We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Per aspera ad astra: application of Simplex QSAR approach in antiviral research

    Eugene N Muratov

    † Author for correspondence

    Laboratory of Molecular Modeling, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Beard Hall 301, CB#7563, Chapel Hill, NC, 27599, USA.

    ,
    Anatoly G Artemenko

    Laboratory of Theoretical Chemistry, Department of Molecular Structure, A.V. Bogatsky Physical Chemical Institute National Academy of Sciences of Ukraine, Lustdorfskaya Doroga 86, Odessa 65080, Ukraine

    ,
    Ekaterina V Varlamova

    Laboratory of Theoretical Chemistry, Department of Molecular Structure, A.V. Bogatsky Physical Chemical Institute National Academy of Sciences of Ukraine, Lustdorfskaya Doroga 86, Odessa 65080, Ukraine

    ,
    Pavel G Polischuk

    Laboratory of Theoretical Chemistry, Department of Molecular Structure, A.V. Bogatsky Physical Chemical Institute National Academy of Sciences of Ukraine, Lustdorfskaya Doroga 86, Odessa 65080, Ukraine

    ,
    Victor P Lozitsky

    I.I. Mechnikov Ukrainian Anti-Plague Research Institute, Odessa, Ukraine, Cerkovnaya 2/4, Odessa 65003, Ukraine

    ,
    Alla S Fedchuk

    I.I. Mechnikov Ukrainian Anti-Plague Research Institute, Odessa, Ukraine, Cerkovnaya 2/4, Odessa 65003, Ukraine

    ,
    Regina L Lozitska

    I.I. Mechnikov Ukrainian Anti-Plague Research Institute, Odessa, Ukraine, Cerkovnaya 2/4, Odessa 65003, Ukraine

    ,
    Tat’yana L Gridina

    I.I. Mechnikov Ukrainian Anti-Plague Research Institute, Odessa, Ukraine, Cerkovnaya 2/4, Odessa 65003, Ukraine

    ,
    Ludmila S Koroleva

    Laboratory of Organic Synthesis, Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090 Russia

    Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russia

    ,
    Vladimir N Sil’nikov

    Laboratory of Organic Synthesis, Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090 Russia

    ,
    Angel S Galabov

    Department of Virology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 26, 1113, Sofia, Bulgaria

    ,
    Vadim A Makarov

    Laboratory of Biochemistry of Stresses in Microorganisms, Institute of Biochemistry RAS, Leninsky prospekt, 33, build. 2, Moscow, 119071, Russia

    ,
    Olga B Riabova

    Laboratory of Biochemistry of Stresses in Microorganisms, Institute of Biochemistry RAS, Leninsky prospekt, 33, build. 2, Moscow, 119071, Russia

    ,
    Peter Wutzler

    Institute of Virology and Antiviral Therapy, Jena University Hospital, Hans-Knoell-Str. 2, PF, D-07740 Jena, Germany

    ,
    Michaela Schmidtke

    Institute of Virology and Antiviral Therapy, Jena University Hospital, Hans-Knoell-Str. 2, PF, D-07740 Jena, Germany

    &
    Victor E Kuz’min

    Laboratory of Theoretical Chemistry, Department of Molecular Structure, A.V. Bogatsky Physical Chemical Institute National Academy of Sciences of Ukraine, Lustdorfskaya Doroga 86, Odessa 65080, Ukraine

    Published Online:https://doi.org/10.4155/fmc.10.194

    This review explores the application of the Simplex representation of molecular structure (SiRMS) QSAR approach in antiviral research. We provide an introduction to and description of SiRMS, its application in antiviral research and future directions of development of the Simplex approach and the whole QSAR field. In the Simplex approach every molecule is represented as a system of different simplexes (tetratomic fragments with fixed composition, structure, chirality and symmetry). The main advantages of SiRMS are consideration of the different physical–chemical properties of atoms, high adequacy and good interpretability of models obtained and clear procedures for molecular design. The reliability of developed QSAR models as predictive virtual screening tools and their ability to serve as the basis of directed drug design was validated by subsequent synthetic and biological experiments. The SiRMS approach is realized as the complex of the computer program ‘HiT QSAR’, which is available on request.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    Bibliography

