who.int. (2022). www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
    • 10. Murray C, Ikuta K, Sharara F et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399, 629–55 (2022).
    • 11. Global Tuberculosis Report 2021 [Internet]. Who.int. (2022). www.who.int/publications/digital/global-tuberculosis-report-2021
    • 12. Venkatesan P. WHO 2020 report on the antibacterial production and development pipeline. The Lancet Microbe 2(6), e239 (2021).
    • 13. Li W, Separovic F, O'Brien-Simpson N, Wade J. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev. 50(8), 4932–4973 (2021). • Summary of various medicinal chemistry approaches applied and their impact on efficacy of antimicrobial peptides against different pathogens. It includes various methods employed to potentiate activity of AMPs such as glycosylation, multimerization and lipidation etc.
    • 14. Peraman R, Sure S, Dusthackeer V et al. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. Future J. Pharmaceutic. Sci. 7(1), 56 (2021).
    • 15. Hancock R, Alford M, Haney E. Antibiofilm activity of host defence peptides: complexity provides opportunities. Nat. Rev. Microbiol. 19(12), 786–797 (2021).
    • 16. Abedinzadeh M, Gaeini M, Sardari S. Natural antimicrobial peptides against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 70(5), 1285–1289 (2015).
    • 17. van der Weide H, Vermeulen-de Jongh D, van der Meijden A et al. Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles. Int. J. Antimicrob Agents 54(2), 159–166 (2019).
    • 18. de Breij A, Riool M, Cordfunke R et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci. Transl. Med. 10(423), eaan4044 (2018).
    • 19. Wu G, Li X, Fan X et al. The activity of antimicrobial peptide S-thanatin is independent on multidrug-resistant spectrum of bacteria. Peptides 32(6), 1139–1145 (2011).
    • 20. Wang Y, Zhang Z, Chen L et al. Cathelicidin-BF, a snake cathelicidin-derived antimicrobial peptide, could be an excellent therapeutic agent for Acne vulgaris. PLOS ONE. 6(7), e22120 (2011).
    • 21. Ge Y, MacDonald D, Holroyd K, Thornsberry C, Wexler H, Zasloff M. In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob. Agents Chemother. 43(4), 782–788 (1999).
    • 22. Zhao F, Lan X-Q, Du Y et al. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates. Zool. Res. 39(2), 87–96 (2018).
    • 23. Fedders H, Podschun R, Leippe M. The antimicrobial peptide Ci-MAM-A24 is highly active against multidrug-resistant and anaerobic bacteria pathogenic for humans. Int. J. Antimicrob. Agents 36(3), 264–266 (2010).
    • 24. Qu HD, Chen B, Peng H, Wang KJ. Molecular cloning, recombinant expression, and antimicrobial activity of ec-hepcidin3, a new four-cysteine hepcidin isoform from epinepheluscoioides. Biosci. Biotechnol. Biochem. 77(1), 103–110 (2013).
    • 25. Falla T, Karunaratne D, Hancock R. Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem. 271(32), 19298–19303 (1996).
    • 26. Melo M, Castanho M. Omiganan interaction with bacterial membranes and cell wall models. Assigning a biological role to saturation. Biochimica et Biophysica Acta (BBA) - Biomembranes. 1768(5), 1277–1290 (2007).
    • 27. Ohta M, Ito H, Masuda K et al. Mechanisms of antibacterial action of tachyplesins and polyphemusins, a group of antimicrobial peptides isolated from horseshoe crab hemocytes. Antimicrob. Agents Chemother. 36(7), 1460–1465 (1992).
    • 28. Brives C, Pourraz J. Phage therapy as a potential solution in the fight against AMR: obstacles and possible futures. Palgrave Commun. 6(1), 100 (2020).
    • 29. GradisteanuPircalabioru G, Popa L, Marutescu L et al. Bacteriocins in the era of antibiotic resistance: rising to the challenge. Pharmaceutics 13(2), 196 (2021). • Summarized review article on Nisin A: it provides comprehensive information on Nisin A and its efficacy against Gram positive pathogens including Staphylococcus, Listeria, Streptococcus, Clostridiumdifficile, Bacillus and Enterococcus.
    • 30. Hols P, Ledesma-García L, Gabant P, Mignolet J. Mobilization of microbiota commensals and their bacteriocins for therapeutics. Trends Microbiol. 27(8), 690–702 (2019).
