We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Strategies for discovering and derisking covalent, irreversible enzyme inhibitors

    Douglas S Johnson

    † Author for correspondence

    Pfizer Global Research and Development, Groton, CT 06340, USA.

    ,
    Eranthie Weerapana

    The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA

    &
    Published Online:https://doi.org/10.4155/fmc.10.21

    This article presents several covalent inhibitors, including examples of successful drugs, as well as highly selective, irreversible inhibitors of emerging therapeutic targets, such as fatty acid amide hydolase. Covalent inhibitors have many desirable features, including increased biochemical efficiency of target disruption, less sensitivity toward pharmacokinetic parameters and increased duration of action that outlasts the pharmacokinetics of the compound. Safety concerns that must be mitigated include lack of specificity and the potential immunogenicity of protein–inhibitor adduct(s). Particular attention will be given to recent technologies, such as activity-based protein profiling, which allow one to define the proteome-wide selectivity patterns for covalent inhibitors in vitro and in vivo. For instance, any covalent inhibitor can, in principle, be modified with a ‘clickable’ tag to generate an activity probe that is almost indistinguishable from the original agent. These probes can be applied to any living system across a broad dose range to fully inventory their on and off targets. The substantial number of drugs on the market today that act by a covalent mechanism belies historical prejudices against the development of irreversibly acting therapeutic small molecules. Emerging proteomic technologies offer a means to systematically discriminate safe (selective) versus deleterious (nonselective) covalent inhibitors and thus should inspire their future design and development.

    Bibliography

    • Powers JC, Asgian JL, Ekici OD, James KE. Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev.102,4639–4750 (2002).
    • Swinney DC. Biochemical mechanisms of drug action: what does it take for success? Nat. Rev. Drug Discov.3,801–808 (2004).
    • Swinney DC. The role of binding kinetics in therapeutically useful drug action. Curr. Opin. Drug Discov. Devel.12,31–39 (2009).
    • Robertson JG. Mechanistic basis of enzyme-targeted drugs. Biochemistry44,5561–5571 (2005).
    • Robertson JG. Enzymes as a special class of therapeutic target: clinical drugs and modes of action. Curr. Opin. Struct. Biol.17,674–679 (2007).
    • Copeland RA, Pompliano DL, Meek TD. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov.5,730–739 (2006).
    • Swinney DC. Biochemical mechanisms of new molecular entities (NMEs) approved by United States FDA during 2001–2004. mechanisms leading to optimal efficacy and safety. Curr. Top. Med. Chem.6,461–478 (2006).
    • Tummino PJ, Copeland RA. Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry47,5481–5492 (2008).
    • Penning TM. Design of suicide substrates: an approach to the development of highly selective enzyme inhibitors as drugs. Trends Pharmacol. Sci.4,212–217 (1983).
    • 10  Rando RR. New modes of enzyme inactivator design. Trends Pharmacol. Sci.1,168–171 (1980).
    • 11  Walsh C. Suicide substrates: mechanism-based enzyme inactivators. Tetrahedron38,871–909 (1982).
    • 12  Olbe L, Carlsson E, Lindberg P. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nat. Rev. Drug Discov.2,132–139 (2003).
    • 13  Im WB, Sih JC, Blakeman DP, McGrath JP. Omeprazole, a specific inhibitor of gastric (H+-K+)-ATPase, is a H+-activated oxidizing agent of sulfhydryl groups. J. Biol. Chem.260,4591–4597 (1985).
    • 14  Lindberg P, Nordberg P, Alminger T, Braendstroem A, Wallmark B. The mechanism of action of the antisecretory agent omeprazole. J. Med. Chem.29,1327–1329 (1986).
    • 15  Shin JM, Cho YM, Sachs G. Chemistry of covalent inhibition of the gastric (H+, K+)-ATPase by proton pump inhibitors. J. Am. Chem. Soc.126,7800–7811 (2004).
    • 16  Bhatt DL, Topol EJ. Scientific and therapeutic advances in antiplatelet therapy. Nat. Rev. Drug Discov.2,15–28 (2003).
