We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Advances in AR-targeting chimeras: a case study of proteolysis-targeting chimeras from bench to bedside

    Wu Du

    *Author for correspondence:

    E-mail Address: wdu@hinovapharma.com

    Department of Medicinal Chemistry, Hinova Pharmaceuticals Inc., 5 Keyuan South Road, Rongyao Building Unit A 4th Floor, Chengdu, Sichuan, 610041, People's Republic of China

    Published Online:https://doi.org/10.4155/fmc-2022-0147

    Proteolysis-targeting chimera (PROTAC) is an emerging revolutionary technology that promotes degradation of target proteins by proteolysis. AR-targeting PROTACs marked many milestones in the history of PROTAC development. In this review, the author discusses the development of AR-targeting PROTACs over the last two decades. Also included in this focused review are medicinal chemistry strategies, pharmacokinetic profiles and clinical development. Taking AR targeting PROTACs for case study, this review provides a target specific overview of how PROTAC technology has advanced from a revolutionary concept and achieved proof of concept leading to drug candidates that benefit patients.

    Papers of special note have been highlighted as: • of interest

    References

    • 1. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. PROTACs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiqutination and degradation. Proc. Natl Acad. Sci. USA. 98(15), 8554–8559 (2001). • The first publication on proteolysis-targeting chimera (PROTAC).
    • 2. Pettersson M, Crews CM. Proteolysis targeting chimeras (PROTACs) – past, present and future. Drug Discov. Today Technol. 31, 15–27 (2019).
    • 3. Konstantinidou M, Li J, Zhang B et al. PROTACs – a game-changing technology. Expert Opin. Drug Discov. 14(12), 1255–1268 (2019).
    • 4. Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs. Pharmacol. Ther. 174, 138–144 (2017).
    • 5. Ottis P, Crews CM. Proteolysis-targeting chimeras: induced protein degradation as a therapeutic strategy. ACS Chem. Biol. 12(4), 892–898 (2017).
    • 6. Gu S, Cui D, Chen X, Xiong X, Zhao Y. PROTACs: an emerging targeting technique for protein degradation in drug discovery. Bioessays 40(4), e1700247 (2018).
    • 7. Wang P, Zhou J. Proteolysis targeting chimera (PROTAC): a paradigm-shifting approach in small molecule drug discovery. Curr. Top. Med. Chem. 18(16), 1354–1356 (2018).
    • 8. Sun X, Gao H, Yang Y et al. PROTACs: great opportunities for academia and industry. Signal Transduct. Target. Ther. 4(1), 64 (2019).
    • 9. Zou Y, Ma D, Wang Y. The PROTAC technology in drug development. Cell Biochem. Funct. 37(1), 21–30 (2019).
    • 10. Pei H, Peng Y, Zhao Q, Chen Y. Small molecule PROTACs: an emerging technology for targeted therapy in drug discovery. RSC Adv. 9(30), 16967–16976 (2019).
    • 11. Edmondson SD, Yang B, Fallan C. Proteolysis targeting chimeras (PROTACs) in ‘beyond rule-of-five’ chemical space: recent progress and future challenges. Bioorg. Med. Chem. Lett. 29(13), 1555–1564 (2019).
    • 12. Du W. Chapter 11. Targeted protein degradation by proteolysis targeting chimeras (PROTACs): a revolution in small molecule drug discovery . Contemporary Accounts in Drug Discovery and Development. John Wiley & Sons, Inc., Hoboken, NJ 07030, US (2022)
    • 13. Pickart CM. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).
    • 14. Kar G, Keskin O, Fraternali F, Gursoy A. Emerging role of the ubiquitin-proteasome system as drug targets. Curr. Pharm. Des. 19(18), 3175–3189 (2013).
    • 15. He M, Zhou Z, Shah AA et al. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci. 6, 62 (2016).
    • 16. Thibaudeau TA, Smith DM. A practical review of proteasome pharmacology. Pharmacol. Rev. 71(2), 170–197 (2019).
    • 17. Hines J, Crews CM. Infographic: Proteasome basics, the structure and function of the cell's protein-degrading machine. The Scientist April 30, 2017 www.the-scientist.com/infographics/infographic-proteasome-basics-31600
    • 18. Tanaka K. The proteasome: overview of structure and functions. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 85(1), 12–36 (2009).
    • 19. Wang J, Crew AP, Dong H, Neklesa T, Hamman B: US 20170281784, Filed, April 3rd 2017.