    • Patick AK. Rhinovirus chemotherapy. Antivir. Res.71,391–396 (2006).
    • Rotbart HA. Treatment of picornavirus infections. Antivir. Res.53,83–98 (2002).
    • Barnard DL. Current status of anti-picornavirus therapies. Curr. Pharm. Des.12,1379–1390 (2006).
    • Prado-Pradoa FJ, Borgesa F, Uriarte E, Perez-Montoto LG, Gonzalez-Díaz H. Multi-target spectral moment: QSAR for antiviral drugs vs. different viral species. Analytica Chimica Acta651,159–164 (2009).
    • Binford SL, Maldonado F, Brothers MA et al. Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor. Antimicrob. Agents Chemother.49,619–626 (2005).
    • Conti C, Mastromarino P, Goldoni P, Portalone G, Desideri N. Synthesis and anti-rhinovirus properties of fluoro-substituted flavonoids. Antivir. Chem. Chemother.16(4),267–276 (2005).
    • Cutri CC, Garozzo A, Siracusa MA et al. Synthesis of new 3-methylthio-5-aryl-4-isothiazolecarbonitriles with broad antiviral spectrum. Antivir. Res.55,357–368 (2002).
    • Diana GD, Cutcliffe D, Oglesby RC et al. Synthesis and structure–activity studies of some disubstituted phenylisoxazoles against human picornavirus. J. Med. Chem.32,450–455 (1989).
    • Dragovich PS, Prins TJ, Zhou R et al. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 6. Structure-activity studies of orally bioavailable, 2-pyridone-containing peptidomimetics. J. Med. Chem.45,1607–1623 (2002).
    • 10  Gaudernak E, Seipelt J, Triendl A, Grassauer A, Kuechler E. Antiviral effects of pyrrolidine dithiocarbamate on human rhinoviruses. J. Virol.76,6004–6015 (2002).
    • 11  Kaiser L, Crump CE, Hayden FG. In vitro activity of pleconaril and AG7088 against selected serotypes and clinical isolates of human rhinoviruses. Antivir. Res.47,215–220 (2000).
    • 12  Ooms F. Molecular modeling and computer aided drug design. Examples of their applications in medicinal chemistry. Curr. Med. Chem.7(2),141–158 (2000).
    • 13  Mullin R. Drug development costs about $1.7 billion. Chem. Engineer. News50,8 (2003).
    • 14  Thomas G. Medicinal Chemistry: An Introduction. Wiley, NY, USA 664 (2008).
    • 15  Bailey TR, Diana GD, Kowalczyk PJ et al. Antirhinoviral activity of heterocyclic analogs of Win 54954. J. Med. Chem.35,4628–4633 (1992).
    • 16  Kuz’min VE, Artemenko AG, Lozitsky VP et al. The analysis of structure–anticancer and antiviral activity relationships for macrocyclic pyridinophanes and their analogues on the basis of 4D QSAR models (simplex representation of molecular structure). Acta Biochim. Polon.49,157–168 (2002).
    • 17  Muratov EN, Artemenko AG, Kuz’min VE et al. Investigation of anti-influenza activity using hierarchic QSAR technology on the base of simplex representation of molecular structure. Antivir. Res.65(3),A62–A63 (2005).
    • 18  Verma RP, Hansch C. Chemical toxicity on HeLa cells. Curr. Med. Chem.13(4),423–448 (2006).
    • 19  Jenssen H, Gutteberg TJ, Lejon T. Modelling of anti-HSV activity of lactoferricin analogues using amino acid descriptors. J. Pept. Sci.11(2),97–103 (2005).
    • 20  Teixeira C, Serradji N, Maurel F, Barbault F. Docking and 3D-QSAR studies of BMS-806 analogs as HIV-1 gp120 entry inhibitors. Eur. J. Med. Chem.44,3524–3532 (2009).
    • 21  Artemenko AG, Muratov EN, Kuz’min VE et al. Identification of individual structural fragments of N,N´-(bis-5-nitropyrimidyl)dispirotripiperazine derivatives for cytotoxicity and antiherpetic activity allows the prediction of new highly active compounds. J. Antimicrob. Chemother.60(1),68–77 (2007).
    • 22  Butina D, Gola JMR. Modeling aqueous solubility. J. Chem. Inf. Comp. Sci.43,837–841 (2004).