    • 17  Pereillo JM, Maftouh M, Andrieu A et al. Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab. Dispos.30,1288–1295 (2002).
    • 18  Savi P, Pereillo JM, Uzabiaga MF et al. Identification and biological activity of the active metabolite of clopidogrel. Thromb. Haemost.84,891–896 (2000).
    • 19  Savi P, Zachayus JL, Delesque-Touchard N et al. The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc. Natl Acad. Sci. USA103,11069–11074 (2006).
    • 20  Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc. Natl Acad. Sci. USA72,3073–3076 (1975).
    • 21  Van Der Ouderaa FJ, Buytenhek M, Nugteren DH, Van Dorp DA. Acetylation of prostaglandin endoperoxide synthetase with acetylsalicylic acid. Eur J. Biochem.109,1–8 (1980).
    • 22  DeWitt DL, el-Harith EA, Kraemer SA et al. The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases. J. Biol. Chem.265,5192–5198 (1990).
    • 23  Guerciolini R. Mode of action of orlistat. Int. J. Obes. Relat. Metab. Disord.21(Suppl. 3),S12–S23 (1997).
    • 24  Hadvary P, Sidler W, Meister W, Vetter W, Wolfer H. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J. Biol. Chem.266,2021–2027 (1991).
    • 25  Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc. Natl Acad. Sci. USA54,1133–1141 (1965).
    • 26  Yocum RR, Waxman DJ, Rasmussen JR, Strominger JL. Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial D-alanine carboxypeptidases. Proc. Natl Acad. Sci. USA76,2730–2734 (1979).
    • 27  Lim D, Strynadka NCJ. Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus.Nat. Struct. Biol.9,870–876 (2002).
    • 28  Strynadka NCJ, Adachi H, Jensen SE et al. Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 A resolution. Nature359,700–705 (1992).
    • 29  Wilke MS, Lovering AL, Strynadka NCJ. β-Lactam antibiotic resistance: a current structural perspective. Curr. Opin. Microbiol.8,525–533 (2005).
    • 30  Howarth TT, Brown AG, King TJ. Clavulanic acid, a novel β-lactam isolated from Streptomyces clavuligerus : x-ray crystal structure analysis. J. Chem. Soc. Chem. Commun.266–267 (1976).
    • 31  Hugonnet JE, Blanchard JS. Irreversible inhibition of the Mycobacterium tuberculosis β-lactamase by clavulanate. Biochemistry46,11998–12004 (2007).
    • 32  Tremblay LW, Hugonnet JE, Blanchard JS. Structure of the covalent adduct formed between Mycobacterium tuberculosis β-lactamase and clavulanate. Biochemistry47,5312–5316 (2008).
    • 33  Bar-On P, Millard CB, Harel M et al. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry41,3555–3564 (2002).
    • 34  Tsou HR, Overbeek-Klumpers EG, Hallett WA et al. Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. J. Med. Chem.48,1107–1131 (2005).
    • 35  Wissner A, Mansour TS. The development of HKI-272 and related compounds for the treatment of cancer. Arch. Pharm.341,465–477 (2008).
    • 36  Mukherji D, Spicer J. Second-generation epidermal growth factor tyrosine kinase inhibitors in non-small cell lung cancer. Expert Opin. Investig. Drugs18,293–301 (2009).
    • 37  Kwak EL, Sordella R, Bell DW et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc. Natl Acad. Sci. USA102,7665–7670 (2005).
    • 38  Yun CH, Mengwasser KE, Toms AV et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA105,2070–2075 (2008).
    • 39  Simon GM, Cravatt BF. Challenges for the ‘chemical-systems’ biologist. Nat. Chem. Biol.4,639–642 (2008).
    • 40  Potashman MH, Duggan ME. Covalent modifiers: an orthogonal approach to drug design. J. Med. Chem.52,1231–1246 (2009).
    • 41  Smith AJ, Zhang X, Leach AG, Houk KN. Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J. Med. Chem.52,225–233 (2009).