    • 31. Shin J, Gwak J, Kamarajan P, Fenno J, Rickard A, Kapila Y. Biomedical applications of nisin. J. Appl. Microbiol. 120(6), 1449–1465 (2016).
    • 32. Lay C, Dridi L, Bergeron M, Ouellette M, Fliss I. Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. J. Med. Microbiol. 65(2), 169–175 (2016).
    • 33. Belguesmia Y, Naghmouchi K, Chihib N-E, Drider D. Class iia bacteriocins: current knowledge and perspectives. Prokaryotic Antimicrobial Peptides. 171–195 (2011).
    • 34. Garcia-Gutierrez E, Mayer M, Cotter P, Narbad A. Gut microbiota as a source of novel antimicrobials. Gut Microbes 10(1), 1–21 (2018).
    • 35. Kumariya R, Garsa A, Rajput Y, Sood S, Akhtar N, Patel S. Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 128, 171–177 (2019).
    • 36. Ditu L, Chifiriuc M, Pelinescu D, Avram I, Pircalabioru G, Mihaescu G. Class I and II Bacteriocins: structure, biosynthesis and drug delivery systems for the Improvement of their antimicrobial activity. Curr. Proteomics 11(2), 121–127 (2014).
    • 37. Duquesne S, Destoumieux-Garzon D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep. 38(45), 708–34 (2007).
    • 38. Baquero F, Lanza V, Baquero M, del Campo R, Bravo-Vázquez D. Microcins in enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front Microbiol. 10, 2261 (2019).
    • 39. van der Weide H, Vermeulen-de Jongh D, van der Meijden A et al. Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles. Int. J. Antimicrob. Agents 54(2), 159–166 (2019).
    • 40. Yu H, Li N, Zeng X et al. A comprehensive antimicrobial activity evaluation of the recombinant microcin J25 against the foodborne pathogens Salmonella and E. coli O157:H7 by using a matrix of conditions. Front. Microbiol. 10, 1954 (2019).
    • 41. Chhibber S, Gondil V. Exploring potential of phage therapy for tuberculosis using model organism. Biomed. Biotechnol. Res. J. 2(1), 9 (2018).
    • 42. Lin D, Koskella B, Lin H. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. 8(3), 162 (2017).
    • 43. Azimi T, Mosadegh M, Nasiri MJ, Sabour S, Karimaei S, Nasser A. Phage therapy as a renewed therapeutic approach to mycobacterial infections: a comprehensive review. Infect. Drug Resist. 12, 2943–2959 (2019).
    • 44. Nieth A, Verseux C, Barnert S, Süss R, Römer W. A first step toward liposome-mediated intracellular bacteriophage therapy. Expert Opin. Drug Deliv. 12(9), 1411–1424 (2015).
    • 45. Ford M, Stenstrom C, Hendrix R, Hatfull G. Mycobacteriophage TM4: genome structure and gene expression. Tuber. Lung Dis. 79(2), 63–73 (1998).
    • 46. McNerney R, Traore H. Mycobacteriophage and their application to disease control. J. Appl. Microbiol. 99(2), 223–233 (2005).
    • 47. Mayer O, Jain P, Weisbrod T et al. Fluorescent reporter DS6A mycobacteriophages reveal unique variations in infectibility and phage production in mycobacteria. J. Bacteriol. 198(23), 3220–3232 (2016).
    • 48. Bajpai U, Mehta A, Eniyan K et al. Isolation and characterization of bacteriophages from India, with lytic activity against Mycobacterium tuberculosis. Canadian J. Microbiol. 64(7), 483–491 (2018).
    • 49. Joshi H, Seniya S, Suryanarayanan V, Patidar N, Singh S, Jain V. Dissecting the structure-function relationship in lysozyme domain of mycobacteriophage D29-encoded peptidoglycan hydrolase. FEBS Letters. 591(20), 3276–3287 (2017).
    • 50. Pohane A, Joshi H, Jain V. Molecular dissection of phage endolysin. J. Biol. Chem. 289(17), 12085–12095 (2014).
    • 51. Kamilla S, Jain V. Mycobacteriophage D29 holin C-terminal region functionally assists in holin aggregation and bacterial cell death. FEBS J. 283(1), 173–190 (2015).