    • 23  Kovatcheva A, Golbraikh A, Oloff S et al. Combinatorial QSAR of ambergris fragrance compounds. J. Chem. Inf. Comp. Sci.44,582–595 (2004).
    • 24  Kubinyi H. Quantitative structure–activity relationships (QSAR) and molecular modeling in cancer research. J. Cancer Res. Clin. Oncol.116,529–537 (1990).▪ One of the best reviews of ‘old-fashioned quantitative structure-activity relationship (QSAR)’.
    • 25  Kuz’min VE, Artemenko AG, Lozitska RN et al. Investigation of anticancer activity of macrocyclic Schiff bases by means of 4D-QSAR based on simplex representation of molecular structure. SAR QSAR Environ. Res.16(3),219–230 (2005).
    • 26  Kuz’min VE, Artemenko AG, Muratov EN et al. Quantitative structure–activity relationship studies of [(biphenyloxy)propyl]isoxazole derivatives – human rhinovirus 2 replication inhibitors. J. Med. Chem.50,4205–4213 (2007).▪ Example of successful molecular design and mechanistic interpretation of Simplex representation of molecular structure (SiRMS) QSAR models.
    • 27  Zhang S, Golbraikh A, Tropsha A. The development of quantitative structure-binding affinity relationship (QSBR) models based on novel geometrical chemical descriptors of the protein-ligand interfaces. J. Med. Chem.49,2713–2724 (2006).
    • 28  Selassie CD. History of QSAR. In: Burger’s Medicinal Chemistry and Drug Discovery, Abraham DJ (Ed.), Wiley, NY, USA, 1–48 (2003).▪ Interesting excursion to the origins of QSAR.
    • 29  Cramer RD, Patterson DI, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape binding to carrier proteins. J. Am. Chem. Soc.110,5959–5967 (1988).
    • 30  Doweyko AM. The hypothetical active site lattice. An approach to modeling active sites from data on inhibitor molecules. J. Math. Chem.31,1396–1406 (1988).
    • 31  Klebe G, Abraham U, Mietzner T. Molecular similarity indeces in comparative anaysis (CoMSIA) of molecules to correlate and predict their biological activity. J. Med. Chem.37,4130–4146 (1994).
    • 32  Kuz’min VE, Artemenko AG, Kovdienko NA, Tetko IV, Livingstone DJ. Lattice model for QSAR studies. J. Mol. Model.6,517–526 (2000).
    • 33  Seel M, Turner DB, Wilett P. HQSAR–a highly predictive QSAR technique based on molecular holograms. QSAR18,245–252 (1999).
    • 34  Robinson DD, Winn PJ, Lyne PD, Richards WG. Self-organizing molecular field analysis: a tool for structure-activity studies. J. Med. Chem.42,573–583 (1999).
    • 35  Pavan M, Consonni V, Gramatica P, Todeschini R. New QSAR modelling approach based on ranking models by genetic algorithms–variable subset selection (GA-VSS). In: Partial Order in Environmental Sciences and Chemistry, Springer, Berlin, Germany 181–217 (2006).
    • 36  Baskin II, Hall LH, Palyulin VA, Zefirov NS. NASAWIN – a universal software for QSPR/QSAR studies. In: EuroQSAR 2002 Designing Drugs and Crop Protectants: processes, problems and solutions, Ford M (Ed.). Blackwell Publishing, NY, USA, 260–263 (2003).
    • 37  Tropsha A, Golbraikh A. Predictive QSAR modeling workflow model applicability domains and virtual screening. Curr. Pharm. Des.13,3494–3504 (2007).
    • 38  Varnek A, Fourches D, Hoonacker F, Solov’ev VP. Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures. J. Comp. Aid. Mol. Des.19,693–703 (2005).
    • 39  Todeschini R, Consonni V. Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, Germany (2000).▪ Real handbook of molecular descriptors.
    • 40  Kuz’min VE, Muratov EN, Artemenko AG, Gorb LG, Qasim M, Leszczynski J. The effect of nitroaromatics’ composition on their toxicity in vivo: novel, efficient non-additive 1D QSAR analysis. Chemosphere72,1373–1380 (2008).