    • 42  Zhang R, Monsma F. The importance of drug-target residence time. Curr. Opin. Drug Discov. Devel.12,488–496 (2009).
    • 43  Barglow KT, Cravatt BF. Activity-based protein profiling for the functional annotation of enzymes. Nat. Methods4,822–827 (2007).
    • 44  Liebler DC. Protein damage by reactive electrophiles: targets and consequences. Chem. Res. Toxicol.21,117–128 (2008).
    • 45  Lavergne SN, Park BK, Naisbitt DJ. The roles of drug metabolism in the pathogenesis of T-cell-mediated drug hypersensitivity. Curr. Opin. Allergy Clin. Immunol.8,299–307 (2008).
    • 46  Park BK, Sanderson JP, Naisbitt DJ. Drugs as haptens, antigens, and immunogens. In: Drug Hypersensitivity. Pichler WJ (Ed.). Karger, Basel, Switzerland, 55–65 (2007).
    • 47  Uetrecht J. Idiosyncratic drug reactions: past, present, and future. Chem. Res. Toxicol.21,84–92 (2008).
    • 48  Uetrecht J. Immune-mediated adverse drug reactions. Chem. Res. Toxicol.22,24–34 (2009).
    • 49  Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat. Rev. Drug Discov.5,160–170 (2006).
    • 50  Ohlson S. Designing transient binding drugs: a new concept for drug discovery. Drug Discov. Today13,433–439 (2008).
    • 51  Copeland RA. Evaluation of Enzyme Inhibitors in Drug Discovery: a Guide to Medicinal Chemists and Pharmacologists. Wiley, Oxford, UK, 296 (2005).
    • 52  Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA. Drug–protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem. Res. Toxicol.17,3–16 (2004).
    • 53  Kumar S, Kassahun K, Tschirret-Guth RA, Mitra K, Baillie TA. Minimizing metabolic activation during pharmaceutical lead optimization: progress, knowledge gaps and future directions. Curr. Opin. Drug Discov. Devel.11,43–52 (2008).
    • 54  Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab. Rev.37,41–213 (2005).
    • 55  Uetrecht J. Evaluation of which reactive metabolite, if any, is responsible for a specific idiosyncratic reaction. Drug Metab. Rev.38,745–753 (2006).
    • 56  Bond GR. Acetaminophen protein adducts: a review. Clin. Toxicol.47,2–7 (2009).
    • 57  Hopkins JE, Naisbitt DJ, Kitteringham NR, Dearman RJ, Kimber I, Park BK. Selective haptenation of cellular or extracellular protein by chemical allergens: association with cytokine polarization. Chem. Res. Toxicol.18,375–381 (2005).
    • 58  Kalgutkar AS, Gardner I, Obach RS et al. A comprehensive listing of bioactivation pathways of organic functional groups. Curr. Drug Metab.6,161–225 (2005).
    • 59  Nakayama S, Atsumi R, Takakusa H et al. A zone classification system for risk assessment of idiosyncratic drug toxicity using daily dose and covalent binding. Drug Metab. Dispos.37,1970–1977 (2009).
    • 60  Conn PM, Ulloa-Aguirre A, Ito J, Janovick JA. G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo.Pharmacol Rev59,225–250 (2007).
    • 61  Cravatt BF, Wright AT, Kozarich JW. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem.77,383–414 (2008).
    • 62  Evans MJ, Cravatt BF. Mechanism-based profiling of enzyme families. Chem. Rev.106,3279–3301 (2006).
    • 63  Sadaghiani AM, Verhelst SHL, Bogyo M. Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol.11,20–28 (2007).
    • 64  Jessani N, Niessen S, Wei BQ et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nat. Meth.2,691–697 (2005).
    • 65  Sieber SA, Cravatt BF. Analytical platforms for activity-based protein profiling – exploiting the versatility of chemistry for functional proteomics. Chem. Commun. (Camb.)2311–2319 (2006).
    • 66  Weerapana E, Speers AE, Cravatt BF. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP) – a general method for mapping sites of probe modification in proteomes. Nat. Protoc.2,1414–1425 (2007).
