We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Software and resources for computational medicinal chemistry

    ,
    Markus Sitzmann

    Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Frederick, MD 21702, USA

    ,
    Angelo Pugliese

    Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Frederick, MD 21702, USA

    &
    Marc C Nicklaus

    Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Frederick, MD 21702, USA

    Published Online:https://doi.org/10.4155/fmc.11.63

    Computer-aided drug design plays a vital role in drug discovery and development and has become an indispensable tool in the pharmaceutical industry. Computational medicinal chemists can take advantage of all kinds of software and resources in the computer-aided drug design field for the purposes of discovering and optimizing biologically active compounds. This article reviews software and other resources related to computer-aided drug design approaches, putting particular emphasis on structure-based drug design, ligand-based drug design, chemical databases and chemoinformatics tools.

    Bibliography

    • Talele TT, Khedkar SA, Rigby AC. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr. Top. Med. Chem.10(1),127–141 (2010).
    • Clark DE. What has computer-aided molecular design ever done for drug discovery? Expert Opin. Drug Discov.1(2),103–110 (2006).
    • Ferreira RS, Simeonov A, Jadhav A et al. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J. Med. Chem.53(13),4891–4905 (2010).
    • Ripphausen P, Nisius B, Peltason L, Bajorath J. Quo Vadis, virtual screening? A comprehensive survey of prospective applications. J. Med. Chem.53(24),8461–8467 (2010).
    • Peach ML, Nicklaus MC. Combining docking with pharmacophore filtering for improved virtual screening. J. Cheminform.1(1),6 (2009).
    • Liao C, Nicklaus MC. Computer tools in the discovery of HIV-1 integrase inhibitors. Future Med. Chem.2(7),1123–1140 (2010).
    • Brooijmans N, Kuntz ID. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct.32,335–373 (2003).
    • Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov.3(11),935–949 (2004).
    • Warren GL, Andrews CW, Capelli AM et al. A critical assessment of docking programs and scoring functions. J. Med. Chem.49(20),5912–5931 (2006).
    • 10  Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br. J. Pharmacol.153(Suppl. 1),S7–S26 (2008).
    • 11  Kroemer RT. Structure-based drug design: docking and scoring. Curr. Protein Pept. Sci.8(4),312–328 (2007).
    • 12  Morris GM, Goodsell DS, Halliday RS et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem.19(14),1639–1662 (1998).
    • 13  Lang PT, Brozell SR, Mukherjee S et al. DOCK 6: combining techniques to model RNA-small molecule complexes. RNA15(6),1219–1230 (2009).
    • 14  Kramer B, Rarey M, Lengauer T. Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking. Proteins37(2),228–241 (1999).
    • 15  Mcgann MR, Almond HR, Nicholls A, Grant JA, Brown FK. Gaussian docking functions. Biopolymers68(1),76–90 (2003).
    • 16  Friesner RA, Banks JL, Murphy RB et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem.47(7),1739–1749 (2004).
    • 17  Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein–ligand docking using GOLD. Proteins52(4),609–623 (2003).
    • 18  Totrov M, Abagyan R. Flexible protein–ligand docking by global energy optimization in internal coordinates. Proteins Suppl. 1,215–220 (1997).
    • 19  Jain AN. Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J. Comput. Aided Mol. Des.21(5),281–306 (2007).
    • 20  Bursulaya BD, Totrov M, Abagyan R, Brooks CL 3rd. Comparative study of several algorithms for flexible ligand docking. J. Comput. Aided Mol. Des.17(11),755–763 (2003).
    • 21  Onodera K, Satou K, Hirota H. Evaluations of molecular docking programs for virtual screening. J. Chem. Inf. Model.47(4),1609–1618 (2007).
    • 22  Cross JB, Thompson DC, Rai BK et al. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J. Chem. Inf. Model.49(6),1455–1474 (2009).
    • 23  Zhou Z, Felts AK, Friesner RA, Levy RM. Comparative performance of several flexible docking programs and scoring functions: enrichment studies for a diverse set of pharmaceutically relevant targets. J. Chem. Inf. Model.47(4),1599–1608 (2007).
    • 24  Li X, Li Y, Cheng T, Liu Z, Wang R. Evaluation of the performance of four molecular docking programs on a diverse set of protein–ligand complexes. J. Comput. Chem.31(11),2109–2125 (2010).
    • 25  Plewczynski D, Lazniewski M, Augustyniak R, Ginalski K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem.32(4),742–755 (2011).