    • 52. Pani B, Banerjee S, Chalissery J et al. Mechanism of inhibition of Rho-dependent transcription termination by bacteriophage P4 protein Psu. J. Biol. Chem. 284(37), 25459 (2009).
    • 53. Sheppard C, Cámara B, Shadrin A et al. Inhibition of Escherichia coli RNAp by T7 Gp2 protein: role of negatively charged strip of amino acid residues in Gp2. J. Mol. Biol. 407(5), 623–632 (2011).
    • 54. Mekler V, Minakhin L, Sheppard C, Wigneshweraraj S, Severinov K. Molecular mechanism of transcription inhibition by phage T7 gp2 protein. J. Mol. Biol. 413(5), 1016–1027 (2011).
    • 55. Shadrin A, Sheppard C, Severinov K, Matthews S, Wigneshweraraj S. Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised. Microbiology 158(11), 2753–2764 (2012).
    • 56. Shadrin A, Sheppard C, Savalia D, Severinov K, Wigneshweraraj S. Overexpression of Escherichia coli udk mimics the absence of T7 Gp2 function and thereby abrogates successful infection by T7 phage. Microbiology 159(Pt_2), 269–274 (2013).
    • 57. Lai M, Liu C, Jiang S et al. Antimycobacterial activities of endolysins derived from a mycobacteriophage, BTCU-1. Molecules 20(10), 19277–19290 (2015).
    • 58. Catalão M, Milho C, Gil F, Moniz-Pereira J, Pimentel M. A second endolysin gene is fully embedded in-frame with the lysA gene of Mycobacteriophage Ms6. PLoS ONE 6(6), e20515 (2011).
    • 59. Catalão M, Gil F, Moniz-Pereira J, Pimentel M. Functional analysis of the Holin-like proteins of Mycobacteriophage Ms6. J. Bacteriol. 193(11), 2793–2803 (2011).
    • 60. Gil F, Grzegorzewicz A, Catalão M, Vital J, McNeil M, Pimentel M. Mycobacteriophage Ms6 LysB specifically targets the outer membrane of Mycobacterium smegmatis. Microbiology 156(5), 1497–1504 (2010).
    • 61. Gil F, Catalão M, Moniz-Pereira J, Leandro P, McNeil M, Pimentel M. The lytic cassette of mycobacteriophage Ms6 encodes an enzyme with lipolytic activity. Microbiology 154(5), 1364–1371 (2008).
    • 62. Gan Y, Wu T, Liu P, Guo S. Characterization and classification of Bo4 as a cluster G mycobacteriophage that can infect and lyse M. tuberculosis. Archives of Microbiology 196(3), 209–218 (2014).
    • 63. Li Q, Zhou M, Fan X, Yan J, Li W, Xie J. Mycobacteriophage SWU1 gp39 can potentiate multiple antibiotics against Mycobacterium via altering the cell wall permeability. Scientific Reports 6(1), 28701 (2016).
    • 64. Fan X, Teng T, Wang H, Xie J. Biology of a novel Mycobacteriophage, SWU1, isolated from Chinese soil as revealed by genomic characteristics. J. Virology. 86(18), 10230–10231 (2012).
    • 65. Schooley R, Biswas B, Gill J et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii Infection. Antimicrob. Agents Chemother. 61(10), e00954–17 (2017).
    • 66. LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley R, Wooten D. Phage therapy for a multidrug-resistant acinetobacter baumannii craniectomy site Infection. Open Forum Infect.Dis. 5(4), ofy064 (2018).
    • 67. Wu N, Dai J, Guo M et al. Pre-optimized phage therapy on secondary Acinetobacter baumannii infection in four critical COVID-19 patients. Emerg. Microbes & Infect. 10(1), 612–618 (2021).
    • 68. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim H. Agents that inhibit bacterial biofilm formation. Future Med. Chem. 7(5), 647–671 (2015). • Comprehensive review article on antibiofilm agents and different strategy employed to inhibit or disperse biofilms and make them susceptible to antimicrobial agents. A summarized details about the in vivo antibiofilm activity of different peptides, sulfide, phenols, indole, imidazole, triazole, bromopyrrole and furanone etc.
    • 69. Rogers S, Huigens R, Cavanagh J, Melander C. Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob. Agents Chemother. 54(5), 2112–2118 (2010).