    • 67  Liu Y, Patricelli MP, Cravatt BF. Activity-based protein profiling: the serine hydrolases. Proc. Natl Acad. Sci. USA96,14694–14699 (1999).
    • 68  Kidd D, Liu Y, Cravatt BF. Profiling serine hydrolase activities in complex proteomes. Biochemistry40,4005–4015 (2001).
    • 69  Patricelli MP, Giang DK, Stamp LM, Burbaum JJ. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics1,1067–1071 (2001).
    • 70  Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol.7,569–581 (2000).
    • 71  Greenbaum DC, Arnold WD, Lu F et al. Small molecule affinity fingerprinting. A tool for enzyme family subclassification, target identification, and inhibitor design. Chem. Biol.9,1085–1094 (2002).
    • 72  Kato D, Boatright KM, Berger AB et al. Activity-based probes that target diverse cysteine protease families. Nat. Chem. Biol.1,33–38 (2005).
    • 73  Shreder KR, Liu Y, Nomanhboy T et al. Design and synthesis of AX7574: a microcystin-derived, fluorescent probe for serine/threonine phosphatases. Bioconjug. Chem.15,790–798 (2004).
    • 74  Krishnamurthy D, Barrios AM. Profiling protein tyrosine phosphatase activity with mechanistic probes. Curr. Opin. Chem. Biol.13,375–381 (2009).
    • 75  Vocadlo DJ, Bertozzi CR. A strategy for functional proteomic analysis of glycosidase activity from cell lysates. Angew. Chem. Int. Ed. Engl.43,5338–5342 (2004).
    • 76  Hekmat O, Kim YW, Williams SJ, He S, Withers SG. Active-site peptide ‘fingerprinting’ of glycosidases in complex mixtures by mass spectrometry. Discovery of a novel retaining β-1,4-glycanase in Cellulomonas fimi.J. Biol. Chem.280,35126–35135 (2005).
    • 77  Borodovsky A, Ovaa H, Kolli N et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol.9,1149–1159 (2002).
    • 78  Love KR, Catic A, Schlieker C, Ploegh HL. Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat. Chem. Biol.3,697–705 (2007).
    • 79  Love KR, Pandya RK, Spooner E, Ploegh HL. Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery. ACS Chem. Biol.4,275–287 (2009).
    • 80  Berkers CR, Verdoes M, Lichtman E et al. Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nat. Methods2,357–362 (2005).
    • 81  Adam GC, Cravatt BF, Sorensen EJ. Profiling the specific reactivity of the proteome with non-directed activity-based probes. Chem. Biol.8,81–95 (2001).
    • 82  Adam GC, Sorensen EJ, Cravatt BF. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat. Biotechnol.20,805–809 (2002).
    • 83  Cohen MS, Zhang C, Shokat KM, Taunton J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science308,1318–1321 (2005).
    • 84  Cohen MS, Hadjivassiliou H, Taunton J. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nat. Chem. Biol.3,156–160 (2007).
    • 85  Patricelli MP, Szardenings AK, Liyanage M et al. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry46,350–358 (2007).
    • 86  Wright AT, Cravatt BF. Chemical proteomic probes for profiling cytochrome p450 activities and drug interactions in vivo.Chem. Biol.14,1043–1051 (2007).
    • 87  Wright AT, Song JD, Cravatt BF. A suite of activity-based probes for human cytochrome P450 enzymes. J. Am. Chem. Soc.131,10692–10700 (2009).
    • 88  Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl Acad. Sci. USA101,10000–10005 (2004).
    • 89  Sieber SA, Niessen S, Hoover HS, Cravatt BF. Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nat. Chem. Biol.2,274–281 (2006).
    • 90  Chan EW, Chattopadhaya S, Panicker RC, Huang X, Yao SQ. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc.126,14435–14446 (2004).
    • 91  David A, Steer D, Bregant S et al. Cross-linking yield variation of a potent matrix metalloproteinase photoaffinity probe and consequences for functional proteomics. Angew. Chem. Int. Ed. Engl.46,3275–3277 (2007).