    • 26  Cheng T, Li X, Li Y, Liu Z, Wang R. Comparative assessment of scoring functions on a diverse test set. J. Chem. Inf. Model.49(4),1079–1093 (2009).
    • 27  Wang R, Lu Y, Fang X, Wang S. An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein–ligand complexes. J. Chem. Inf. Comput. Sci.44(6),2114–2125 (2004).
    • 28  Davis AM, St-Gallay SA, Kleywegt GJ. Limitations and lessons in the use of X-ray structural information in drug design. Drug Discov. Today13(19–20),831–841 (2008).
    • 29  Basse N, Montes M, Marechal X et al. Novel organic proteasome inhibitors identified by virtual and in vitro screening. J. Med. Chem.53(1),509–513 (2010).
    • 30  Zhong S, Zhang Y, Xiu Z. Rescoring ligand docking poses. Curr. Opin. Drug Discov. Devel.13(3),326–334 (2010).
    • 31  Congreve M, Chessari G, Tisi D, Woodhead AJ. Recent developments in fragment-based drug discovery. J. Med. Chem.51(13),3661–3680 (2008).
    • 32  Murray CW, Carr MG, Callaghan O et al. Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J. Med. Chem.53(16),5942–5955 (2010).
    • 33  Vangrevelinghe E, Rudisser S. Computational approaches for fragment optimization. Curr. Comput. Aided Drug Des.3(1),69–83 (2007).
    • 34  Cozzini P, Kellogg GE, Spyrakis F et al. Target flexibility: an emerging consideration in drug discovery and design. J. Med. Chem.51(20),6237–6255 (2008).
    • 35  Liao C, Park JE, Bang JK, Nicklaus MC, Lee KS. Probing binding modes of small molecule inhibitors to the Polo-box domain of human Polo-like kinase 1. ACS Med. Chem. Lett.1(3),110–114 (2010).
    • 36  Barril X, Morley SD. Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. J. Med. Chem.48(13),4432–4443 (2005).
    • 37  Damm KL, Carlson HA. Exploring experimental sources of multiple protein conformations in structure-based drug design. J. Am. Chem. Soc.129(26),8225–8235 (2007).
    • 38  Huang SY, Zou X. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins66(2),399–421 (2007).
    • 39  Ekonomiuk D, Su XC, Ozawa K et al. Flaviviral protease inhibitors identified by fragment-based library docking into a structure generated by molecular dynamics. J. Med. Chem.52(15),4860–4868 (2009).
    • 40  Amaro RE, Baron R, Mccammon JA. An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J. Comput. Aided Mol. Des.22(9),693–705 (2008).
    • 41  Wermuth G, Ganellin CR, Lindberg P, Mitscher LA. Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998). Pure Appl. Chem.70(5),1129–1143 (1998).
    • 42  Leach AR, Gillet VJ, Lewis RA, Taylor R. Three-dimensional pharmacophore methods in drug discovery. J. Med. Chem.53(2),539–558 (2010).
    • 43  Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today15(11–12),444–450 (2010).
    • 44  Gao Q, Yang L, Zhu Y. Pharmacophore based drug design approach as a practical process in drug discovery. Curr. Comput. Aided Drug Des.6(1),37–49 (2010).
    • 45  Wolber G, Seidel T, Bendix F, Langer T. Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug Discov. Today13(1–2),23–29 (2008).
    • 46  Sun H. Pharmacophore-based virtual screening. Curr. Med. Chem.15(10),1018–1024 (2008).
    • 47  Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model.45(1),160–169 (2005).
    • 48  Wolber G, Dornhofer A, Langer T. Efficient overlay of small organic molecules using 3D pharmacophores. J. Comp. Aided Mol. Des.20(12),773–788 (2006).
    • 49  Schneidman-Duhovny D, Dror O, Inbar Y, Nussinov R, Wolfson HJ. PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res.36(Web Server issue),W223–W228 (2008).
    • 50  Chaudhaery SS, Roy KK, Shakya N et al. Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology. J. Med. Chem.53(17),6490–6505 (2010).
    • 51  Zampieri D, Mamolo MG, Laurini E et al. Synthesis, biological evaluation, and three-dimensional in silico pharmacophore model for sigma(1) receptor ligands based on a series of substituted benzo[d]oxazol-2(3H)-one derivatives. J. Med. Chem.52(17),5380–5393 (2009).
    • 52  Onnis V, Kinsella GK, Carta G et al. Virtual screening for the identification of novel nonsteroidal glucocorticoid modulators. J. Med. Chem.53(8),3065–3074 (2010).