    • 41  Baurin N, Mozziconacci JC, Arnoult E, Chavatte P, Marot C, Morin-Allory L. 2D QSAR consensus prediction for high throughput virtual screening. An application to COX-2 inhibition modeling and screening of the NCI database. J. Chem. Inf. Model.44(1),276–285 (2004).
    • 42  Vedani A, Dobler M. Multi-dimensional QSAR in drug design. Progress in Drug Res.55,107–135 (2000).
    • 43  Tropsha A, Golbraikh A. Predictive quantitative structure–activity relationships modeling: data preparation and the general modelingworkflow. In: Handbook of Chemoinformatics Algorithms, Faulon J-L,Bender A (Ed.). Chapman and Hall London, UK, 175–212 (2010).
    • 44  Kuz’min VE. About homo- and heterochirality of dissymetrical tetrahedrons (chiral simplexes). Stereochemical tunneling. Zh. Strucur. Khim.36,873–878 (1995).
    • 45  Kuz’min VE, Artemenko AG, Muratov EN. Hierarchical QSAR technology on the base of Simplex representation of molecular structure. J. Comp. Aid. Mol. Des.22,403–421 (2008).
    • 46  Burkert U, Allinger N. Molecular Mechanics. ACS Publication, Washington, DC, USA (1982).
    • 47  Kubinyi H. Evolutionary variable selection in regression and PLS analyses. J. Chemometr.10,119–133 (1996).
    • 48  Lindgren F, Geladi P, Rannar S, Wold S. Interactive variable selection (IVS) for PLS. Part 1: theory and algorithms. J. Chemometr.8,349–363 (1994).
    • 49  Rannar S, Lindgren F, Geladi P, Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm. J. Chemometr.8,111–125 (1994).
    • 50  Rogers D, Hopfinger AJ. Application of genetic function approximation to quantitative structure–activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comp. Sci.34(4),854–866 (1994).
    • 51  Carhart RE, Smith DH, Venkataraghavan R. Atom pairs as molecular features in structure– activity studies. Definition and application. J. Chem. Inf. Comput. Sci.25,64–73 (1985).
    • 52  Vitiuk NV, Kuz’min VE. Mechanistic models in chemometrics for the analysis of multidimensional data of researches. Analogue of dipole-moments method in the structure(composition)–property relationships analysis. Zh. Anal. Khimii49,165–167 (1994).
    • 53  Kuz’min VE, Artemenko AG, Muratov EN et al. Virtual screening and molecular design based on hierarchical QSAR technology. In: Recent Advances in QSAR Studies. Puzyn T, Cronin M, Leszczynski J (Eds.). Springer, London, UK, 127–176 (2010).
    • 54  Golbraikh A, Tropsha A. Beware of Q2. J. Mol. Graph. Model.20,269–276 (2002).▪ Turning point of predictive QSAR modeling.
    • 55  Muratov E, Varlamova E, Kuz’min V et al. Computer-aided drug design of novel anti-coxsackievirus b3 nancy agents by means of HiT QSAR. Antivir. Res.82,A61 (2009).
    • 56  Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha A. A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR Models. J. Chem. Inf. Model.46,1984–1995 (2006).
    • 57  Kuz’min VE, Artemenko AG, Muratov EN et al. The hierarchical QSAR technology for effective virtual screening and molecular design of the promising antiviral compounds. Antivir. Res.65(3),A70-A71 (2005).
    • 58  QSAR Expert Group. The report from the expert group on (quantitative) structure-activity relationships [(Q)SARs] on the principles for the validation of (Q)SARs. OECD Series on Testing and Assessment (ENV/JM/MONO[2004]24), 206 (2004).
    • 59  Jaworska J, Nikolova-Jeliazkova N, Aldenberg T. QSAR applicability domain estimation by projection of the training set in descriptor space: a review. Altern. Lab. Anim.33,445–459 (2005).