    • 92  Salisbury CM, Cravatt BF. Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc. Natl Acad. Sci. USA104,1171–1176 (2007).
    • 93  Salisbury CM, Cravatt BF. Optimization of activity-based probes for proteomic profiling of histone deacetylase complexes. J. Am. Chem. Soc.130,2184–2194 (2008).
    • 94  Li YM, Xu M, Lai MT et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature405,689–694 (2000).
    • 95  Fuwa H, Takahashi Y, Konno Y et al. Divergent synthesis of multifunctional molecular probes to elucidate the enzyme specificity of dipeptidic γ-secretase inhibitors. ACS Chem. Biol.2,408–418 (2007).
    • 96  Shi H, Liu K, Xu A, Yao SQ. Small molecule microarray-facilitated screening of affinity-based probes (AfBPs) for γ-secretase. Chem. Commun. (Camb.)46,5030–5032 (2009).
    • 97  Kalesh KA, Sim DS, Wang J, Liu K, Lin Q, Yao SQ. Small molecule probes that target Abl kinase. Chem. Commun. (Camb.)46,1118–1120 (2009).
    • 98  Tantama M, Lin WC, Licht S. An activity-based protein profiling probe for the nicotinic acetylcholine receptor. J. Am. Chem. Soc.130,15766–15767 (2008).
    • 99  Leung D, Hardouin C, Boger DL, Cravatt BF. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat. Biotechnol.21,687–691 (2003).
    • 100  Ahn K, Johnson DS, Fitzgerald LR et al. Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity. Biochemistry46,13019–13030 (2007).
    • 101  Zhang D, Saraf A, Kolasa T et al. Fatty acid amide hydrolase inhibitors display broad selectivity and inhibit multiple carboxylesterases as off-targets. Neuropharmacology52,1095–1105 (2007).
    • 102  Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl.40,2004–2021 (2001).
    • 103  Kolb HC, Sharpless KB. The growing impact of click chemistry on drug discovery. Drug Discov. Today8,1128–1137 (2003).
    • 104  Speers AE, Adam GC, Cravatt BF. Activity-based protein profiling in vivo using a copper(i)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc.125,4686–4687 (2003).
    • 105  Speers AE, Cravatt BF. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol.11,535–546 (2004).
    • 106  Salisbury CM, Cravatt BF. Click chemistry-led advances in high content functional proteomics. QSAR Comb. Sci.26,1229–1238 (2007).
    • 107  Best MD. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry48,6571–6584 (2009).
    • 108  Alexander JP, Cravatt BF. Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem. Biol.12,1179–1187 (2005).
    • 109  Ahn K, Johnson DS, Mileni M et al. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem. Biol.16,411–420 (2009).
    • 110  McKinney MK, Cravatt BF. Structure and function of fatty acid amide hydrolase. Annu. Rev. Biochem.74,411–432 (2005).
    • 111  Ahn K, McKinney MK, Cravatt BF. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem. Rev.108,1687–1707 (2008).
    • 112  Piomelli D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci.4,873–884 (2003).
    • 113  Di Marzo V. Targeting the endocannabinoid system: to enhance or reduce? Nat. Rev. Drug Discov.7,438–455 (2008).
    • 114  Ahn K, Johnson DS, Cravatt BF. Fatty acid amide hydrolase as a potential therapeutic target for the treatment of pain and CNS disorders. Expert Opin. Drug Discovery4,763–784 (2009).
    • 115  Seierstad M, Breitenbucher JG. Discovery and development of fatty acid amide hydrolase (FAAH) inhibitors. J. Med. Chem.51,7327–7343 (2008).
    • 116  Leung D, Du W, Hardouin C et al. Discovery of an exceptionally potent and selective class of fatty acid amide hydrolase inhibitors enlisting proteome-wide selectivity screening: concurrent optimization of enzyme inhibitor potency and selectivity. Bioorg. Med. Chem. Lett.15,1423–1428 (2005).