    • 53  Markt P, Feldmann C, Rollinger JM et al. Discovery of novel CB2 receptor ligands by a pharmacophore-based virtual screening workflow. J. Med. Chem.52(2),369–378 (2009).
    • 54  Neves MA, Dinis TC, Colombo G, Sá e Melo ML. Fast three dimensional pharmacophore virtual screening of new potent non-steroid aromatase inhibitors. J. Med. Chem.52(1),143–150 (2009).
    • 55  Ismail MA, Barker S, Abou El-Ella DA, Abouzid KA, Toubar RA, Todd MH. Design and synthesis of new tetrazolyl- and carboxy-biphenylylmethyl-quinazolin-4-one derivatives as angiotensin II AT1 receptor antagonists. J. Med. Chem.49(5),1526–1535 (2006).
    • 56  Wang H, Duffy RA, Boykow GC, Chackalamannil S, Madison VS. Identification of novel cannabinoid CB1 receptor antagonists by using virtual screening with a pharmacophore model. J. Med. Chem.51(8),2439–2446 (2008).
    • 57  Sprous DG, Palmer RK, Swanson JT, Lawless M. QSAR in the pharmaceutical research setting: QSAR models for broad, large problems. Curr. Top. Med. Chem.10(6),619–637 (2010).
    • 58  Hong H, Xie Q, Ge W et al. Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J. Chem. Inf. Model.48(7),1337–1344 (2008).
    • 59  Clark RD. Prospective ligand- and target-based 3D QSAR: state of the art 2008. Curr. Top. Med. Chem.9(9),791–810 (2009).
    • 60  Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.110(18),5959–5967 (2002).
    • 61  Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem.37(24),4130–4146 (1994).
    • 62  Salama I, Hocke C, Utz W et al. Structure-selectivity investigations of D2-like receptor ligands by CoMFA and CoMSIA guiding the discovery of D3 selective PET radioligands. J. Med. Chem.50(3),489–500 (2007).
    • 63  Sheng C, Zhang W, Ji H et al. Structure-based optimization of azole antifungal agents by CoMFA, CoMSIA, and molecular docking. J. Med. Chem.49(8),2512–2525 (2006).
    • 64  Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. Plos One5(8),e12029 (2010).
    • 65  Liu J, Zhao M, Cui G, Zhang X, Wang J, Peng S. Methyl (11aS)-1,2,3,5,11,11a-hexahydro-3,3-dimethyl-1-oxo-6H-imidazo-[3’,4’:1,2]p yridin[3,4-b]indol-2-substituted acetates: synthesis and three-dimensional quantitative structure–activity relationship investigation as a class of novel vasodilators. J. Med. Chem.51(15),4715–4723 (2008).
    • 66  Tropsha A, Golbraikh A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr. Pharm. Des.13(34),3494–3504 (2007).
    • 67  Tang H, Wang XS, Huang XP et al. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. J. Chem. Inf. Model.49(2),461–476 (2009).
    • 68  Peterson YK, Wang XS, Casey PJ, Tropsha A. Discovery of geranylgeranyltransferase-I inhibitors with novel scaffolds by the means of quantitative structure–activity relationship modeling, virtual screening, and experimental validation. J. Med. Chem.52(14),4210–4220 (2009).
    • 69  Cavasotto CN, Phatak SS. Homology modeling in drug discovery: current trends and applications. Drug Discov. Today14(13–14),676–683 (2009).
    • 70  Kairys V, Gilson MK, Fernandes MX. Using protein homology models for structure-based studies: approaches to model refinement. ScientificWorldJournal6,1542–1554 (2006).
    • 71  Kopp J, Schwede T. Automated protein structure homology modeling: a progress report. Pharmacogenomics5(4),405–416 (2004).
    • 72  Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct.29,291–325 (2000).
    • 73  Baker D, Sali A. Protein structure prediction and structural genomics. Science294(5540),93–96 (2001).
    • 74  Moult J, Pedersen JT, Judson R, Fidelis K. A large-scale experiment to assess protein structure prediction methods. Proteins23(3),ii-v (1995).
    • 75  Mobarec JC, Sanchez R, Filizola M. Modern homology modeling of G-protein coupled receptors: which structural template to use? J. Med. Chem.52(16),5207–5216 (2009).
    • 76  Sitzmann M, Ihlenfeldt WD, Nicklaus MC. Tautomerism in large databases. J. Comput. Aided Mol. Des.24(6–7),521–551 (2010).