    • 70. Reyes S, Huigens R III, Su Z, Simon M, Melander C. Synthesis and biological activity of 2-aminoimidazole triazoles accessed by Suzuki–Miyaura cross-coupling. Org. Biomol. Chem. 9(8), 3041 (2011).
    • 71. Richards J, Ballard T, Melander C. Inhibition and dispersion of Pseudomonas aeruginosa biofilms with reverse amide 2-aminoimidazole oroidin analogues. Org. Biomol. Chem. 6(8), 1356 (2008).
    • 72. Hu M, Zhang C, Mu Y, Shen Q, Feng Y. Indole affects biofilm formation in bacteria. Indian J. Microbiol. 50(4), 362–368 (2010).
    • 73. Di Martino P, Fursy R, Bret L, Sundararaju B, Phillips R. Indole can act as an extracellular signal to regulate biofilm formation of Escherichiacoliand other indole-producing bacteria. Canadian J. Microbiol. 49(7), 443–449 (2003).
    • 74. Lee J, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 34(4), 426–444 (2010).
    • 75. Ding X, Yin B, Qian L et al. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J. Med. Microbiol. 60(12), 1827–1834 (2011).
    • 76. Chauhan A, Jang M, Kim Y. Phloretin protects macrophages from E. coli-induced inflammation through the TLR4 signaling pathway. J. Microbiol. Biotechnol. 30(3), 333–340 (2020).
    • 77. Kim H, Park H. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLOS ONE. 8(9), e76106 (2013).
    • 78. Schiavone B, Rosato A, Marilena M et al. Biological evaluation of hyperforin and its hydrogenated analogue on bacterial growth and biofilm production. J. Nat. Products 76(9), 1819–1823 (2013).
    • 79. Murata R, Branco-de-Almeida L, Franco E et al. Inhibition of Streptococcus mutans biofilm accumulation and development of dental caries in vivo by 7-epiclusianone and fluoride. Biofouling 26(7), 865–872 (2010).
    • 80. Vikram A, Jesudhasan P, Jayaprakasha G, Pillai S, Patil B. Citrus limonoids interfere with Vibrio harveyi cell–cell signalling and biofilm formation by modulating the response regulator LuxO. Microbiology 157(1), 99–110 (2011).
    • 81. Vikram A, Jesudhasan P, Pillai S, Patil B. Isolimonic acid interferes with Escherichia coli O157:H7 biofilm and TTSS in QseBC and QseA dependent fashion. BMC Microbiol. 12(1), 261 (2012).
    • 82. Artini M, Papa R, Barbato G et al. Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds. Bioorg. Med. Chem. 20(2), 920–926 (2012).
    • 83. Flamini G, Catalano S, Caponi C, Panizzi L, Morelli I. Three anthrones from Rubus ulmifolius. Phytochemistry 59(8), 873–876 (2002).
    • 84. Panizzi L, Caponi C, Catalano S, Cioni P, Morelli I. In vitro antimicrobial activity of extracts and isolated constituents of Rubus ulmifolius. J. Ethnopharmacol. 79(2), 165–168 (2002).
    • 85. Quave C, Estévez-Carmona M, Compadre C et al. Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLOS ONE. 7(1), e28737 (2012).
    • 86. Payne D, Martin N, Parzych K, Rickard A, Underwood A, Boles B. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infection and Immunity 81(2), 496–504 (2013).
    • 87. Lee J, Kim Y, Ryu S, Cho M, Lee J. Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157:H7 and Staphylococcus aureus biofilm formation. International J. Food Microbiol. 174, 47–55 (2014).
    • 88. Xiang-yang W, Liu-qing Y, Jun C, Xin-hua Y, Guo-hua X. Preparation of ginkgolic acid monomers and their antifungalactivity. Chemistry and Industry of Forest Products 23(04), (2003).
    • 89. He J, Wang S, Wu T, Cao Y, Xu X, Zhou X. Effects of ginkgoneolic acid on the growth, acidogenicity, adherence, and biofilm of Streptococcus mutans in vitro. Folia Microbiologica 58(2), 147–153 (2012).
    • 90. Inamuco J, Veenendaal A, Burt S et al. Sub-lethal levels of carvacrol reduce Salmonella Typhimurium motility and invasion of porcine epithelial cells. Veterinary Microbiology 157(1–2), 200–207 (2012).
    • 91. Nostro A, Roccaro A, Bisignano G et al. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 56(4), 519–523 (2007).
