We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×
Preliminary Communication

Synthesis and evaluation of antioxidant and trypanocidal properties of a selected series of coumarin derivatives

    Roberto Figueroa Guíñez

    Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile

    ,
    Maria João Matos

    * Author for correspondence

    Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, España.

    ,
    Saleta Vazquez-Rodriguez

    Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, España

    ,
    Lourdes Santana

    Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, España

    ,
    Eugenio Uriarte

    Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Vida s/n, 15782, Santiago de Compostela, España

    ,
    Claudio Olea-Azar

    Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile

    &
    Juan Diego Maya

    Departamento de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile, Santiago, Chile

    Published Online:https://doi.org/10.4155/fmc.13.147

    This article describes the preparation and characterization of a selected series of coumarin derivatives with the aim of evaluating their antioxidant properties and their activity against Trypanosoma cruzi, the parasite responsible for Chagas disease. All the derivatives demonstrated moderate trypanocidal activity in the epimastigote and trypomastigote stages (clone Dm28c), with Compound 3 presenting the highest trypanocidal activity of the entire series, displaying higher activity than nifurtimox, which was used as a reference compound. In addition to the trypanocidal activity, this compound proved to have a very interesting antioxidant profile, as well as no cytotoxicity. These preliminary findings encouraged the authors to study the future structural optimization of this scaffold.

    Papers of special note have been highlighted as: ▪ of interest ▪▪ of considerable interest