    • 77  Ihlenfeldt WD, Voigt JH, Bienfait B, Oellien F, Nicklaus MC. Enhanced CACTVS browser of the Open NCI Database. J. Chem. Inf. Comput. Sci.42(1),46–57 (2002).
    • 78  Wang Y, Bolton E, Dracheva S et al. An overview of the PubChem BioAssay resource. Nucleic Acids Res.38(Database issue),D255–D266 (2010).
    • 79  Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res.35(Database issue),D198–D201 (2007).
    • 80  Hendlich M, Bergner A, Gunther J, Klebe G. Relibase: design and development of a database for comprehensive analysis of protein–ligand interactions. J. Mol. Biol.326(2),607–620 (2003).
    • 81  Overington J. ChEMBL. An interview with John Overington, team leader, chemogenomics at the European Bioinformatics Institute Outstation of the European Molecular Biology Laboratory (EMBL-EBI). Interview by Wendy A Warr. J. Comput. Aided Mol. Des.23(4),195–198 (2009).
    • 82  Wishart DS, Knox C, Guo AC et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res.37(Database issue),D603–D610 (2009).
    • 83  Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res.32(Database issue),D277–D280 (2004).
    • 84  De Matos P, Alcantara R, Dekker A et al. Chemical entities of biological interest: an update. Nucleic Acids Res.38(Database issue),D249–D254 (2010).
    • 85  Wishart DS, Knox C, Guo AC et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res.36(Database issue),D901–D906 (2008).
    • 86  Chen X, Ji ZL, Chen YZ. TTD: Therapeutic Target Database. Nucleic Acids Res.30(1),412–415 (2002).
    • 87  Irwin JJ, Shoichet BK. ZINC – a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model.45(1),177–182 (2005).
    • 88  Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL. Recent developments of the chemistry development kit (CDK) – an open-source java library for chemo- and bioinformatics. Curr. Pharm. Des.12(17),2111–2120 (2006).
    • 89  Ihlenfeldt WD, Takahashi Y, Abe H, Sasaki S. Computation and management of chemical-properties in Cactvs – an extensible networked approach toward modularity and compatibility. J. Chem. Inf. Comp. Sci.34(1),109–116 (1994).
    • 90  Filippov IV, Nicklaus MC. Optical structure recognition software to recover chemical information: OSRA, an open source solution. J. Chem. Inf. Model.49(3),740–743 (2009).
    • 91  Schleif R. Modeling and studying proteins with molecular dynamics. Methods Enzymol.383,28–47 (2004).
    • 92  Karplus M. Molecular dynamics simulations of biomolecules. Acc. Chem. Res.35(6),321–323 (2002).
    • 93  Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol.19(2),120–127 (2009).
    • 94  Case DA, Cheatham TE 3rd, Darden T et al. The Amber biomolecular simulation programs. J. Comput. Chem.26(16),1668–1688 (2005).
    • 95  Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. Charmm – a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem.4(2),187–217 (1983).
    • 96  Shaw DE. A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions. J. Comput. Chem.26(13),1318–1328 (2005).
    • 97  Christen M, Hunenberger PH, Bakowies D et al. The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem.26(16),1719–1751 (2005).
    • 98  Phillips JC, Braun R, Wang W et al. Scalable molecular dynamics with NAMD. J. Comput. Chem.26(16),1781–1802 (2005).
    • 99  Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev.26(5),531–568 (2006).
    • 100  Peters MB, Raha K, Merz KM Jr. Quantum mechanics in structure-based drug design. Curr. Opin. Drug. Discov. Devel.9(3),370–379 (2006).
    • 101  Raha K, Peters MB, Wang B et al. The role of quantum mechanics in structure-based drug design. Drug Discov. Today12(17–18),725–731 (2007).
    • 102  Cavalli A, Carloni P, Recanatini M. Target-related applications of first principles quantum chemical methods in drug design. Chem. Rev.106(9),3497–3519 (2006).
    • 103  Liao C, Nicklaus MC. Tautomerism and magnesium chelation of HIV-1 integrase inhibitors: a theoretical study. ChemMedChem5(7),1053–1066 (2010).
    • 104  Cho AE, Guallar V, Berne BJ, Friesner R. Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J. Comput. Chem.26(9),915–931 (2005).
    • 105  Zhou T, Huang D, Caflisch A. Is quantum mechanics necessary for predicting binding free energy? J. Med. Chem.51(14),4280–4288 (2008).
    • 106  Wang J, Hou T, Ralph AW. Chapter 5. Recent advances on in silico ADME modeling. Annu. Rep. Comput. Chem.5,101–127 (2009).