    • 60  Östergard PRJ. A fast algorithm for the maximum clique problem. Discrete Appl. Math.120,195–205 (2002).
    • 61  Muratov EN, Kuz’min VE, Artemenko AG et al. HiT QSAR analysis of anti-coxsackievirus B3 activity of [(biphenyloxy)propyl]isoxazole derivatives. Antivir. Res.78,A60–A61 (2008).
    • 62  Bodor N, Buchwald P. Soft drug design: general principles and recent applications. Med. Res. Rev.20(1),58–101 (2000).
    • 63  Artemenko AG, Kuz’min VE, Muratov EN et al. Investigation of antiherpetic activity using hierarchic QSAR technology on the base of simplex representation of molecular structure. Antivir. Res.65(3),A77 (2005).
    • 64  Sutherland JJ, O’Brien LA, Weaver DF. A comparison of methods for modeling quantitative structure-activity relationships. J. Med. Chem.47,5541–5554 (2004).
    • 65  Zhu H, Tropsha A, Fourches D et al. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. J. Chem. Inf. Model.48,766–784 (2008).
    • 66  Hansen K, Mika S, Schroeter T et al. Benchmark data set for in silico prediction of Ames mutagenicity. J. Chem. Inf. Model.49,2077–2081 (2009).
    • 67  Heritage TV, Ferguson AM, Turner DB, Willett P. EVA: a novel theoretical descriptor for QSAR studies Persp. Drug Disc. Des.11,381–398 (1998).
    • 68  Polishchuk PG, Muratov EN, Artemenko AG, Kolumbin OG, Muratov NN, Kuz’min VE. Application of random forest approach to QSAR prediction of aquatic toxicity. J. Chem. Inf. Model.49,2481–2488 (2009).
    • 69  Hall LH, Kier LB. Electrotopological state indices for atom types – a novel combination of electronic, topological, and valence state information. J. Chem. Inf. Comp. Sci.35,1039–1045 (1995).
    • 70  Katritzky AR, Oliferenko P, Oliferenko A, Lomaka A, Karelson M. Nitrobenzene toxicity: QSAR correlations and mechanistic interpretations. J. Phys. Org. Chem.16,811–817 (2003).
    • 71  Cherkasov A. Can ‘bacterial-metabolite-likeness’ model improve odds of ‘in silico’ antibiotic discovery? J. Chem. Inf. Model.46,1214–1222 (2006).
    • 72  Martin TM, Harten P, Venkatapathy R, Das S, Young DM. A hierarchical clustering methodology for the estimation of toxicity. Toxicol. Mechanisms Methods18,251–266 (2008).
    • 73  Lagunin A, Zakharov A, Filimonov D, Poroikov V. A new approach to QSAR modelling of acute toxicity. SAR QSAR Env. Res.18,285–298 (2007).
    • 74  Filimonov D, Poroikov V, Borodina Y, Gloriozova T. Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. J. Chem. Inf. Comp. Sci.39,666–670 (1999).
    • 75  Artemenko A, Kuz’min V, Muratov E et al. Molecular design of active antiherpetic compounds using hierarchic QSAR technology. Antivir. Res.74,A76 (2007).
    • 76  Muratov EN. Quantitative evaluation of the structural factors influence on the properties of nitrogen-, oxygen- and sulfur-containing macroheterocycles. National Academy of Sciences of Ukraine PhD Thesis 202 (2004).
    • 77  Muratov EN, Kuz’min VE, Artemenko AG et al. QSAR studies on [(biphenyloxy)propyl]isoxazole derivatives with anti-rhinovirus 2 activity. Antivir. Res.74,A44 (2007).
    • 78  Kuz’min V, Artemenko A, Muratov E et al. QSAR analysis of cytotoxicity in HeLa cells. Antivir. Res.78,A43 (2008).
    • 79  Kuz’min V, Muratov E, Artemenko A et al. QSAR analysis of anti-coxsackievirus B3 Nancy activity of 2-amino-3-nitropyrazole[1,5-α]pyrimidines by means of simplex approach. Antivir. Res.74,A49–A50 (2007).
    • 80  Muratov EN, Varlamova EV, Artemenko AG et al. QSAR analysis of [(biphenyloxy)propyl]isoxazoles – agents against coxsackievirus B3. J. Med. Chem.53 (2010) (In Press).