    References

    • Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Simple coumarins and analogs in medicinal chemistry: occurrence, synthesis and biological activity. Curr. Med. Chem.12,887–916 (2005).▪▪ Very interesting review of coumarins.
    • Borges F, Roleira F, Milhazes N, Uriarte E, Santana L. Simple coumarins: privileged scaffolds in medicinal chemistry. Front. Med. Chem.4,23–85 (2009).▪▪ Very interesting review of coumarins.
    • Riveiro ME, De Kimpe N, Moglioni A et al. Coumarins: old compounds with novel promising therapeutic perspectives. Curr. Med. Chem.17,1325–1338 (2010).▪▪ Interesting review of promising therapeutic applications of coumarins.
    • Zhao H, Donnelly AC, Kusuma BR et al. Engineering an antibiotic to fight cancer: optimization of the novobiocin scaffold to produce anti-proliferative agents. J. Med. Chem.54,3839–3853 (2011).
    • Vilar S, Quezada E, Santana L et al. Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin-resveratrol hybrids. Bioorg. Med. Chem. Lett.16,257–261 (2006).
    • Kostova I, Bhatia S, Grigorov P et al. Coumarins as antioxidants. Curr. Med. Chem.18,3929–3951 (2011).▪ Interesting review of the coumarin scaffold as antioxidant moiety.
    • Ostrov DA, Hernández-Prada JA, Corsino PE, Finton KA, Le N, Rowe TC. Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening. Antimicrob. Agents Chemother.51,3688–3698 (2007).
    • Hwu JR, Lin S-Y, Tsay S-C, De Clercq E, Leyssen P, Neyts J. Coumarin-purine ribofuranoside conjugates as new agents against hepatitis C virus. J. Med. Chem.54,2114–2126 (2011).
    • Kostova I. Coumarins as inhibitors of HIV reverse transcriptase. Curr. HIV Res.4,347–363 (2006).
    • 10  Stefanachi A, Favia AD, Nicolotti O, Leonetti F, Hartmann RW, Carotti A. Design, synthesis, and biological evaluation of imidazolyl derivatives of 4,7-disubstituted coumarins as aromatase inhibitors selective over 17-α-hydroxylase/C17–20 lyase. J. Med. Chem.54,1613–1625 (2011).
    • 11  Chilin A, Battistutta R, Bortolato A et al. Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explain structure-activity relationships. J. Med. Chem.51,752–759 (2008).
    • 12  Timonen JM, Nieminen RM, Sareila O, Vainiotalo P, Moilanen E, Aulaskari PH. Synthesis and anti-inflammatory effects of a series of novel 7-hydroxycoumarin derivatives. Eur. J. Med. Chem.46,3845–3850 (2011).
    • 13  Soto-Ortega DD, Murphy BP, Gonzalez-Velasquez FJ et al. Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg. Med. Chem.19,2596–2602 (2011).
    • 14  Matos MJ, Vazquez-Rodriguez S, Santana L et al. Looking for new targets: simple coumarins as antibacterial agents. Med. Chem.8,1140–1145 (2012).
    • 15  Matos MJ, Santana L, Uriarte E et al. Tyrosine-like condensed derivatives as tyrosinase inhibitors. J. Pharm. Pharmacol.64,742–746 (2012).
    • 16  Anand P, Singh B, Singh N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem.20,1175–1180 (2012).
    • 17  Matos MJ, Viña D, Picciau C, Orallo F, Santana L, Uriarte E. Synthesis and evaluation of 6-methyl-3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg. Med. Chem. Lett.19,5053–5055 (2009).
    • 18  Matos MJ, Viña D, Quezada E et al. A new series of 3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg. Med. Chem. Lett.19,3268–3270 (2009).
    • 19  Serra S, Ferino G, Matos MJ et al. Hydroxycoumarins as selective MAO-B inhibitors. Bioorg. Med. Chem. Lett.22,258–261 (2012).
    • 20  Viña D, Matos MJ, Yáñez M, Santana L, Uriarte E. 3-Substituted coumarins as dual inhibitors of AChE and MAO for the treatment of Alzheimer´s disease. Med. Chem. Commun.3,213–218 (2012).
    • 21  Matos MJ, Terán C, Pérez-Castillo Y, Uriarte E, Santana L, Viña D. Synthesis and study of a series of 3-arylcoumarins as potent and selective monoamine oxidase B inhibitors. J. Med. Chem.54,7127–7137 (2011).
    • 22  Matos MJ, Vázquez-Rodriguez S, Uriarte E, Santana L, Viña D. MAO inhibitory activity modulation: 3-phenylcoumarins versus 3-benzoylcoumarins. Bioorg. Med. Chem. Lett.21,4224–4227 (2011).
    • 23  Molina E, Sobarzo-Sánchez E, Speck-Planche A et al. Monoamino oxidase A: an interesting pharmacological target for the development of multi-target QSAR. Mini Rev. Med. Chem.12,947–958 (2012).
    • 24  Viña D, Matos MJ, Ferino G et al. 8-Substituted-3-arylcoumarins as potent and selective MAO-B inhibitors: synthesis, pharmacological evaluation and docking studies. ChemMedChem7,464–470 (2012).
    • 25  Guardado-Yordi E, Pérez-Molina E, Matos MJ, Uriarte E. In: Nutrition, Well-Being and Health. Bouayed J, Bohn T (Eds). InTech, Rijeka, Croatia, 23–48 (2012).
    • 26  Tyagi YK, Kumar A, Raj HG et al. Synthesis of novel 4-methylcoumarins and evaluation of their antioxidant activity. Eur. J. Med. Chem.40,413–420 (2005).
    • 27  Hamdi N, Puerta C, Valerga P. Synthesis, structure and pharmacological investigations of dicoumarols and related compounds. Eur. J. Med. Chem.43,2541–2548 (2008).
    • 28  Panteleon V, Kostakis IK, Marakos P, Pouli N, Andreado I. Synthesis and free radical scavenging activity of some new spiropyranocoumarins. Bioorg. Med. Chem. Lett.18,5781–5784 (2008).
    • 29  Nordberg J, Arnér ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biol. Med.31,1287–1312 (2001).