    • 107  Gleeson MP, Hersey A, Hannongbua S. In-silico ADME models: a general assessment of their utility in drug discovery applications. Curr. Top. Med. Chem.11(4),358–381 (2011).
    • 108  Egan WJ. Chapter 29. Computational models for ADME. Annu. Rep. Med. Chem.42,449–467 (2007).
    • 109  Cosconati S, Marinelli L, La Motta C et al. Pursuing aldose reductase inhibitors through in situ cross-docking and similarity-based virtual screening. J. Med. Chem.52(18),5578–5581 (2009).
    • 110  Ferri N, Corsini A, Bottino P, Clerici F, Contini A. Virtual screening approach for the identification of new Rac1 inhibitors. J. Med. Chem.52(14),4087–4090 (2009).
    • 111  Perez-Pineiro R, Burgos A, Jones DC et al. Development of a novel virtual screening cascade protocol to identify potential trypanothione reductase inhibitors. J. Med. Chem.52(6),1670–1680 (2009).
    • 112  Matsuno K, Masuda Y, Uehara Y et al. Identification of a new series of STAT3 inhibitors by virtual screening. Acs. Med. Chem. Lett.1(8),371–375 (2010).
    • 113  Okamoto M, Takayama K, Shimizu T, Ishida K, Takahashi O, Furuya T. Identification of death-associated protein kinases inhibitors using structure-based virtual screening. J. Med. Chem.52(22),7323–7327 (2009).
    • 114  Ostrov DA, Magis AT, Wronski TJ et al. Identification of enoxacin as an inhibitor of osteoclast formation and bone resorption by structure-based virtual screening. J. Med. Chem.52(16),5144–5151 (2009).
    • 115  Miguet L, Zervosen A, Gerards T et al. Discovery of new inhibitors of resistant Streptococcus pneumoniae penicillin binding protein (PBP) 2x by structure-based virtual screening. J. Med. Chem.52(19),5926–5936 (2009).
    • 116  Cho Y, Ioerger TR, Sacchettini JC. Discovery of novel nitrobenzothiazole inhibitors for Mycobacterium tuberculosis ATP phosphoribosyl transferase (HisG) through virtual screening. J. Med. Chem.51(19),5984–5992 (2008).
    • 117  Kiss R, Kiss B, Konczol A et al. Discovery of novel human histamine H4 receptor ligands by large-scale structure-based virtual screening. J. Med. Chem.51(11),3145–3153 (2008).
    • 118  Knox AJ, Price T, Pawlak M et al. Integration of ligand and structure-based virtual screening for the identification of the first dual targeting agent for heat shock protein 90 (Hsp90) and tubulin. J. Med. Chem.52(8),2177–2180 (2009).
    • 119  Podvinec M, Lim SP, Schmidt T et al. Novel inhibitors of dengue virus methyltransferase: discovery by in vitro-driven virtual screening on a desktop computer grid. J. Med. Chem.53(4),1483–1495 (2010).
    • 120  Ravindranathan KP, Mandiyan V, Ekkati AR, Bae JH, Schlessinger J, Jorgensen WL. Discovery of novel fibroblast growth factor receptor 1 kinase inhibitors by structure-based virtual screening. J. Med. Chem.53(4),1662–1672 (2010).
    • 121  Liao C, Karki RG, Marchand C, Pommier Y, Nicklaus MC. Virtual screening application of a model of full-length HIV-1 integrase complexed with viral DNA. Bioorg. Med. Chem. Lett.17(19),5361–5365 (2007).
    • 122  Dong G, Sheng C, Wang S, Miao Z, Yao J, Zhang W. Selection of evodiamine as a novel topoisomerase I inhibitor by structure-based virtual screening and hit optimization of evodiamine derivatives as antitumor agents. J. Med. Chem.53(21),7521–7531 (2010).
    • 123  Oyarzabal J, Zarich N, Albarran MI et al. Discovery of mitogen-activated protein kinase-interacting kinase 1 inhibitors by a comprehensive fragment-oriented virtual screening approach. J. Med. Chem.53(18),6618–6628 (2010).
    • 124  Peach ML, Tan N, Choyke SJ et al. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J. Med. Chem.52(4),943–951 (2009).
    • 125  Chan DS, Lee HM, Yang F et al. Structure-based discovery of natural-product-like TNF-α inhibitors. Angew. Chem. Int. Ed. Engl.49(16),2860–2864 (2010).