    • 20. Gadd MS, Testa A, Lucas X et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13(5), 514–521 (2017). • The structure of ternary complex formed by a target protein, PROTAC compound and E3 ligase was presented in detail.
    • 21. Churcher I. Protac-induced protein degradation in drug discovery: breaking the rules – or just making new ones? J. Med. Chem. 61(2), 444–452 (2018).
    • 22. Sung H, Ferlay J, Siegel RL et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021).
    • 23. Park JC, Eisenberger MA. Advances in the treatment of metastatic prostate cancer. Mayo Clin. Proc. 90(12), 1719–1733 (2015).
    • 24. Crawford ED. Androgen targeted therapy across the continuum of prostate cancer. Presented at: 24th Annual Southwest Prostate Cancer Symposium. Scottsdale, AZ, USA, 11 April 2019.
    • 25. Rodriguez-Vida A, Galazi M, Rudman S, Chowdhury S, Sternberg CN. Enzalutamide for the treatment of metastatic castration-resistant prostate cancer. Drug Des. Devel. Ther. 9, 3325–3339 (2015).
    • 26. Tan MHE, Li J, Xu HE, Melcher K, Yong EL. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 36(1), 3–23 (2015).
    • 27. Estebanez-Perpina E, Bevan CL, McEwan IJ. Eighty years of targeting androgen receptor in prostate cancer: the fight goes on. Cancers (Basel) 13(3), 509 (2021).
    • 28. Mohler ML, Sikdar A, Ponnusamy S et al. An overview of next-generation androgen receptor-targeted therapeutics in development for the treatment of prostate cancer. Int. J. Mol. Sci. 22(4), 2124 (2021).
    • 29. Beretta G, Zaffaroni N. Androgen receptor-directed molecular conjugates for targeting prostate cancer. Front. Chem. 7, 369 (2019).
    • 30. Sakamoto KM, Kim KB, Verma R et al. Development of PROTACs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics 2(12), 1350–1358 (2003).
    • 31. Schneekloth JS Jr, Fonseca FN, Koldobskiy M. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126(12), 3748–3754 (2004).
    • 32. Schneekloth AR, Pucheault M, Tae HS, Crews CM. Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg. Med. Chem. Lett. 18(22), 5904–5908 (2008).
    • 33. Ishida T, Ciulli A. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov. 26(4), 484–502 (2021).
    • 34. Ito T, Ando H, Suzuki T et al. Identification of a primary target of thalidomide teratogenicity. Science 327(5971), 1345–1350 (2010).
    • 35. Lopez-Girona A, Mendy D, Ito T et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26(11), 2326–2335 (2012).
    • 36. Fischer ES, Bohm K, Lydeard JR et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512(7512), 49–53 (2014).
    • 37. Kronke J, Udeshi ND, Narla A et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343(6168), 301–305 (2014).
    • 38. Petzold G, Fischer ES, Thoma NH. Structural basis of lenalidomide induced CK1α degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532(7597), 127–130 (2016).
    • 39. Kronke J, Fink EC, Hollenbach PW et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523(7559), 183–188 (2015).
    • 40. Gandhi AK, Kang J, Havens CG et al. Immunomodulatory agents lenalidomide and pomalidomide costimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN). Br. J. Haematol. 164(6), 811–821 (2014).
    • 41. Chamberlain PP, Lopez-Girona A, Miller K et al. Structure of the human cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21(9), 803–809 (2014).
    • 42. Galdeano C, Gadd MS, Soares P et al. Structure-guided design and optimization of small molecules targeting the protein–protein interaction between the von Hippel–Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J. Med. Chem. 57(20), 8657–8663 (2014).
    • 43. Soares P, Gadd MS, Frost J et al. Group-based optimization of potent and cell-active inhibitors of the von Hippel–Lindau (VHL) E3 ubiquitin ligase: structure–activity relationships leading to the chemical probe (2S,4R)-1-((S)-2-(1-cyanocyclopropanecarboxamido)-3,3- dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl) benzyl)pyrrolidine-2-carboxamide (VH298). J. Med. Chem. 61(2), 599–618 (2018).
    • 44. Hines J, Lartigue S, Dong H et al. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via s simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 79(1), 251–262 (2019).
