We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

STING upregulation strategies to potentiate STING immunotherapy

    Wansang Cho

    Department of Chemistry, Seoul National University, Seoul, 08826, Korea

    ,
    Jung Ho Lee

    Department of Biophysics & Chemical Biology, Seoul National University, Seoul, 08826, Korea

    &
    Seung Bum Park

    *Author for correspondence:

    E-mail Address: sbpark@snu.ac.kr

    Department of Chemistry, Seoul National University, Seoul, 08826, Korea

    Department of Biophysics & Chemical Biology, Seoul National University, Seoul, 08826, Korea

    SPARK Biopharma, Inc., 134 Gwanak-ro Gwanak-gu, Seoul, 08791, Korea

    Published Online:https://doi.org/10.4155/fmc-2023-0227
    Free first page

    References

    • 1. Sato S, Sawada Y, Nakamura M. STING signaling and skin cancers. Cancers (Basel) 13(22), 5603 (2021).
    • 2. Motedayen Aval L, Pease JE, Sharma R, Pinato DJ. Challenges and opportunities in the clinical development of STING agonists for cancer immunotherapy. J. Clin. Med. 9(10), 3323 (2020).
    • 3. Dane EL, Belessiotis-Richards A, Backlund C et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat. Mater. 21, 710–720 (2022).
    • 4. Yi G, Brendel VP, Shu C, Li P, Palanathan S, Cheng Kao C. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides. PLOS One 8(10), e77846 (2013).
    • 5. Xia T, Konno H, Barber GN. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 76(22), 6747–6759 (2016).
    • 6. Li L, Yin Q, Kuss P et al. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10(12), 1043–1048 (2014).
    • 7. Amouzegar A, Chelvanambi M, Filderman JN, Storkus WJ, Luke JJ. STING agonists as cancer therapeutics. Cancers (Basel) 13(11), 2695 (2021).
    • 8. Zhong B, Zhang L, Lei C et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30(3), 397–407 (2009).
    • 9. Xing J, Zhang A, Zhang H et al. TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nat. Commun. 8(1), 945 (2017).
    • 10. Gentili M, Liu B, Papanastasiou M et al. ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. Nat. Commun. 14(1), 611 (2023).
    • 11. Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155(3), 688–698 (2013).
    • 12. Chu TT, Tu X, Yang K, Wu J, Repa JJ, Yan N. Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C. Nature 596(7873), 570–575 (2021).
    • 13. Kang J, Wu J, Liu Q, Wu X, Zhao Y, Ren J. Post-translational modifications of STING: a potential therapeutic target. Front. Immunol. 13, 888147 (2022).
    • 14. Lau L, Gray EE, Brunette RL, Stetson DB. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science (1979) 350(6260), 568–571 (2015).
    • 15. Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X. STING: a master regulator in the cancer-immunity cycle. Mol. Cancer 18(1), 152 (2019).
    • 16. Della Corte CM, Sen T, Gay CM et al. STING pathway expression identifies NSCLC with an immune-responsive phenotype. J. Thorac. Oncol. 15(5), 777–791 (2020).
    • 17. Li X, Li Y, Zhao Z et al. Immunogenicity of small-cell lung cancer associates with STING pathway activation and is enhanced by ATR and TOP1 inhibition. Cancer Med. 12(4), 4864–4881 (2023).
    • 18. Chon HJ, Kim H, Noh JH et al. STING signaling is a potential immunotherapeutic target in colorectal cancer. J. Cancer 10(20), 4932–4938 (2019).
    • 19. De Queiroz NMGP, Xia T, Konno H, Barber GN. Ovarian cancer cells commonly exhibit defective STING signaling which affects sensitivity to viral oncolysis. Mol. Cancer Res. 17(4), 974–986 (2019).
    • 20. Cho W, Won S, Choi Y et al. Targeted protein upregulation of STING for boosting the efficacy of immunotherapy. Angew. Chem. Int. Ed. Engl. 62(18), e202300978 (2023).
    • 21. Li Q, Lin L, Tong Y et al. TRIM29 negatively controls antiviral immune response through targeting STING for degradation. Cell Discov. 4(1), 13 (2018).
    • 22. Falahat R, Berglund A, Perez-Villarroel P et al. Epigenetic state determines the in vivo efficacy of STING agonist therapy. Nat. Commun. 14(1), 1573 (2023).
    • 23. Lai J, Fu Y, Tian S et al. Zebularine elevates STING expression and enhances cGAMP cancer immunotherapy in mice. Mol. Ther. 29(5), 1758–1771 (2021).