    • 126  Bisson WH, Koch DC, O’Donnell EF et al. Modeling of the aryl hydrocarbon receptor (AhR) ligand binding domain and its utility in virtual ligand screening to predict new AhR ligands. J. Med. Chem.52(18),5635–5641 (2009).
    • 127  Odell LR, Howan D, Gordon CP et al. The pthaladyns: GTP competitive inhibitors of dynamin I and II GTPase derived from virtual screening. J. Med. Chem.53(14),5267–5280 (2010).
    • 128  Khanfar MA, Hill RA, Kaddoumi A, El Sayed KA. Discovery of novel GSK-3β inhibitors with potent in vitro and in vivo activities and excellent brain permeability using combined ligand- and structure-based virtual screening. J. Med. Chem.53(24),8534–8545 (2010).
    • 129  Herschhorn A, Hizi A. Virtual screening, identification, and biochemical characterization of novel inhibitors of the reverse transcriptase of human immunodeficiency virus type-1. J. Med. Chem.51(18),5702–5713 (2008).
    • 130  Chiang YK, Kuo CC, Wu YS et al. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity. J. Med. Chem.52(14),4221–4233 (2009).
    • 131  Wu JS, Peng YH, Wu JM et al. Discovery of non-glycoside sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors by ligand-based virtual screening. J. Med. Chem.53(24),8770–8774 (2010).
    • 132  Georgsson J, Skold C, Plouffe B et al. Angiotensin II pseudopeptides containing 1,3,5-trisubstituted benzene scaffolds with high AT2 receptor affinity. J. Med. Chem.48(21),6620–6631 (2005).
    • 133  Yang H, Shen Y, Chen J, Jiang Q, Leng Y, Shen J. Structure-based virtual screening for identification of novel 11β-HSD1 inhibitors. Eur. J. Med. Chem.44(3),1167–1171 (2009).
    • 134  Olla S, Manetti F, Crespan E et al. Indolyl-pyrrolone as a new scaffold for Pim1 inhibitors. Bioorg. Med. Chem. Lett.19(5),1512–1516 (2009).
    • 135  Barreca ML, De Luca L, Iraci N et al. Structure-based pharmacophore identification of new chemical scaffolds as non-nucleoside reverse transcriptase inhibitors. J. Chem. Inf. Model.47(2),557–562 (2007).
    • 136  Abdel-Aal WS, Hassan HY, Aboul-Fadl T, Youssef AF. Pharmacophoric model building for antitubercular activity of the individual Schiff bases of small combinatorial library. Eur. J. Med. Chem.45(3),1098–1106 (2010).
    • 137  Lokhande TN, Viswanathan CL, Joshi A, Juvekar A. Design, synthesis and evaluation of naphthalene-2-carboxamides as reversal agents in MDR cancer. Bioorg. Med. Chem.14(17),6022–6026 (2006).
    • 138  Joshi AA, Narkhede SS, Viswanathan CL. Design, synthesis and evaluation of 5-substituted amino-2,4-diamino-8-chloropyrimido-[4,5-b]quinolines as novel antimalarials. Bioorg. Med. Chem. Lett.15(1),73–76 (2005).
    • 139  Hall MD, Salam NK, Hellawell JL et al. Synthesis, activity, and pharmacophore development for isatin-β-thiosemicarbazones with selective activity toward multidrug-resistant cells. J. Med. Chem.52(10),3191–3204 (2009).
    • 140  Kumar RJ, Chebib M, Hibbs DE et al. Novel γ-aminobutyric acid rho1 receptor antagonists; synthesis, pharmacological activity and structure–activity relationships. J. Med. Chem.51(13),3825–3840 (2008).
    • 141  Cavasotto CN, Orry AJ, Murgolo NJ et al. Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J. Med. Chem.51(3),581–588 (2008).
    • 142  Park H, Bahn YJ, Jung SK et al. Discovery of novel Cdc25 phosphatase inhibitors with micromolar activity based on the structure-based virtual screening. J. Med. Chem.51(18),5533–5541 (2008).
    • 143  Costanzi S. On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the β2-adrenergic receptor. J. Med. Chem.51(10),2907–2914 (2008).
    • 144  Hamada S, Suzuki T, Mino K et al. Design, synthesis, enzyme-inhibitory activity, and effect on human cancer cells of a novel series of jumonji domain-containing protein 2 histone demethylase inhibitors. J. Med. Chem.53(15),5629–5638 (2010).
    • 145  Buchholz M, Hamann A, Aust S et al. Inhibitors for human glutaminyl cyclase by structure based design and bioisosteric replacement. J. Med. Chem.52(22),7069–7080 (2009).