    • 81  Kuz’min VE, Artemenko AG, Muratov EN et al. QSAR Analysis of anti-coxsackievirus B3 Nancy activity of 2-amino-3-nitropyrazole[1,5-α]pyrimidines by means of simplex approach. Antivir. Res.74,A49–A50 (2007).
    • 82  Artemenko AG, Muratov EN, Kuz’min VE et al. Influence of artifical ribonucleases structure on their anti-HIV activity. Antivir. Res.70,A43 (2006).
    • 83  Koroleva LS, Kuz’min VE, Muratov EN, Artemenko AG, Sil’nikov VN. Artificial ribonucleases: quantitative analysis of the structure– activity relationship and a new insight into the strategy of design of highly efficient RNAse mimetics. Bioorg. Khim.34,495–505 (2008).
    • 84  Kuz’min VE, Muratov EN, Artemenko AG, Sidzhakova D, Galabov AS. Antiviral activity of tetrahydro-2(1H)-pyrimidinones and related compounds: classification SAR study. Antivir. Res.2009(82),A61 (2009).
    • 85  Galabov AS, Velichkova E, Karparov A, Sidzakova D, Danchev D, Chakova N. Antiviral activity of tetrahydro-2(1H)-pyrimidinones and related compounds. Arzneim. Forsch.34,9–14 (1984).
    • 86  Fourches D, Muratov EN, Tropsha A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J. Chem. Inf. Model. DOI:10.1021/ci100176x (2010) (In Press).
    • 87  Polanski J. Receptor dependent multidimensional QSAR for modeling drug receptor interactions. Curr. Med. Chem.16,3243–3257 (2009).
    • 88  Lill MA. Multi-dimensional QSAR in drug discovery. Drug Disc. Today12,1013–1017 (2007).
    • 89  Tropsha A. Recent advances in development, validation and exploitation of QSAR models. In: Burger’s Medicinal Chemistry and Drug Discovery, Abraham D (Ed.). John Wiley & Sons, Inc, NY, USA (2010) (In Press).▪ Well written review about good practices and recent trends in QSAR analysis.
    • 90  Shakespeare W. The Tragedy of Hamlet, Prince of Denmarke. (Folio I). Act I, Sc. III (1623).
    • 91  Shakespeare W. Hamlet. Barron’s Educational Series Inc, New York. 340 (2003).▪▪ One of the most powerful and influential tragedies ever written.
    • 92  Hillebrecht A, Klebe G. Use of 3D QSAR models for database screening: a feasibility study. J. Chem. Inf. Model.48,384–396 (2008).
    • 93  Brown RD, Martin YC. The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J. Chem. Inf. Comp. Sci.37,1–9 (1997).
    • 94  Gedeck P, Rohde B, Bartels C. QSAR – how good is it in practice? Comparison of descriptor sets on an unbiased cross section of corporate data sets. J. Chem. Inf. Model.46,1924–1936 (2006).
    • 95  Kuz’min VE, Muratov EN, Artemenko AG et al. Consensus QSAR modeling of phosphor-containing chiral AChE inhibitors. QSAR Comb. Sci.28,664–677 (2009).
    • 96  Nikolaeva L, Galabov AS. In vitro inhibitor effects of dual combinations of picornavirus replication inhibitors. Acta Virologica43,303–311 (1999).
    • 97  Muratov EN, Varlamova EV, Kuz’min VE, Artemenko AG, Nikolaeva-Glomb L, Galabov AS. QSAR analysis of poliovirus inhibition by dual combinations of antivirals. Antivir. Res. DOI:10.1016/j.antiviral.2010.02.456 (2010) (Epub ahead of print).
    • 98  Muratov EN, Kuz’min VE, Artemenko AG. Domain applicability: how far are ideal and reality? Presented at: Model Applicability Domains: When Can I Use My Model? Symposium on the 235th ACS National Meeting. New Orleans, USA, 6–10 April 2008.
    • 99  Fourches D, Barnes JC, Day NC, Bradley P, Reed JZ, Tropsha A. Chemoinformatics analysis of assertions describing drug-induced liver injury in different species. Chem. Res. Toxicol.23,171–183 (2010).▪ One of very few examples of how developed QSAR models were successfully used for the correction of misannotated compounds in chemical databases.