    • 30  De Oliveira TB, Pedrosa RC, Filho DW. Oxidative stress in chronic cardiopathy associated with Chagas disease. Int. J. Cardiol.116,357–363 (2007).▪ Describes the potential application of antioxidants in Chagas disease.
    • 31  El-Sayed NM, Myler PJ, Bartholomeu DC et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science309,409–415 (2005).
    • 32  Schofield CJ, Jannin J, Salvatella R. The future of Chagas disease control. Trends Parasitol.22,583–588 (2006).▪ Interesting concepts about Chagas disease.
    • 33  Lepesheva GI, Zaitseva NG, Nes WD et al. CYP51 from Trypanosoma cruzi: a phyla-specific residue in the B’ helix defines substrate preferences of sterol 14alpha-demethylase. J. Biol. Chem.281,3577–3585 (2006).
    • 34  Bern C, Montgomery SP, Herwaldt BL et al. Evaluation and treatment of Chagas disease in the United States: a systematic review. J. Am. Med. Assoc.298,2171–2181 (2007).
    • 35  Castro JA, de Mecca MM, Bartel LC. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol.25,471–479 (2006).
    • 36  Gupta S, Wen JJ, Garg NJ. Oxidative stress in Chagas disease. Interdiscip. Perspect. Infect. Dis.190354 (2009).
    • 37  Bern C. Antitrypanosomal therapy for chronic Chagas’ disease. N. Engl. J. Med.364,2527–2534 (2011).
    • 38  Maya JD, Cassels BK, Iturriaga-Vásquez P et al. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp. Biochem. Physiol. A Mol. Integr. Physiol.146,601–620 (2007).▪ Interesting concepts related to Chagas disease.
    • 39  Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop.115,55–68 (2010).
    • 40  Cerecetto E, Gonzalez M. Chemotherapy of Chagas’ disease: Status and new developments. Curr. Top. Med. Chem.2,1187–1213 (2002).▪ Interesting review of Chagas disease.
    • 41  Freitas RF, Prokopczyk IM, Zottis A et al. Discovery of novel Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase inhibitors. Bioorg. Med. Chem.17,2476–2482 (2009).
    • 42  Menezes IR, Lopes JCD, Montanari CA et al. 3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of Trypanosoma cruzi. J. Comput. Aided Mol. Des.17,277–290 (2003).
    • 43  Leitão A, Andricopulo, AD, Oliva G et al. Structure–activity relationships of novel inhibitors of glyceraldehyde-3-phosphate dehydrogenase. Bioorg. Med. Chem. Lett.14,2199–2204 (2004).
    • 44  Matos MJ, Pérez-Cruz F, Vazquez-Rodriguez S et al. Remarkable antioxidant properties of a series of hydroxy-3-arylcoumarins. Bioorg. Med. Chem.21,3900–3906 (2013).
    • 45  Janeiro P, Matos MJ, Santana L, Uriarte E, Oliveira-Brett AM. New hydroxylated 3-arylcoumarins, synthesis and electrochemical study. J. Electroanal. Chem.689,243–251 (2013).
    • 46  Perez-Cruz F, Serra S, Delogu G et al. Antitrypanosomal and antioxidant properties of 4-hydroxycoumarins derivatives. Bioorg. Med. Chem. Lett.22,5569–5573 (2012).▪▪ Antitrypanosomal and antioxidant properties of some coumarin derivatives.
    • 47  Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods65,55–63 (1983).
    • 48  Bisby RH, Brooke R, Navaratnam S. Effect of antioxidant oxidation potential in the oxygen radical absorption capacity (ORAC) assay. Food Chem.108,1002–1007 (2008).
    • 49  Vieites M, Otero L, Santos D et al. Platinum(II) metal complexes as potential anti-Trypanosoma cruzi agents. J. Inorg. Biochem.102,1033–1043 (2008).
    • 50  Linch FW. 3-Aminocoumarin. J. Chem. Soc.101,1758–1765 (1912).
    • 51  Arndt F, Loewe L, Un R, Ayca E. Coumarindiol and coumarin–chromone tautomerism. Chemische Berichte84,319–329 (1951).
    • 52  Okumura K. Novobiocin and related compounds. I. Syntheses of 3-acylamino-4-hydroxycoumarin derivatives. Yakugaku Zasshi80,525–532 (1960).
    • 53  Merchant JR, Martyres G. Some aminocoumarin derivatives possessing local anesthetic activity. Curr. Science50,410–411 (1981).
    • 54  Ou B, Hampsch-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem.49,4619–4626 (2001).
    • 55  Niki E. Assessment of antioxidant capacity in vitro and in vivo. Free Radical Bio. Med.49,503–515 (2010).
    • 56  Yoshimura Y, Inomata T, Nakazawa H, Kubo H, Yamaguchi F, Ariga T. Evaluation of free radical scavenging activities of antioxidants with an H(2)O(2)/NaOH/DMSO system by electron spin resonance. J. Agric. Food Chem.47,4653–4656 (1999).
    • 57  Muelas-Serrano S, Nogal-Ruiz JJ, Gómez-Barrio A. Setting of a colorimetric method to determine the viability of Trypanosoma cruzi epimastigotes. Parasitol. Res.86,999–1002 (2000).
    • 58  Medvidovic-Kosanovic M, Šeruga M, Jakobek L, Novak I. Electrochemical and antioxidant properties of (+)-catechin, quercetin and rutin. Croat. Chem. Acta83,197–207 (2010).
    • 59  Hu X-R, He J-B, Wang Y, Zhu Y-W, Tian J-J. Oxidative spectroelectrochemistry of two representative coumarins. Electrochim. Acta56,2919–2925 (2011).
    • 60  López-Alarcón C, Lissi E. A novel and simple ORAC methodology based on the interaction of Pyrogallol Red with peroxyl radicals. Free Radical Res.40,979–985 (2006).
    • 61  Demoro B, Rossi M, Caruso F et al. Potential mechanism of the anti-trypanosomal activity of organoruthenium complexes with bioactive thiosemicarbazones. Biol. Trace Elem. Res.153(1–3),371-381 (2013).
    • 62  Perez-Cruz F, Montecinos R, Villamena FA et al. Protective effect of synthetic hydroxycoumarin derivatives on bovine aortic endothelial cells against oxidative stress induced by 3-morpholinosydnonimine and hydrogen peroxide. Free Radical Biol. Med.53,S115 (2012).