    • 146  Chen X, Wilson LJ, Malaviya R, Argentieri RL, Yang SM. Virtual screening to successfully identify novel janus kinase 3 inhibitors: a sequential focused screening approach. J. Med. Chem.51(21),7015–7019 (2008).
    • 147  Nowak P, Cole DC, Brooijmans N et al. Discovery of potent and selective inhibitors of the mammalian target of rapamycin (mTOR) kinase. J. Med. Chem.52(22),7081–7089 (2009).
    • 148  Cavalli A, Bottegoni G, Raco C, De Vivo M, Recanatini M. A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase. J. Med. Chem.47(16),3991–3999 (2004).
    • 149  Wang J, Morin P, Wang W, Kollman PA. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J. Am. Chem. Soc.123(22),5221–5230 (2001).
    • 150  Zoete V, Meuwly M, Karplus M. Investigation of glucose binding sites on insulin. Proteins55(3),568–581 (2004).
    • 151  Cheng LS, Amaro RE, Xu D, Li WW, Arzberger PW, Mccammon JA. Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J. Med. Chem.51(13),3878–3894 (2008).
    • 201  Molecular Discovery. www.moldiscovery.com
    • 202  Cambridge Crystallographic Data Centre. www.ccdc.cam.ac.uk
    • 203  SimBioSys Inc. www.simbiosys.ca
    • 204  MEDIT SA. http://medit-pharma.com
    • 205  PharmaGist. http://bioinfo3d.cs.tau.ac.il/PharmaGist
    • 206  BioEpisteme. www.prousresearch.com/spage/technology/testpage/pageid-79/epage/BioEpisteme.aspx
    • 207  Semichem. Codessa. www.semichem.com/codessa/default.php
    • 208  Prediction of activity spectra for substances http://195.178.207.233/PASS2008/en/index.html
    • 209  Talete. Dragon software. www.talete.mi.it
    • 210  University of Virginia. FASTA sequence comparison. http://fasta.bioch.virginia.edu
    • 211  The National Center for Biotechnology Information. Basic Local Alignment Search Tool. http://blast.ncbi.nlm.nih.gov
    • 212  European Bioinformatics Institute. PSI-BLAST. www.ebi.ac.uk/Tools/sss/psiblast
    • 213  Fold and Function Assignment. http://ffas.ljcrf.edu/ffas-cgi/cgi/ffas.pl
    • 214  Protein Structure Prediction Center. http://predictioncenter.org
    • 215  NCI/CADD Group. http://cactus.nci.nih.gov
    • 216  PubChem. http://pubchem.ncbi.nlm.nih.gov
    • 217  MetaCyc. http://metacyc.org
    • 218  Swiss-Prot. http://ca.expasy.org/sprot
    • 219  GenBank. www.ncbi.nlm.nih.gov/genbank
    • 220  NCI/CADD Chemical Identifier Resolver. http://cactus.nci.nih.gov/chemical/structure
    • 221  University of Konstanz. Institute for Bioinformatics and Information Mining. www.knime.org
    • 222  Weka. www.cs.waikato.ac.nz/ml/weka
    • 223  Statistics package R. www.r-project.org
    • 224  Xemistry GmbH. http://xemistry.com
    • 225  ChemIDplus. http://chem.sis.nlm.nih.gov/chemidplus
    • 226  ChEBI. www.ebi.ac.uk/chebi
    • 227  Open Babel. http://openbabel.org
    • 228  Avogadro. http://avogadro.openmolecules.net
    • 229  MySQL database extension. MyChem. http://mychem.sourceforge.net
    • 230  Wikipedia. MD simulation program list. http://en.wikipedia.org/wiki/Molecular_dynamics#Major_software_for_MD_simulations
    • 231  Wikipedia. QM program list. http://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid_state_physics_software
    • 232  Click2Drug. www.click2drug.org
    • 233  Protein Data Bank. www.pdb.org
    • 234  Ligand Expo. http://ligand-expo.rcsb.org
    • 235  National Center for Biotechnology Information. www.ncbi.nlm.nih.gov
    • 236  Virtual Computational Chemistry Laboratory. www.vcclab.org
    • 237  EPA’s SPARC Online Calculator. http://ibmlc2.chem.uga.edu/sparc
    • 238  ChemAxon. www.chemaxon.com
    • 239  Chemicalize. www.chemicalize.org
    • 240  Molecular Networks GmbH. www.molecular-networks.com
    • 241  Accelrys Inc. http://accelrys.com