    • 92. Soni K, Oladunjoye A, Nannapaneni R et al. Inhibition and inactivation of Salmonella Typhimurium biofilms from polystyrene and stainless steel surfaces by essential oils and phenolic constituent carvacrol†. J. Food Protection 76(2), 205–212 (2013).
    • 93. Nostro A, Marino A, Blanco A et al. In vitro activity of carvacrol against staphylococcal preformed biofilm by liquid and vapour contact. J. Med. Microbiol. 58(6), 791–797 (2009).
    • 94. Burt S, Ojo-Fakunle V, Woertman J, Veldhuizen E. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacteriumviolaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLOS ONE. 9(4), e93414 (2014).
    • 95. Benamar M, Melhaoui A, Zyad A, Bouabdallah I, Aziz M. Anti-cancer effect of two alkaloids: 2Rand 2S-bgugaine on mastocytoma P815 and carcinoma Hep. Nat. Product Res. 23(7), 659–664 (2009).
    • 96. Majik M, Naik D, Bhat C, Tilve S, Tilvi S, D'Souza L. Synthesis of (R)-norbgugaine and its potential as quorum sensing inhibitor against Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett. 23(8), 2353–2356 (2013).
    • 97. Carneiro V, Santos H, Arruda F et al. Casbane diterpene as a promising natural antimicrobial agent against biofilm-associated infections. Molecules 16(1), 190–201 (2010).
    • 98. Lee J, Cho H, Joo S et al. Diverse plant extracts andtrans-resveratrol inhibit biofilm formation and swarming of Escherichia coliO157:H7. Biofouling 29(10), 1189–1203 (2013).
    • 99. Piver B, Berthou F, Dreano Y, Lucas D. Differential inhibition of human cytochrome P450 enzymes by ε-viniferin, the dimer of resveratrol: comparison with resveratrol and polyphenols from alcoholized beverages. Life Sci. 73(9), 1199–1213 (2003).
    • 100. Cho H, Lee J, Ryu S, Joo S, Cho M, Lee J. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-Viniferin. J. Agricultural and Food Chem. 61(29), 7120–7126 (2013).
    • 101. Bjarnsholt T, Jensen P, Rasmussen T et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151(12), 3873–3880 (2005).
    • 102. Persson T, Hansen T, Rasmussen T, Skindersø M, Givskov M, Nielsen J. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org. Biomol. Chem. 3(2), 253–262 (2005).
    • 103. Jakobsen T, van Gennip M, Phipps R et al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob. Agents Chemother. 56(5), 2314–2325 (2012).
    • 104. Cady N, McKean K, Behnke J et al. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLOS ONE 7(6), e38492 (2012).
    • 105. Olaru I, von Groote-Bidlingmaier F, Heyckendorf J, Yew W, Lange C, Chang K. Novel drugs against tuberculosis: a clinician's perspective. Eur. Respir. J. 45(4), 1119–1131 (2014).
    • 106. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. WHO Document Production Services, Geneva, Switzerland, 93 (2014).
    • 107. Loddenkemper R, Sagebiel D, Brendel A. Strategies against multidrug-resistant tuberculosis. Eur. Respir. J. 20(Suppl. 36), 66S–77s (2002).
    • 108. Sharma S, Mohan A. Multidrug-resistant tuberculosis. Indian J. Med. Res. (2004). https://pubmed.ncbi.nlm.nih.gov/15520486/
    • 109. Cui X, Lü Y, Yue C. Development and research progress of anti-drug resistant bacteria drugs. Infect. Drug Resist. 14, 5575–5593 (2021).
    • 110. Babb R, Pirofski L. Help is on the way: monoclonal antibody therapy for multi-drug resistant bacteria. Virulence 8(7), 1055–1058 (2017).
    • 111. Motley M, Banerjee K, Fries B. Monoclonal antibody-based therapies for bacterial infections. Curr. Opin. Infect. Dis. 32(3), 210–216 (2019). •• An excellent review article on use of monoclonal antibodies against bacterial infections. It includes comprehensive details of different monoclonal at preclinical developmental stage as well as details about various monoclonal antibodies that are in clinical trial stage for bacterial diseases.
    • 112. Zrelovs N, Kurbatska V, Rudevica Z, Leonchiks A, Fridmanis D. Sorting out the superbugs: potential of SortaseA inhibitors among other antimicrobial strategies to tackle the problem of antibiotic resistance. Antibiotics 10(2), 164 (2021).