    • 45. Itoh Y, Ishikawa M, Naito M et al. Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc. 132(16), 5820–5826 (2010).
    • 46. Itoh Y, Ishikawa M, Kitaguchi R et al. Double protein knockdown of cIAP1 and CRABP-II using a hybrid molecule consisting of ATRA and IAPs antagonist. Bioorg. Med. Chem. Lett. 22(13), 4453–4457 (2012).
    • 47. Ohoka N, Okuhira K, Ito M et al. In vivo. J. Biol. Chem. 292(11), 4556–4570 (2017).
    • 48. Neklesa TK, Tae HS, Schneekloth AR et al. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 7(8), 538–543 (2011).
    • 49. Gustafson JL, Neklesa TK, Cox CS et al. Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging. Angew. Chem. Int. Ed. Engl. 54(33), 9659–9662 (2015).
    • 50. Teutsch G, Goubet F, Battmann T et al. Non-steroidal antiandrogens: synthesis and biological profile of high-affinity ligands for the androgen receptor. J. Steroid Biochem. Mol. Biol. 48(1), 111–119 (1994).
    • 51. Shibata N, Nagai K, Morita Y et al. Development of protein degradation inducers of androgen receptor by conjugation of androgen receptor ligands and inhibitor of apoptosis protein ligands. J. Med. Chem. 61(2), 543–575 (2018).
    • 52. Salami J, Alabi S, Willard RR et al. Androgen receptor degradation by the proteolysis targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun. Biol. 1, 100 (2018). • ARCC-4 is a highly potent AR-targeting PROTAC.
    • 53. Bambury RM, Rathkopf DE. Novel and next-generation androgen receptor-directed therapies for prostate cancer: beyond abiraterone and enzalutamide. Urol. Oncol. 34(8), 348–355 (2016).
    • 54. Da Y, Liu S, Lin P et al. Design, synthesis, and biological evaluation of small molecule PROTACs for potential anticancer effects. Med. Chem. Res. 29(17), 334–340 (2020).
    • 55. Kim GY, Song CW, Yang YS et al. Chemical degradation of androgen receptor (AR) using bicalutamide analog–thalidomide PROTACs. Molecules 26(9), 2525 (2021).
    • 56. Wurz RP, Dellamaggiore K, Dou H et al. ‘Click chemistry platform’ for the rapid synthesis of bispecific molecules for inducing protein degradation. J. Med. Chem. 61(2), 453–461 (2018).
    • 57. Xie H, Liang JJ, Wang YL et al. The design, synthesis and anti-tumor mechanism study of new androgen receptor degrader. Eur. J. Med. Chem. 204, 112512 (2020).
    • 58. Liang JJ, Xie H, Yang RH et al. Designed, synthesized and biological evaluation of proteolysis targeting chimeras (PROTACs) as AR degraders for prostate cancer treatment. Bioorg. Med. Chem. 45, 116331 (2021).
    • 59. Han X, Wang C, Qin C et al. Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer. J. Med. Chem. 62(2), 941–964 (2019).
    • 60. Kregel S, Wang C, Han X et al. Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Neoplasia 22(2), 111–119 (2020).
    • 61. Chen L, Han L, Mao S et al. Discovery of A031 as effective proteolysis targeting chimera (PROTAC) androgen receptor (AR) degrader for the treatment of prostate cancer. Eur. J. Med. Chem. 216, 113307 (2021).
    • 62. Scott DE, Rooney TPC, Bayle ED et al. Systematic investigation of the permeability of androgen receptor PROTACs. ACS Med. Chem. Lett. 11(8), 1539–1547 (2020).
    • 63. Takwale AD, Jo S-H, Jeon YU et al. Design and characterization of cereblon-mediated androgen receptor proteolysis-targeting chimeras. Eur. J. Med. Chem. 208, 112769 (2020).
    • 64. Han X, Zhao L, Xiang W et al. Strategies toward discovery of potent and orally bioavailable proteolysis targeting chimera degraders of androgen receptor for the treatment of prostate cancer. J. Med. Chem. 64(17), 12831–12854 (2021). • Switching from VHL ligand to CRBN ligand led to ARD-2128, an orally bioavailable androgen receptor (AR) PROTAC.
    • 65. Xiang W, Zhao L, Han X et al. Discovery of ARD-2585 as an exceptionally potent and orally active PROTAC degrader of androgen receptor for the treatment of advanced prostate cancer. J. Med. Chem. 64(18), 13487–13509 (2021). • Optimization of AR binder led to ARD-2585, another highly potent, orally bioavailable AR PROTAC.
    • 66. Crew AP, Dong H, Wang J, Ferraro C, Chen X, Qian Y: US20170327469, filed 28 July 2017.
    • 67. Crew AP, Hornberger KR, Snyder LB et al. : US20180099940, filed 11 October 2017.
    • 68. Crew AP, Snyder LB, Wang J, Haskell RJ, Moore MD: US20210113557, filed 21 October 2020.