    • 242  Molsoft LLC. www.molsoft.com
    • 243  BioSolveIT GmbH. www.biosolveit.de
    • 244  Chemical Computing Group. www.chemcomp.com
    • 245  OpenEye Scientific Software Inc. www.eyesopen.com
    • 246  Schrödinger Inc. www.schrodinger.com
    • 247  Tripos Inc. www.tripos.com
    • 248  Scripps Research Institute. http://autodock.scripps.edu
    • 249  University of California, San Francisco. DOCK. http://dock.compbio.ucsf.edu
    • 250  Inte:Ligand. Ligand Scout. www.inteligand.com
    • 251  University of California, San Francisco. Modeller. www.salilab.org/modeller
    • 252  Swiss Institute of Bioinformatics. MODEL. http://swissmodel.expasy.org
    • 253  Enhanced NCI database browser. http://cactus.nci.nih.gov/ncidb2
    • 254  NCI discovery services. http://dtp.nci.nih.gov/webdata.html
    • 255  University of Maryland. BindingDB. www.bindingdb.org
    • 256  Cambridge Crystallographic Data Centre. Relibase. www.ccdc.cam.ac.uk/free_services/relibase_free
    • 257  European Bioinformatics Institute. ChEMBLdb. www.ebi.ac.uk/chembl
    • 258  Royal Society of Chemistry. ChemSpider. www.chemspider.com
    • 259  University of Alberta. Human Metabolome Database. www.hmdb.ca
    • 260  University of Alberta. DrugBank. www.drugbank.ca
    • 261  National University of Singapore. Therapeutic Target Database. http://xin.cz3.nus.edu.sg/group/ttd/ttd.asp/
    • 262  University of California, San Francisco. ZINC. http://zinc.docking.org
    • 263  ChemNavigator. iResearch Library. www.chemnavigator.com
    • 264  GVK Biosciences Private Limited. GVKBIO databases. www.gvkbio.com
    • 265  Accelrys Inc. MDDR. http://accelrys.com/products/databases/bioactivity/mddr.html
    • 266  Sunset Molecular Discovery. Wombat. www.sunsetmolecular.com
    • 267  Thomson Reuters World Drug Index. http://thomsonreuters.com/products_services/science/science_products/a-z/world_drug_index/
    • 268  University of California, San Francisco, USA. Amber. http://ambermd.org
    • 269  Harvard University. CHARMM. www.charmm.org
    • 270  DE Shaw Research. www.deshawresearch.com
    • 271  University of Groningen. GROMACS. www.gromacs.org
    • 272  University of Illinois. NAMD. www.ks.uiuc.edu/Research/namd
    • 273  Iowa State University. Gamess. www.msg.chem.iastate.edu/gamess
    • 274  Gaussian Inc. Gaussian www.gaussian.com
    • 275  University of Kuopio. Ghemical. www.uku.fi/∼thassine/projects/ghemical
    • 276  Stewart Computational Chemistry. MOPAC. http://openmopac.net
    • 277  Environmental Molecular Sciences Laboratory. www.emsl.pnl.gov
    • 278  Wavefunction, Inc. www.wavefun.com
    • 279  Simulations Plus, Inc. www.simulations-plus.com
    • 280  Optibrium, Ltd. StarDrop. www.optibrium.com
    • 281  Advanced Chemistry Development, Inc. www.acdlabs.com
    • 282  Fujitsu FQS. www.fqs.pl
    • 283  Strand Life Sciences. www.strandls.com
    • 284  Leadscope, Inc. www.leadscope.com
    • 285  Lhasa, Ltd. www.lhasalimited.org
    • 286  Russian Academy of Medical Sciences. PASS. http://pharmaexpert.ru/passonline
    • 287  CompuDrug, Ltd. www.compudrug.com
    • 288  Multicase, Inc. www.multicase.com
    • 289  Molecular Discovery, Ltd. www.moldiscovery.com
    • 290  Uppsala University, Sweden and European Bioinformatics Institute Bioclipse. www.bioclipse.net
    • 291  GeneGo, Inc. www.genego.com
    • 292  OASIS Lmc. http://oasis-lmc.org
    • 293  University of California, San Francisco. Chimera. www.cgl.ucsf.edu/chimera
    • 294  University of Notre Dame. Jmol. www.jmol.org
    • 295  Schrödinger Inc. PyMOL. www.pymol.org
    • 296  Swiss Institute of Bioinformatics. Swiss-PdbViewer. http://spdbv.vital-it.ch
    • 297  University of Illinois VMD. www.ks.uiuc.edu/Research/vmd