    • 117  Mileni M, Garfunkle J, DeMartino JK, Cravatt BF, Boger DL, Stevens RC. Binding and inactivation mechanism of a humanized fatty acid amide hydrolase by α-ketoheterocycle inhibitors revealed from cocrystal structures. J. Am. Chem. Soc.131,10497–10506 (2009).
    • 118  Lichtman AH, Leung D, Shelton CC et al. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J. Pharmacol. Exp. Ther.311,441–448 (2004).
    • 119  Fegley D, Gaetani S, Duranti A et al. Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3´-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J. Pharmacol. Exp. Ther.313,352–358 (2005).
    • 120  Johnson DS, Ahn K, Kesten S et al. Benzothiophene piperazine and piperidine urea inhibitors of fatty acid amide hydrolase (FAAH). Bioorg. Med. Chem. Lett.19,2865–2869 (2009).
    • 121  Karbarz MJ, Luo L, Chang L et al. Biochemical and biological properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase. Anesth. Analg.108,316–329 (2009).
    • 122  Keith JM, Apodaca R, Xiao W et al. Thiadiazolopiperazinyl ureas as inhibitors of fatty acid amide hydrolase. Bioorg. Med. Chem. Lett.18,4838–4843 (2008).
    • 123  Mileni M, Johnson DS, Wang Z et al. Structure-guided inhibitor design for human FAAH by interspecies active site conversion. Proc. Natl Acad. Sci. USA105,12820–12824 (2008).
    • 124  Li W, Blankman JL, Cravatt BF. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. J. Am. Chem. Soc.129,9594–9595 (2007).
    • 125  Long JZ, Li W, Booker L et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat. Chem. Biol.5,37–44 (2009).
    • 126  Long JZ, Nomura DK, Cravatt BF. Characterization of monoacylglycerol lipase inhibition reveals differences in central and peripheral endocannabinoid metabolism. Chem. Biol.16,744–753 (2009).
    • 127  Long JZ, Nomura DK, Vann RE et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo.Proc. Natl Acad. Sci. USA106,20270–20275 (2009).
    • 128  Greenbaum D, Baruch A, Hayrapetian L et al. Chemical approaches for functionally probing the proteome. Mol. Cell Proteomics1,60–68 (2002).
    • 129  Yuan F, Verhelst SH, Blum G, Coussens LM, Bogyo M. A selective activity-based probe for the papain family cysteine protease dipeptidyl peptidase I/cathepsin C. J. Am. Chem. Soc.128,5616–5617 (2006).
    • 130  Sadaghiani AM, Verhelst SH, Gocheva V et al. Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases. Chem. Biol.14,499–511 (2007).
    • 131  Arastu-Kapur S, Ponder EL, Fonovic UP et al. Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum.Nat. Chem. Biol.4,203–213 (2008).
    • 132  Staub I, Sieber SA. β-lactams as selective chemical probes for the in vivo labeling of bacterial enzymes involved in cell wall biosynthesis, antibiotic resistance, and virulence. J. Am. Chem. Soc.130,13400–13409 (2008).
    • 133  Staub I, Sieber SA. β-lactam probes as selective chemical-proteomic tools for the identification and functional characterization of resistance associated enzymes in MRSA. J. Am. Chem. Soc.131,6271–6276 (2009).
    • 134  Bottcher T, Sieber SA. β-lactones as privileged structures for the active-site labeling of versatile bacterial enzyme classes. Angew. Chem. Int. Ed. Engl.47,4600–4603 (2008).
    • 135  Bottcher T, Sieber SA. β-lactones as specific inhibitors of ClpP attenuate the production of extracellular virulence factors of Staphylococcus aureus.J. Am. Chem. Soc.130,14400–14401 (2008).
    • 136  Blair JA, Rauh D, Kung C et al. Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nat. Chem. Biol.3,229–238 (2007).
    • 137  Rando RR. On the mechanism of action of antibiotics which act as irreversible enzyme inhibitors. Biochem. Pharmacol.24,1153–1160 (1975).