    • 69. Snyder L. Discovery of ARV-110, a first in class androgen receptor degrading PROTAC®. Presented at: American Association for Cancer Research Annual Meeting. Virtual meeting, 10-15 April, 2021.
    • 70. Arvinas. ARV-110 phase 1/2 dose escalation: interim update (2020). https://ir.arvinas.com/static-files/53b045f7-b4a3-4344-b995-912fc7169b62
    • 71. Taylor I. Moving PROTAC protein degraders from the laboratory to clinic. Presented at: Second Annual Targeted Protein Degradation Summit. Boston, USA, 22-24 October 2019.
    • 72. Neklesa TK, Snyder LB, Willard RR et al. ARV-110, an oral androgen receptor PROTAC degrader for prostate cancer. Presented at: American Society of Clinical Oncology Genitourinary Cancer Symposium. San Francisco, USA, 20 February 2019.
    • 73. Neklesa T, Snyder LB, Willard RR et al. An oral androgen receptor PROTAC degrader for prostate cancer. Presented at: American Society of Clinical Oncology Genitourinary Cancer Symposium. San Francisco, USA, 8 February 2018. • The first presentations on ARV-110.
    • 74. Mullard A. Targeted protein degraders crowd into the clinic. Nat. Rev. Drug Discov. 20(4), 247–250 (2021).
    • 75. Hinova Pharmaceuticals, Inc. Hinova announces first patient dosed in a phase I clinical trial of HP518, an orally bioavailable chimeric degrader targeting androgen receptor for prostate cancer treatment. Press release www.prnewswire.com/news-releases/hinova-announces-first-patient-dosed-in-a-phase-i-clinical-trial-of-hp518-an-orally-bioavailable-chimeric-degrader-targeting-androgen-receptor-for-prostate-cancer-treatment-301464866.html
    • 76. Li H, Ban F, Dalal K et al. Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor. J. Med. Chem. 57(15), 6458–6467 (2014).
    • 77. Lee GT, Nagaya N, Desantis J et al. Effects of MTX-23, a novel PROTAC of androgen receptor splice variant-7 and androgen receptor, on CRPC resistant to second-line antiandrogen therapy. Mol. Cancer Ther. 20(3), 490–499 (2021).
    • 78. Bhumireddy A, Bandaru NVMR, Reddy BR et al. Design, synthesis, and biological evaluation of phenyl thiazole-based AR-V7 degraders. Bioorg. Med. Chem. Lett. 55, 128448 (2022). • PROTACs that based on inhibitors targeting AR DNA binding domain (DBD) degraded AR splice variant AR-V7.
    • 79. Weng G, Li D, Kang Y, Hou T. Integrative modeling of PROTAC-mediated ternary complexes. J. Med. Chem. 64(21), 16271–16281 (2021).
    • 80. Bemis TA, La Clair JJ, Burkart MD. Unraveling the role of linker design in proteolysis targeting chimeras. J. Med. Chem. 64(12), 8042–8052 (2021).
    • 81. Bai N, Miller SA, Andrianov GV, Yates M, Kirubakaran P, Karanicolas J. Rationalizing PROTAC-mediated ternary complex formation using Rosetta. J. Chem. Inf. Model. 61(3), 1368–1382 (2021).
    • 82. Drummond ML, Henry A, Li H, Williams CI. Improved accuracy for modeling PROTAC-mediated ternary complex formation and targeted protein degradation via new for the treatment of men with metastatic castration resistant prostate cancer. Presented at: American Association for Cancer Research Annual Meeting. Virtual meeting, April 10-15, 2021.
    • 83. Imrie F, Bradley AR, van der Schaar M, Deane CM. Deep generative models for 3D linker design. J. Chem. Inf. Model. 60(4), 1983–1995 (2020).
    • 84. Disch JS, Duffy JM, Lee ECY et al. Bispecific estrogen receptor α degraders incorporating novel binders identified using DNA-encoded chemical library screening. J. Med. Chem. 64(8), 5049–5066 (2021).
    • 85. Lebraud H, Wright DJ, Johnson CN, Heightman TD. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent. Sci. 2(12), 927–934 (2016).
    • 86. Reynders M, Matsuura BS, Berouti M et al. PHOTACs enable optical control of protein degradation. Sci. Adv. 6(8), eaay5064 (2020).
    • 87. Banik SM, Pedram K, Wisnovsky S, Ahn G, Riley NM, Bertozzi CR. Lysosome targeting chimeras for degradation of extracellular proteins. Nature 584(7820), 291–297 (2020).
    • 88. Chen P-H, Hu Z, An E et al. Modulation of phosphoprotein activity by phosphorylation targeting chimeras (PhosTACs). ACS Chem. Biol. 16(12), 2808–2815 (2021).
    • 89. Maneiro M, Forte N, Shchepinova MM et al. Antibody–PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4. ACS Chem. Biol. 15(6), 1306–1312 (2020).