    • 113. Wang C, Hsieh Y, Powers Z, Kao C. Defeating antibiotic-resistant bacteria: exploring alternative therapies for a post-antibiotic era. Int. J. Mol. Sci. 21(3), 1061 (2020). • Comprehensive review article on recent developments made in the field of alternative therapy to tackle antimicrobial resistance. It includes various innovative approaches to tackle antimicrobial resistance (AMR) problems of post-antibiotic era, such a santi-signal transduction agents, combinational therapy, bioengineered bacteriophages, microbiome alterations, anti-virulence, and anti-toxin to fight against antibiotic-resistant pathogens.
    • 114. Liu S, Moayeri M, Leppla S. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends in Microbiol. 22(6), 317–325 (2014).
    • 115. Moayeri M, Leppla S, Vrentas C, Pomerantsev A, Liu S. Anthrax pathogenesis. Ann. Rev. Microbiol. 69(1), 185–208 (2015).
    • 116. Kummerfeldt C. Raxibacumab: potential role in the treatment of inhalational anthrax. Infect.Drug Resist. 7, 101–9 (2014).
    • 117. Xu W, Ohanjandian L, Sun J et al. A systematic review and meta-analysis of preclinical trials testing anti-toxin therapies for B. anthracis infection: a need for more robust study designs and results. PLOS ONE 12(8), e0182879 (2017).
    • 118. Patil K, Bagade S, Bonde S, Sharma S, Saraogi G. Recent therapeutic approaches for the management of tuberculosis: challenges and opportunities. Biomed. Pharmacother. 99, 735–745 (2018).
    • 119. Lay C, Dridi L, Bergeron M, Ouellette M, Fliss I. Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination. J. Med. Microbiol. 65(2), 169–175 (2016).
    • 120. Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev. 31(1), e00071–17 (2018).
    • 121. Antimicrobial resistance [Internet]. Who.int. (2022). www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
    • 122. Lei J, Sun L, Huang S et al. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 11(7), 1 (2019).
    • 123. Sarkar T, Chetia M, Chatterjee S. Antimicrobial peptides and proteins: from nature's reservoir to the laboratory and beyond. Front Chem. 9, 691532 (2021).
    • 124. Loc-Carrillo C, Abedon S. Pros and cons of phage therapy. Bacteriophage 1(2), 111–114 (2011).
    • 125. Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial biofilm inhibition: afocused review on recent therapeutic strategies for combating the biofilm mediated infections. Front. Microbiol. 12, 676458 (2021).
    • 126. Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1), 522–554 (2018).
    • 127. Murphy A, Zheng L. Small molecule drugs with immunomodulatory effects in cancer. Hum. Vaccines Immunother. 11(10), 2463–2468 (2015).
    • 128. Bascones-Martinez A, Mattila R, Gomez-Font R, Meurman J. Immunomodulatory drugs: oral and systemic adverse effects. Medicina Oral Patología Oral y Cirugia Bucal. e24–e31 (2014).
    • 129. Casadevall A, Dadachova E, Pirofski L. Passive antibody therapy for infectious diseases. Nat. Rev. Microbiol. 2(9), 695–703 (2004).
    • 130. Zrelovs N, Kurbatska V, Rudevica Z, Leonchiks A, Fridmanis D. Sorting out the superbugs: potential of sortase A inhibitors among other antimicrobial strategies to tackle the problem of antibiotic resistance. Antibiotics 10(2), 164 (2021). • This article gives insight into various alternative approaches and recent advance made to tackle AMR problems. It gives rational behind the use of Sortase A inhibitors as anti-virulence agent against bacterial pathogens advocates its use as alternative approach to tackle drug resistance pathogens.
    • 131. Cascioferro S, Raffa D, Maggio B, Raimondi M, Schillaci D, Daidone G. Sortase A inhibitors: recent advances and future perspectives. J. Med. Chem. 58(23), 9108–9123 (2015).
    • 132. Grover A. Use of allosteric targets in the discovery of safer drugs. Med. Princ. Pract. 22(5), 418–426 (2013).
    • 133. Abdel-Magid A. Allosteric modulators: an emerging concept in drug discovery. ACS Med. Chem. Lett. 6(2), 104–107 (2015).